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Gravitation Theorem vs. Shell Theorem.
Conic Proof.

W. Westenberger

SUMMARY. The gravitation theorem is based on Newton's Gravitation Law and takes into account
that each gravitational object does exert gravitation starting from its very position. 
The  Shell  Theorem,  on  the  other  hand,  sums  up  all  positions  of  gravitational  objects,  thus
calculations of gravitation are made easier.
A spherically symmetric body of equal density can be modelled as an infinite number of cones
within a globe, starting from a point A upon the radius of the globe. If one of these cones can be
treated as a point mass (i.e. as a single gravitation point), then a system of cones in the shape of a
sphere can also be treated as a point mass.  

INTRODUCTION.

Gravitation theorem:  The total  gravitational force of spherically symmetric distributed masses
within a global space affects an object outside of the globe as though all masses were concentrated
in a point outside of the very centre of the globe. [1]
That means: The distance between a point A upon the radius and the single gravitation point of a
globe, representing the sum of the gravitational effects of all masses within the globe, 
is smaller than the distance R between A and the centre.

Shell theorem: A spherically symmetric body affects external objects gravitationally as though all
of its mass were concentrated at a point at its centre. [2]
Therefore: The distance between a point A upon the radius and the  single gravitation point of a
globe, representing the sum of the gravitational effects of all masses within the globe, 
is exactly equal to the distance R.

Consider the special case of spherically symmetric distribution of masses within a globe of equal
density. Gravitational cones, completely filling the globe, are presented as a line of argument. Thus
the  crucial  difference  between  these  two  theorems  is  shown.  This  way it  is  possible  to  get  a
conclusive judgement. This may be called the conic proof.
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GEOMETRIC FACTS.

The following considerations are based on the inverse square relation of Newton's gravitation law:
Doubling the distance between two masses you will get a quarter of the gravitational force.

There is another well-known square relation:
Doubling the radius of a circle you will get four times the area.

Presuming equal distribution of objects  within the area of a circle,  you will  get four times the
gravitation as well as four times the area by doubling the radius.
Imagine a conical space starting from a point A.
At an arbitrary height above A upon the symmetrical axis of the cone, a right-angled plane will cut
the surface of the cone at a certain radius, forming the boundary of the circle area.
Doubling  this  height  you  will  get  a  circle  of  double  radius  and of  four  times  the  circle  area.
Therefore also four times the mass of the circle area.

Four times the mass of an area at double distance will exert the same gravitation as one time the
mass at the distance one.

As the area of each circle within a cone is dependent on the height H above A, and as on the other
hand gravitation is inversely dependent on H, both effects are balancing out. Therefore cutting the
cone at any height whatever you will get the identic amount of gravitation. [3]

LINE OF ARGUMENT.

Imagine a constant globe consisting of many objects at equal density.

Consider a cone starting at A. The centre of the globe is located upon the symmetric axis of the
cone. The radius R of the globe is passing through A.
The globe is intersecting the cone at a certain height H above A. The area of the intersected circle is
determined by H. Therefore the summed up masses of this upper circle area will exert gravitational
force on A dependent on the distance, that's the height H.
 
Below we first regard gravitational effects and the single gravitation point of any cone whatever. 
Second we regard any other cones starting at A and intersecting the constant globe. We will get a
definite result on behalf of the single gravitation point of several cones.
At last we regard the summed up gravitational effects of all the globe's mass by using the summed
up effects of in-globe-cones.
Of course each mass is effecting gravitation exactly once, so superposed parts of cones have to be
subtracted.
Each mass within a globe is a part of  at least one cone. And each mass may be assigned to one of
the circle areas within a cone.

Dividing any intersected cone into halves by halving H we get another circle area. This circle area
at half the height H will be a quarter of the area above, therefore at equal mass distribution there
will be only a quarter of standard masses within this area. The gravitational force of each mass of
this area on behalf of A will be four times stronger at half H than the same mass in the circle area
above. So the summed up gravitational effect of the lower area will be exactly the same as the effect
of the upper one.
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Modifying  distance  H generally  means  modifying  the  circle  area  and  its  mass  by square,  and
inversely modifying gravitational effect by square of distance.
So any intersected circle area within a certain cone will exert gravitation upon a point A at exactly
the same amount. 
Therefore the gravitational effect of the summed up masses of the upper half of the cone will be
exactly at the same amount as the effect of the lower half.
So we recognize the single gravitation  point of any cone will be at H/2.

