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ABSTRACT 

  

                    What does it mean to say the order of a 

particular googological system is such and such in the fast 

growing hierarchy? This notion has been used to gauge the 

strength of various notations for the purposes of comparison. 

For example we can say that Conway's Chain-arrows has order-

type ω
2
. This is it's "ordinal strength" in FGH. 

 

            Informally what we mean when we assign such an 

ordinal to a system is that it can only reasonably express 

numbers of roughly this size given a reasonable character limit. 

More formally the ordinal is the smallest ordinal "a" such that 

f_a(n) eventually dominates any function definable within a 

given system. It is this latter definition which we will be 

using. So when we say Chain Arrows is of order-ω
2
 we are actually 

saying that every function definable in Chain Arrows grows 

slower than f_ω
2
(n). 

 

            The goal in this article is to demonstrate that E# 

is indeed on the order of ω. This statement can be made precise 

enough that it can be proven. The basic strategy will be to show 

that for every member of FGH_ω there is a function in E# with at 

least the same growth rate. This proves that the limit ordinal 

of E# can be no smaller than ω, since no function in FGH_ω 

dominates over all member functions of E#. 

 

            Technically this doesn't prove it's exactly ω, only 

that it's at least of this order. To do this it would be 

necessary to demonstrate that f_ω grows faster than any function 

definable in E#. This we will also demonstrate at the end of the 

article. Before we begin here are some definitions: 

 

PRELIMINARY DEFINITIONS 

     

            We begin by establishing some important 

definitions... 
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            A function (from positive-integers to positive-

integers) is STRICTLY INCREASING FUNCTION (S.IN) if and only if: 

 

                      For EVERY a<b we have f(a) < f(b)  

 

            When f(x)=x we say that "x" is a FIXED-POINT 

of f. When f(x)<x we say that "x" is a DEFICIENCY-POINT 

of f. When f(x)>x we say that "x" is a ABUNDANCY-POINT of 

f.  

 

            Thus an EVERYWHERE ABUNDANT FUNCTION 

(E.AB) is a function such that every point is an 

abundancy-point. ie: 

 

                        For EVERY x we have x < f(x) 

 

            In googology we may adopt the following 

definition for growth rate. 

 

 We will say g(n) grows faster than f(n) if and only if 

for every Δn,k >= 0 , there exists an N such that: 

  

f(n+Δn)+k < g(n) : n>N 

  

            In other words, if we have two sequences, and 

no matter how much of a head start we give f , Δn , or a 

handicap , k , g always "wins out" eventually (gains a 

permanent and irreversible lead), then g is clearly a 

faster growing sequence than f. 

  

This is symbolized: 

 

f(n) [<] g(n) 

 

If the condition fails for at least one combination of the 

integer constants ,(Δn,k), then g(n) does not grow faster 

than f(n) and we can write: 

 

f(n) [!<] g(n) 

 

If f(n) [!<] g(n) and g(n) [!<] f(n) then f(n) and g(n) 

are of the same growth rate and we can write: 

 

f(n) [=] g(n)  



 

           A function in growth class-α, where α is an 

ordinal, is a function within the same class as f_α in 

the Fast Growing Hierarchy. In other words: 

 

f(n) is of growth class-α if and only if 

 

f(n) [=] f_α(n) 

 

or 

 

"α" is the smallest ordinal such that: 

 

f(n) [<] f_α(n) 

 

f(n) is above class-α if and only if: 

 

f_α(n) [<] f(n) 

 

            A SYSTEM OF NOTATION is a legal set 

of CONSTRUCTIONS only involving a predefined set of 

functions. For example if our system of notation only 

contains the function S(n), then the legal constructions 

are: n, S(n), S(S(n)), S(S(S(n))), etc. Functional powers 

are not allowed. Each construction will involve a finite 

set of arguments (in this case only 1 argument is 

possible). Some of these arguments may take on a 

constant, while others can take on the independent 

variable n. Every such construction defines a function 

with some growth rate. 

 

            The LIMIT ORDINAL of a System of Notation is 

the least member of FGH with a growth rate greater than 

any function definable within that system of notation 

using constructions. 

  

NOTE ON THE DEFINITION OF GROWTH RATES 

 

            The definition of the limit ordinal for a notation 

system implicitly rests on the definition of growth rates. 

Computer science uses Big-O notation  to establish a 

classification system of growth rates, however I use a slightly 

different definition (growth class) when working in googology. 

