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Abstract
We show that the complex number structure of the probability allows

to express explicitly the relationship between the energy function H and
the Laplace principle of equal ignorance (LPEI). This nonlinear relation-
ship reflecting the measurement properties of the considered systems, to-
gether with the principle of causality and Newton principle separating the
dynamics from initial conditions, lead to the linear Schrodinger equation
with the Max Born interpretation, for micro and macro systems!
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1 Introduction
Let us imagine a system consisting of elements about whom full information is
unavailable, or moving in a non-smooth manner (everything is quantized), or one
for which it does not make sense to talk about motion. For such systems, it is still
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possible to talk about continuous probabilities of finding the system in certain
’spatial configurations’. Examples of such systems are: a set of microparticles,
a set of decisions, or a set of polls.

Descriptions of systems can depend on a chosen precision. If, for example,
for a set of particles, the description is such that at any time we simultaneously
know its position and momenta changing in a continuous way, then we are deal-
ing with a classical description. If, for any time, we only know simultaneously
the probability of positions and momenta, we have a classical stochastic de-
scription. However, if we only know either the probability of positions or the
momenta but not both, and additionally, probability has the complex number
structure, it is a quantum-like description; Such a description can also be
used for systems to which the classical concept of motion is not applied.

In our opinion, the most basic idea introduced into science by QM is the
probability amplitude, A, of a certain event or process. By means of this, the
corresponding probability, P, is obtained using the two operations: conjugation,
A→ A? and multiplication:

P = A? ·A = |A|2 (1)

In this sense, we’re talking that probabilities P , which are numbers belonging to
the interval <0,1>, have a complex structure. It is also called the Born prob-
ability rule. The structure (1) allows us to relate certain physical functions
to probabilities for which we can apply the Laplace’s Principle of Equal
Ignorance (LPEI), [18], which is usually used in such cases as coin tossing
or dice, [12]. We can simply choose

A ∼ eiH(p,x) (2)

with a constant module |A|, for H, a Hamiltonian of the system with 3n dimen-
sional vectors p, x ,or, H may even be given by a completely different function
depending on certain physical variables X̃ and certain hidden variables P̃ . We
now see that the P (probability) does not depend on H but via (2) we see a rela-
tion between P and H. In fact, later we will choose the modified dimensionless
characteristic of the system, namely: t

~H(P̃ , X̃). In this case, we get:

A ∼ ei t
~H(P̃ ,X̃) (3)

In the paper, the LPEI in which a probability has structure (1) and the
amplidude A is related to some physical function will be called theGeneralized
Laplace Principle of Equal Ignorance (GLPEI). By GLPEI we will also
understand situation in which the amplitude A is an operator Â expressed by
formula:

Â = e−i
t
~ Ĥ) (4)

where Ĥ = Ĥ†is the Hermitian operator. The operator-valued probability am-
plitude is related to probability in a more indirect and global way, see Sec.4.
In fact, the above relations express a connection of measurements
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with the LPEI and, I think, this is a reason why QM is consider-
ing a theory with explicitly incorporated measurements of certain
quantities like energy and momentum, see also 46.

As far as the principle of superposition is concerned, this is not a vital fea-
ture that distinguishes quantum from classical systems, because linear equations
are used to describe various systems, particularly in situations of sensitivity to
small changes in the initial and boundary conditions. Furthermore, a superpo-
sition of the two solutions with a probabilistic interpretation leads to a solution
for which the probabilistic interpretation requires some renormalization, just
like in statistical physics. In other words, the principle of superposition with
the necessity for primitive renormalization is generally associated with theories
in which a detailed or complete description of the components of the system is
not taken into account.

In fact, the aim of the paper is to show which rules relating to the sum and
the product of events enforces the probability structure (1), see Secs 2 and 3.
We also want to show a role played by GLPEI in derivation of the Schrodinger
equations.

2 Relationship of probability amplitudes with uni-
tary space.

Unitary space is a vector space over the field C of complex numbers, on which
there is a given scalar product (inner product) of vectors. In fact, we resigne
from rigorous compliance of the last demand.

Using Dirac’s notation, for any vector |Ψ >, we have:

|Ψ >=
∑

cj |ψj > (5)

where cj ∈ C and the scalar products of any orthonormal base vectors |ψj >satisfy
the following relations:

< ψi|ψi >= δji ≡ Kronecker′s δ (6)

Hence,

< Ψ|Ψ >=

n or∞∑
j=1

|cj |2 (7)

and

< ψi|Ψ >= ci (8)

For the normalized vector |Ψ >, < Ψ|Ψ >= 1, the following Born probabilistic
interpretation is possible:

cj - can be interpreted as an amplitude of probability for occurrence of the
event denoted by j, if appropriate actions (measurements) are carried out,

3



|Ψ >- can be called a generating vector of all these amplitudes.
Eq.8 shows the relationship of amplitudes to the scalar product < | > of

vectors in the considered linear space (unitary space).
If the vector |Ψ > generates all possible information about the system, at a

given time t, then we call it a state vector. Then, the formula 5 should contain
the dependence on time, and in a complete base {|ψj >}j∈N we can write:

|Ψ(t) >=
∑

cj(t)|ψj > (9)

where we chose here the time independent orthonormal base vectors{|ψj >}j∈N .
We obtain an important formula

< ψi|Ψ(t) >= ci(t) (10)

that can be interpreted in the following way: This is a probability amplitude,
or probability, of the j-th random event represented by the vector |ψj >, e.g.
getting j on the toss of a dice, or getting a particular measurement result for
a system in the state |Ψ(t) >. By a state of the system represented by the
vector |Ψ(t) > one can understand a dice’s velocity and its location at the
moment t , or, in the case of random variables - the whole set of velocities and
locations related to the ensemble of identical dices located at the time t with
the same conditions. A choice of different bases can be associated with different
descriptions of individual results.