Obviously the height H of any cone within a globe will be smaller than 2R. Therefore half H will
be smaller than R. That means that the summed up gravitational force of a cone is located in a
single gravitation point at H/2 < R.

Let's regard two superposed cones starting from A. The distance of the single gravitation point of
each cone will be smaller than R. 
The outer of two cones, characterized by a greater angle at A, will be lower, the second H/2 will be
smaller than the first H/2. 
Of course the mass of the superposed area will exert gravitation only once. Taking away the inner
part of the second cone, that's the superposed part with the first cone, will not change the position of
the effective point of the outer cone. [3]
The single gravitation point of two in-globe-cones will be located between the first and the second
one. We see that H/2 < R for the summed up masses of any two or more  superposed in-globe-
cones. 

The total mass of a spherically symmetric body may be enclosed by a sufficient number of in-globe-
cones. For any cone H/2 will be < R. 
One therefore has the single gravitation point of a total globe at H/2 < R .

Now let's summarize the line of argument:
The distance between the single gravitation point of the innermost cone and A will be near R, but
surely  at < R.
The single gravitation point of any outer cone of a greater angle at A will have a smaller distance
from A than the innermost one. The distance will decrease by increasing angle. One therefore has
that the single gravitation point of the outermost cone at an angle near 90° has got a distance of
nearly zero, but surely > 0 .
Therefore we know for sure that the  single gravitation point of the total mass of the considered
globe will be at a distance from A of > 0 and < R .

That's a proof of the gravitation theorem concerning the case of equal density of mass distribution.

DISCUSSION.

The first objection against the line of argument may be that the mass opposite to A at a distance of
2R is not sufficiently respected. For it is a part of the globe, but not a part of any cone. 
Well, you may regard all masses upon the axis of the cones starting from A to the opposite point of
the globe at 2R. You will find that the single gravitation point of a line will be at <R. [4] 
The single gravitation point of all in-globe-cones outside of the axis will also result in H/2 < R.
Therefore the total globe is subject to H/2 <R.
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Second disproof of the objection: Any real mass object will be a part of any small enough cone,
because the object is located within the global radius of R. The innermost cone as well  as the
remaining in-globe-cones are subject to the rule H/2 < R.

The second objection may be called the paradigm objection:  It  is  not  only a  general  scientific
agreement that the single gravitation point of a globe is located in the very centre of the globe, but
The Shell Theorem is proven by many sparkling geometric proofs and is a fundamental component
of  astronomic  science  since  generations  upon  generations.  One   therefore  has  that  the  single
gravitation point of a globe will be at a distance of exactly = R.
Disproving the second objection: Any proof of the shell theorem does sum up all different positions
of objects, and of course the result will be the very centre. (No one will doubt that the geometric
centre of a spherically symmetrical mass distribution is indeed the very centre.) But you have to
follow the instructions of bracket calculation. The crucial difference is, you first have to consider
the  gravitational  force  of  any mass  at  its  position,  and  second you  have  to  sum up  the  local
gravitation  of  the  total  mass.  Since  generations  upon  generations  the  instructions  of  bracket
calculation are violated by summing up the geometric positions of all objects instead of summing
up the local gravitation. [5]
Sometimes it is crucial to observe the correct sequence. 

The conic proof of the gravitation theorem is taking account of the local gravitational force of each
object  at  its  very  position  on  behalf  of  distance  and  angle,  in  contrary  to  the  shell  theorem.
(Calculation by the shell theorem is somewhat easier, but at the end of the day you will not get the
correct result.)

In addition to the conic proof there is some further bearing out of the gravitation theorem:

-by calculation of gravitational circles, filling a globe [1, 4], disproving the shell theorem for all
cases of spherically symmetric distribution, not only on behalf of equal density,

-as  well  as  by  the  results  of  satellite  experiments  like  GRAIL 2012  [6,  7,  8],  disproving  by
observations of utmost precision the centre-referred theories of spherical mass distribution,

-and by calculation of the galactic rotation curve by the so-called method of gravity areas [5, 9, 10],
disproving the missing-mass assumption.
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