  

  



 

CONJECTURE 

 
 

The SYSTEM OF NOTATION E# is of order-ω * 

 
*meaning f_ω(n) is the smallest member of FGH such that 

it dominates every function in E# 

 
 

To Prove this conjecture we will establish that: 

 
f_k(n) < E100#100#...#100#(2n) w/k-2 100s : k>2 

 
& 

 
E100#100#...#100#n w/k 100s < f_ω(n) : n>99 & n>=k+3 

 
 

 

A PRELIMINARY DISCUSSION OF OUR STRATEGY 

 

            For the purposes of proving our conjecture it will not be 
necessary to enumerate every possible construction/function in 

E#. It suffices to show that for every function in FGH_ω there 

exists a function in E# which grows at least as fast. 

This means that no order less than ω could dominate over 

the entire system. 

 

        We will do this by first establishing a special 

hierarchal sub-set of E# and show that every member of 

FGH_ω there is a member of this sub-set which grows at 

least as fast. 

 

        In order to establish that one function grows at 

least as fast as a member of FGH, f_k, all we need to 

show is that: 

 

f_k(n) < f(n) : n>N 

 

If this is true than f_k CAN NOT be of a higher growth 

class, since for Δn=0, there is no point at which f_k 

gains a permanent lead on f as required by the 



definition. If the above holds it follows that f_k(n) 

[<=] f(n), and that f(n) [!<] f_k(n). 

 

To show that f_ω(n) does indeed grow faster than E#, we 

will show that every function in E# grows slower than a 

member of our hierarchal sub-set of E#, and then show 

that every member of this hierarchy is beaten by f_ω(n) 

eventually. 

 

Establishing fundamental Properties 

 

of PR Hierarchies 

 

                    For the hardcore googologist's amongst you 

who don't mind delving into the math we can prove that E# and 

FGH_ω are stabilized against each other. This means that 

there exists a "c" such that f_k [<] E_k+c holds for all 

k.  

 

                    Some members of the community have 

expressed a high level of skepticism for using ordinals 

and FGH as a means to measure the strengths of systems. 

It's important to recognize, firstly, the necessity 

of some means of comparison. There is nothing 

particularly sacred about FGH, but it has the nice 

property that it directly relates orders of growth with 

ordinals. 

 

                    The objections to this sort of use of 

ordinals and FGH basically boils down to a lack of agreed 

upon formal definition, and a lack of formal proof. Here 

I will provide both to back up my contention that such 

properties are not only necessary, but in fact hold for 

the vast majority of cases we might consider in 

googology. At very least I will show that my claim that 

E# is on par with FGH_ω is sound and can be supported 

formally. 

 

                Before we delve into the proof, we need to 

establish some important properties of googological functions. 

Namely we would like to show that an arbitrary number of 

applications of primitive recursion to a Strictly increasing 

Everywhere Abundant function also results in 

an S.IN/E.AB function. 



 

                    These are ideal properties for any 

googological function. A function being S.IN guarantees 

us that if we want a larger number it suffices to have a 

larger argument. A function being E.AB guarantees that 

the number we are producing is always larger than the 

number we are putting in, making the function "useful" 

from a googological standpoint (to understand why just 

consider a function for which it returns the argument or 

produces a smaller value. In that case we'd be better off 

with the number we were plugging in than the result, 

defeating the purpose of the function in the first 

place). 

 

                With very few exceptions, almost all 

googological notations are designed implicitly with these 

properties in mind. 

 

Let f(n) be a S.IN/E.AB function from Z+ --> Z+ 

 

let g be a new function from Z+ --> Z+ defined as follows: 

 

                            g(n) =  

                                    {  

                                            f(k) : n=1 ; 

                                            f(g(n-1)) : n>1 ; 

 

                                    } 

 

where k is a positive integer. 

 

First we prove that g(n) is S.IN 

 

To do this it is sufficient to show 

 

g(n) < g(n+1) 

 

We observe: 

 

g(n+1) = f(g(n)) 

 

bec. f is E.AB f(g(n)) > g(n) 

 

therefore: 

 

g(n) < g(n+1) 

 



which proves that... 

 

g(1) < g(2) < g(3) < g(4) < ... 

 

therefore 

 

g(a) < g(b) : a<b 

 

so g is S.IN 

 

Next we use this property to prove it's E.AB 

 

Firstly g(1) = f(k) > k >= 1 

 

∴ 1 < g(1) 

 

Now in general... 

 

g(n) = f(f(f(f( ... f(f(f(k))) ... )))) w/n f's 

 
Here we use the Axiom of Minimum Successorship (AxMS): 

 

 a<b --> a+1 <= b 

 

From this we can gather that... 

