A Diophantine binomial inequality *

Mark K Malmros

For all positive integers x, y, and n , the binomial $(x+y)^{n}$ has the integer $\operatorname{root}\left((x+y)^{n}\right)^{\frac{1}{n}}=z \in \mathbb{Z},(x+y=z)$;
all positive integers with integer roots of the same power can be expressed as a binomial (emphasis on all).

The expression

$$
(x+y)^{n} \neq x^{n}+(x+y)^{n}
$$

is an inequality.
Having established all integers with an integer root for a given n can be expressed as $\left((x+y)^{n}\right)^{\frac{1}{n}}=z \in \mathbb{Z}$, it follows from the inequality that

$$
\left(x^{n}+(x+y)^{n}\right)^{\frac{1}{n}} \notin \mathbb{Z}
$$

for $\mathrm{n}>2$.
This expression is equivalent to Fermat's Last Theorem stating that no three positive integers x, y, and z satisfy the equation $z^{n}=x^{n}+y^{n}$ for any integer value of n greater than two.

Chimney Point, VT
malmros@chimneypoint.com
12/11/2015

[^0]
[^0]: *this is a refined argument for a previous demonstration

