A simple algorithm to express any odd composite number that is a product of k-primes not necessarily distinct as a sum of exactly k unequal terms

Prashanth R. Rao

Abstract: If N is an odd composite number that can be written as a product of k-primes not necessarily distinct, then we have devised a simple algorithm that would allow us to express N as the sum of exactly k terms all distinct derived using its prime factors.

Results:

Let N be an odd composite number that is a product of exactly k-primes
\(p_1, p_2, p_3, \ldots, p_{k-2}, p_{k-1}, p_k \).

Therefore \(N = p_1 p_2 p_3 \ldots p_k \)

Consider a circle.

If in step 1, we cut we cut it at \(p_1 \) positions it would result in \(p_1 \) arcs.

(Note that we have used a total of \(p_1 \) cuts to the circle until now to yield \(p_1 \) arcs)

If in step 2, we cut within each arc from step 1 at \(p_2-1 \) positions, then we would end up with \(p_1 p_2 \) arcs and in this step alone we have used \(p_1(p_2-1) \) cuts.

(Note that we have used a total of \(p_1 + p_1(p_2-1) \) cuts to the circle from the beginning to yield \(p_1 p_2 \) arcs at end of step 2)

If in step 3, we cut within each of the arcs at end of step 2 at \(p_3-1 \) positions, then we would end up with \(p_1 p_2 p_3 \) arcs and in this step alone we have used \(p_1 p_2 (p_3-1) \) cuts.

(Note that we have used a total of \(p_1 + p_1(p_2-1) + p_1 p_2 (p_3-1) \) cuts to the circle from the beginning to yield \(p_1 p_2 p_3 \) arcs at end of step 3)

Using the same strategy at the end of k-steps we would end up with N arcs which is \(p_1 p_2 p_3 \ldots p_k \) and we have used \(p_1 p_2 p_3 \ldots (p_k-1) \) cuts in the kth step.

(Note that we have used a total of
\(p_1 + p_1(p_2-1) + p_1 p_2 (p_3-1) + \ldots + p_1 p_2 p_3 \ldots (p_k-1) \) cuts to the circle from the beginning to yield \(N = p_1 p_2 p_3 \ldots p_k \) arcs at end of kth step)

Conclusions:

If \(N = p_1 p_2 p_3 \ldots p_k \) where \(p_1, p_2, p_3, \ldots, p_{k-2}, p_{k-1}, p_k \) are k-primes not necessarily distinct then we can express N as the sum of k distinct terms as follows
\[N = p_1 + p_1(p_2-1) + p_1p_2(p_3-1) + \ldots + p_1p_2p_3\ldots(p_{k-2}-1) + p_1p_2p_3\ldots(p_{k-1}-1) + p_1p_2p_3\ldots(p_{k-1}) \]

Since we are dealing with an odd composite number \(N \), none of the \(k \) prime factors of \(N \) is equal to the even prime 2 and therefore all the \(k \)-terms in the sum partition derived using the above algorithm are unequal.