 

k < f(k) < f(f(k)) < f(f(f(k))) < ... etc. 

 

and that f(k) >= k+1 

 

f(f(k)) >= k+2 

 

f(f(f(k))) >= k+3 

 

etc. 

 

Therefore 

 

f(f(f( ... f(f(f(k))) ... ))) w/n f's >= k+n 

 

g(n) >= k+n > n 

 

g(n) > n 

 

∴ g(n) is E.AB 

 

So if "f" is S.IN & E.AB, and "g" iterates "f" with initial 

value k, then g is also S.IN & E.AB. 

 



Note that this follows regardless of what else is true about 

"f". So it follows then that for any function which is S.IN/E.AB 

that 

 

PRf is S.IN/E.AB , PR
2
f is S.IN/E.AB , PR

3
f is S.IN/E.AB , etc. 

 

The E# Hierarchy 

 

                    Now we define the E# Hierarchy (E#H): 

 

E100#*(0)n = En 

 

E100#*(1)n = E100#n 

 

E100#*(2)n = E100#100#n 

 

E100#*(3)n = E100#100#100#n 

 

E100#*(4)n = E100#100#100#100#n 

 

... 

 

etc. 

 

Under this scheme we eventually want to prove: 

 

f_k(n) < E100#*(k-1)n 

 

 

Establishing our Lemmas 

 

 

But first we establish some basic properties of this hierarchy. 

 
(Lemma 1) That every member is an S.IN/E.AB function 

 
(Lemma 2) That each new function dominates all previous 

functions 

 
(Lemma 3) 3@n < @(n+1) 

 
(Lemma 4) @a@ < @b@ : a<b 

 
(Lemma 5) @(2n) < @100#n 

 

 
Proof of Lemma 1 

 



 

To establish (1) it is only necessary to show that the base 

function En is S.IN/E.AB, and that each new function is a 

primitive recursion of the previous function. 

 

E(n+1) = 10*En > En 

 

Therefore En is S.IN 

 

E1 = 10 > 1 

 

and En is S.IN 

 

Therefore 

 

E2 > E1 > 1 --> E2 > E1 >= 2 --> E2 > 2 

 

E3 > E2 > 2 --> E3 > E2 >= 3 --> E3 > 3 

 

and in general if 

 

Ek > k 

 

Then 

 

E(k+1) > Ek > k --> E(k+1) > Ek >= k+1 --> E(k+1) > k+1 

 

so En is also E.AB 

 

Now we can also observe that if @n is S.IN/E.AB, then the next 

function in the hierarchy is @100#n = @@@@...@@@100 w/n @s. In 

other words, that it's a PR of @n. The next function in the 

hierarchy must therefore be S.IN/E.AB. Thus every member of E#H 

is S.IN/E.AB. 

 

 
Proof of Lemma 2 

 
 

Next we need to establish: 

 

n < En < E100#n < E100#100#n < E100#100#100#n < 

E100#100#100#100#n < ... 

 

This will be vital for later in our proof. 

 

To establish the above claim it suffices to show that: 

 

@n < @100#n 

 



@100#1 = @100 > @1 

 

Assume @100#k > @k 

 

@100#(k+1) = @(@100#k) > @(@k)  

 

This holds because @n is S.IN and @100#k > @k by assumption 

 

also 

 

@(@k) >= @(k+1) 

 

because @n is E.AB, and by the AxMS @n >= n+1 

 

Therefore: 

 

@100#(k+1) > @(k+1) 

 

QED 

 

So... 

 

n < En < E100#n < E100#100#n < E100#100#100#n < 

E100#100#100#100#n < ... etc. 

 

Even this won't be quite sufficent for our purposes. We must 

also prove Lemma 3. 

 

 
Proof of Lemma 3 

 
 

We can begin by observing that: 

 

3En < 10En = E(n+1) 

 

now 

 

Assume 3@n < @(n+1) 

 

Prove this also holds for the next function... 

 

Begin with @100#1 = @100 

 

and @100#2 = @(@100) >= @101 > 3@100 = 3@100#1 

 

Now assume: 

 

3@100#n < @100#(n+1) 

 



We prove for the next case: 

 

@100#(n+2) = @(@100#(n+1)) > @(3@100#n) = @(@100#n + @100#n + 

@100#n)  

 

> @((@100#n)+1) 

 

> 3@(@100#n) = 3@100#(n+1) 

 

So not only is it true that 3@n < 3@(n+1), it's also easy to 

prove. 

 

 
Proof of Lemma 4 

 
 

                    A last potential stumbling block to our 

proof is that we need to know that in E# is we increase any 

argument that we are guaranteed to get a larger output. 

 

                    We can provide proof for this as well: 

 

                    The proof is done through a double induction. We begin 

with the last argument and work our way backwards to any 

arbitrary argument. Firstly: 

 

@a < @b : a<b 

 

because we showed @n is S.IN 

 

So now we prove it for the 2nd to last argument: 

 

 

 

@a < @b 

 

@@a < @@b : @n is S.IN and @a < @b 

 

@@@a < @@@b : @n is S.IN and @@a < @@b 

 

@@@@a < @@@@b : @n is S.IN and @@@a < @@@b 

 

... 

 

therefore: 

 

@@@...@@@a < @@@...@@@b for arbitrary but equal numbers of @ 

 

therefore: 

 



@a#n < @b#n 

 

now since this is true we can go even further... 

 

First we need to point out that the fixed arguments needn't be 

"100" for the function to be S.IN and E.AB. Remember that we 

proved that if the base function is S.IN/E.AB then it doesn't 

matter what the base value is. For any particular base the 

result will be a S.IN/E.AB function. Therefore: 

 

@a#n < @b#n 

 

@a#n#2 = @a#(@a#n) < @b#(@a#n) [previously established] 

 

< @b#(@b#n) 

 

since @a#n < @b#n and @b#n is S.IN 

 

thus @b(@a#n) < @b#(@b#n) 

 

@a#(@a#n) < @b#(@b#n) 

 

@a#n#2 < @b#n#2 

 

Furthermore: 

 

@a#n#3 = 

 

@a#(@a#(@a#n)) < @b#(@a#(@a#n)) 

 

< @b#(@b#(@a#n)) < @b#(@b#(@b#n)) = @b#n#3 

 

and... 

 

@a#n#4 = @a#(@a#(@a#(@a#n))) < @b#(@a#(@a#(@a#n))) 

 

< @b#(@b#(@a#(@a#n))) < @b#(@b#(@b#(@a#n))) 

 

< @b#(@b#(@b#(@b#n))) = @b#n#4 

 

... 

 

@a#n#k < @b#n#k : a<b 

 

Assume @a@n < @b@n 

 

Then @a@n#2 = @a@(@a@n) < @b@(@a@n) < @b@(@b@n) = @b@n#2 

 

@a@n#3 = @a@(@a@(@a@n)) < @b@(@b@(@b@n)) = @b@n#3 



 

... 

 

@a@n#k < @b@n#k 

 

So in general increasing an arbitrary argument while leaving the 

others fixed will produce a larger value. 

 

 
Proof of Lemma 5 

 
 

Now we will also want to show that: 

 

@(2n) < @100#n 

 

To do this we just observe that: 

 

@2 < @100 = @100#1 

 

Note that the argument in the first case will only increase by 2 

each time 

 

@2 , @4 , @6 , @8 , @10 , @12 , @14 , @16 , @18 , ... 

 

Meanwhile we get: 

 

@100 , @@100 , @@@100 , @@@@100 , @@@@@100 , @@@@@@100 , ... 

 

but we can prove that @n > 10n 

 

Firstly we have 10n <= En 

 

since: 

 

10(1) = 10 = E1 

 

but... 

 

10(2) = 20 < 100 = E2 

 

Assume 10k < Ek : k>1 

 

10(k+1) = 10k+10 < 10k+10k = 20k < 100k = 10*10k < 10*Ek = 

E(k+1) 

 

Therefore: 

 

10k <= Ek 

 



Furthermore we previously established that: 

 

10n <= En < E100#n < E100#100#n < E100#100#100#n < ... 

 

so 

 

@@100 > @1000 

 

@@@100 > @@1000 > @10000 

 

etc. 

 

and in general @100#n > @10^(n+1) 

 

Now we just show that: 

 

2n < 10^(n+1) 

 

for all n 

 

2 < 100 

 

assume 2k < 10^(k+1) 

 

2(k+1) = 2k+2 <= 4k < 20k = 10*2k < 10*10^(k+1) = 10^(k+2) 

 

And this was proved only very modestly. So it follows that: 

 

@(2n) < @100#n  

 

With all these lemmas established we can finally prove that E# 

"keeps up", or stabilizes with FGH_ω 

 

 

 

MAIN PROOF 

 
 

Firstly a review: 

 

f_0(n) = n+1 

 

f_1(n) = 2n 

 

f_2(n) = n*2^n 

 

n < 2^n ∀n 

 

Proof: 



 

1 < 2^1 

 

2 < 2^2 

 

Assume k < 2^k & k > 1 

 

2^(k+1) = 2 * 2^k > 2*k = k+k > k+1 

 

Therefore: 

 

n*2^n < 2^n * 2^n = 4^n < 10^n = En 

 

Therefore f_2(n) < En ∀n 

 

f_3(n) = f_2^n(n) < En#n < E(E100#n)#n 

 

[ n < E100#n See Lemma 2] 

 

 = E100#(2n) [Def. of E#] 

 

Therefore: 

 

f_3(n) < E100#(2n) ∀n 

 

and: 

 

f_3(n) < E100#100#n = E100#*(2)n 

 

Moving on to the next function: 

 

 

 

f_4(n) = f_3^n(n) < E100#(2*E100#(2*E100#(2* ... (2*E100#(2n)) 

... ))) 

 

w/n 100s 

 

< E100#(3*E100#(2*E100# ... 

 

< E100#(E100#(1+2*E100# ... 

 

< E100#(E100#(3*E100# ... 

 

< E100#(E100#(E100#(1+2*E100# ... 

 

< E100#(E100#(E100#(3*E100# ... 

 

 < E100#(E100#(E100#(E100#(1+2*E100# ... 



 

we can continue this for arbitrary nestings until we obtain ... 

 

E100#(2n+1)#n 

 

<= E100#3n#n 

 

Now we can say: 

 

E100#3n#n < E100#10n#n < E100#(En)#n < E100#(E100#100#n)#n = 

E100#100#(2n) 

 

And now we have the necessary tools to continue: 

 

f_4(n) < E100#100#(2n) 

 

f_5(n) = f_4^n(n) < E100#100#(2*E100#100#(2* ... 

 

< E100#100#(2n+1)#n < E100#100#3n#n < 

E100#100#(E100#100#100#n)#n <  

 

E100#100#100#(2n) 

 

In general let: 

 

f_k(n) < E100#100#...#100#(2n) w/k-2 100s 

 

f_k+1(n) < E100#100#...#100#(2n+1)#n  

 

< E100#100#...#100#(E100#100#...#100#100#n)#n 

 

E100#100#...#100#100#(2n) w/k-1 100s 

 

Thusly we conclude: 

 
f_k(n) < E100#100#...#100#(2n) w/k-2 100s 

 

QED 

 
Furthermore: 

 

f_k(n) < E100#100#... #100#100#n w/k-1 100s ∀ n,k 

 

 

f_ω(n) eventually dominates every member of 

E#H 

 
 



 

Thus FGH and E# are stabilized. Also: 

 

There exists no k such that f_k(n) grows faster than every 

function in E#. 

 

Now we show that f_ω(n) is the smallest function such that 

it eventually dominates every function of E#H. 

 

                    Firstly we need to demonstrate that 

every member of FGH_ω is a S.IN/E.AB function. The reason 

we can't simply apply our previous result is because that 

only applied strictly to stacking primitive recursions 

onto a S.IN/E.AB function. However as we'll see, FGH 

actually get's an even bigger boost in this department, 

so that the results that applied to applications of 

primitive recursion also apply here. 

 

                    Firstly we have that: 

 

f_0(n) = n+1 

 

f_0(n+1) = f_0(f_0(n)) = f_0(n)+1 > f_0(n) 

 

Therefore f_0(n) is S.IN 

 

also 

 

f_0(n) = n+1 > n : ∀n 

 

so f_0(n) is E.AB 

 

Let f_k(n) be a S.IN/E.AB function. 

 

We have already proven that: 

 

f_k^n(c) 

 

is also a S.IN/E.AB function of "n". 

 

Since f_k(n) is S.IN, it means that if the innermost 

argument increases, so does the output so that: 

 

f_k(a) < f_k(b) : a<b 

 

f_k(f_k(a)) < f_k(f_k(b)) : a<b 



 

f_k(f_k(f_k(a))) < f_k(f_k(f_k(b))) : a<b 

 

etc. 

 

and in general: 

 

f_k^n(a) < f_k^n(b) : a<b 

 

Therefore: 

 

f_k^a(a) < f_k^a(b) < f_k^b(b) 

 

Therefore: f_k^n(n) is a S.IN function. 

 

Interestingly in the case of FGH, the functions are not 

strictly E.AB. This is because, for k>0: 

 

f_k(0) = f_(k-1)^0(0) = 0 

 

So "0" is a fixed-point for every function in the 

hierarchy except f_0(n). We can show however that f_k(n) 

is E.AB for n>0. 

 

Observe: 

 

f_k^1(1) = f_k(1) 

 

If it holds that f_k(1) > 1, then it must also hold for 

f_k+1(1). This is true since f_0(1) > 1. So it must be 

true for all functions in FGH_ω. In fact it can be shown 

that: 

 

f_k(1) = f_k-1(1) = f_k-2(1) = ... = f_2(1) = f_1(1) = 

f_0(1) = 2 

 

Therefore for all k, f_k(1) = 2 > 1. 

 

For the higher values we have: 

 

f_k+1(n) = f_k^n(n) : n>1 

 

since all f_k are S.IN: 

 

f_k^n(n) >= n+n > n : n>1 

 



So all functions f_k are E.AB(n>0). 

 

Next thing we need to show is that for each f_k (k>2) there is a 

member of E#H which it eventually dominates. We begin with f_3. 

We want to prove: 

 

En < f_3(n) : (n>1) 

 

Firstly we observe: 

 

E1 = 10 

 

E2 = 100 

 

E3 = 1000 

 

etc. 

 

while: 

 

f_3(0) = 0 

 

f_3(1) = 2 

 

f_3(2) = f_2(f_2(2)) = f_2(2*2^2) = f_2(8) = 8*2^8 = 2^11 = 2048 

 

so we have: 

 

100 < 2048 

 

E2 < f_3(2) 

 

Now we will show that every succeeded case f_3 wins. 

 

Assume: 

 

Ek < f_3(k) 

 

f_3(k+1) > f_2(f_3(k)) = f_3(k) * 2^(f_3(k)) 

 

2^(f_3(k)) > 10 

 

provided f_3(k) > 3 

 

k must be at least 2, and f_3(2) = 2048 >> 3, but f_3(n) is also 

S.IN therefore: 

 

f_3(k) > 2048 >> 3 : k>2 

 

So we have: 



 

f_3(k) * 2^(f_3(k)) > f_3(k) * 10 > Ek * 10 = E(k+1) 

 

So therefore: 

 

En < f_3(n) : n>1 

 

We can now go further: 

 

f_4(n) = f_3^n(n) > EE..EEn w/n Es = En#n : n>1 

 

We know that: 

 

En#n > E100#n : n>100 

 

yet we have: 

 

f_4(100) > E100#100 

 

So in this case we have: 

 

f_4(n) > E100#n : n>99 

 

We now can show inductively that: 

 

f_k(n) > E100#100#...#100#n w/k-3 100s : (n>99) 

 

Assume: 

 

f_k(n) > E100#*(k-3)n : n>99 

 

f_k+1(n) > E100#*(k-3)n#n >= E100#*(k-3)100#n = E100#*(k-2)n : 

n>99 

 

--> f_k+1(n) > E100#*(k-2)n : n>99 

 

Thus we have proven: 

 

f_k(n) > E100#*(k-3)n : n>99 

 

We now use this to show that f_ω(n) eventually dominates 

every member of E#H. 

 

Firstly we have: 

 

f_ω(n) = f_n(n) > E100#*(n-3)n : n>99 

 

Now imagine an arbitrary member of E#H: 

 



E100#*(k)n 

 

I'll will now prove that: 

 

if n>99 & n>=k+3 

 

then f_ω(n) > E100#*(k)n : ∀k 

 

Firstly if n>99 then our general relation holds that: 

 

f_ω(n) = f_n(n) > E100#*(n-3)n 

 

if n is also >=k+3 then: 

 

E100#*(n-3)n >= E100#*(k+3-3)n = E100#*(k)n 

 

This holds due to lemma 2. 

 

So if n>=k+3 we know that E100#*(n-3)n contains at least 

as many 100s as  

E100#*(k)n. If it's the same number then f_ω(n) wins 

automatically, but if it's more it still wins because 

then: 

 

f_ω(n) > E100#100#...#100#n w/n-3 100s 

 

and E100#100#...#100#n w/k 100s 

 

is less provided k < n-3 , again via lemma 2. So anyway 

you slice it, f_ω(n) dominates every function in E#H at 

n>99 at the earliest, or n>=k+3, whichever is largest. 

 

Thus f_ω(n) is the first function to eventually dominate 

every function in E#H. 

 

So by way of phrase we can say: 

 

E# is equipotent with FGH_ω , or E# is of order-ω 

 

QED 

 