We have, of course, if the above sum exhausts all possibilities indexed by j:

< Ψ(t)|Ψ(t) >=
∑
j

|cj(t)|2 = 1 (11)

In the operator language:

|Ψ(t) >= U(t)|Ψ(0) >; U∗(t)U(t) = I (12)

where an one side ’unitary’ evolution was used.
Usually, it is assumed that |Ψ >∈ H, where H is a Hilbert space. It is

interesting that the base vectors are largely arbitrary and do not necessarily
belong to the space H. In QM they usually are eigenvectors of the considered
system having a specific physical interpretation related to specific measurements
but this does not mean that among base vectors there are vectors describing, for
example, the living and the dead cat from the famous Schrodinger’s cat paradox!
So that was, if it existed a system and appropriate the measuring instrument
with such results. We do not think that a cat inside the box and a cat with open
box correspond to this situation:-). Perhaps, incidentally, this point of view was
adopted by Bohr, who disagreed with Schrodinger on this point.

We assume a linear space with a scalar product (unitary space) and various
not necessarily orthogonal bases, for t > 0. This will allow us to say some-
thing about the dynamics of systems. Let us choose the base vectors {|ϕj(t) >}
in such a way that the components cj(t) of vector |Ψ(t) > are constant, for all
t:
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|Ψ(t) >=
∑

cj |ϕj(t) > (13)

Taking scalar products of the vector |Ψ > with vectors of the previous base,
we get:

< ψi|Ψ(t) >=
∑
j

cj < ψi|ϕj(t) > (14)

Choosing base vectors fulfilling:

|ϕj(t) >t=0= |ψj > (15)

for j=1,..., we see that the initial vector |Ψ(0) > is completely described by the
coefficients cj , see (6). The assumption that, for certain bases at least :

| < ψi|ϕj(t) > |2 = constant in t (16)

would mean that the absolute value of all elemens which describe the dynamics
of the system do not depend on the time. Did not resemble it the independence
on time of certain forces in inertial frames? Further, the dependence on i, j
might be due to the influence of the initial conditions on these terms.

3 Classical and QM descriptions, Laplace’s Prin-
ciple of Equal Ignorance (LPEI) and arbitrari-
ness of phases

In classical mechanics (CM), the state of thrown dice or coins can be described,
based on the known laws of motion and known or unknown initial conditions.
But such a description is very complicated and unnecessary, and in these cases,
by assuming reliability of the objects used (e.g. a dice), we limit ourselves to
stating that all possible outcomes are equally likely. This is famous Laplace
principle of equal ignorance (LPEI). We can express this, for example, using the
following generating vector :

|Ψ >=
1

n

n∑
i−1
|i > (17)

with orthogonal vectors < i|j >= δij , and with interpretation of the coeffi-
cients of the above expansion as a probability of the |i >result. There is good
reason for using QM language here. In this language the probability of getting
the classical |j > result is given by

< j|Ψ >=
1

n
(18)

In QM, < j|Ψ >, is ’only’ a probability amplitude! This means that | <
j|Ψ > |2 = 1

n is a probability. This opens up the interesting possibility of
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expressing the LPEI in many different ways. We can now relate the probability
amplitude < j|Ψ > to various complex valued functions with constant modules:

< j|Ψ >=
1√
n
expiψj (19)

with an arbitrary phase ψj which can even depend in an arbitrary way on the
time t:

ψj = ψj(t) (20)

In this case, the generating vector

|Ψ(t) >=

n∑
j

|j >< j|Ψ(t) > (21)

in spite of its dependence on the time t, generates equal probabilities | <
j|Ψ(t) > |2 which do not depend on the time, for all possible |j >. We also
have:

< Ψ(t)|Ψ(t) >=

n∑
j=1

| < j|Ψ(t) > |2 = 1 (22)

as the probability of occurrence of any event.
In a more general case of probability amplitude:

< j|Ψ(t) >= cjexpiψj(t); ψj(t) = ψj(t)∗, (23)

< Ψ(t)|Ψ(t) >=

n∑
j=1

|cj |2 = 1 (24)

In this case the generating vector |Ψ(t) >(state vector) depends on the time
t, even though the square of its length does not depend on the time and a
probabilistic interpretation of |cj |2 and their sum is also possible. The
same is possible, for

|Ψ(t) >=
∑
j

|j > cj(t)exp{iψj(t)}; ψj = ψ∗j (25)

where * means complex conjugation, if extra condition on the time depended
coefficients cj(t):

< Ψ(t)|Ψ(t) >=
∑
j

c?j (t)cj(t) = 1 (26)

is imposed. We can treat expressions cj(t)exp{iψj(t)} as probability ampli-
tudes of becoming (obtaining due to measurement) of event j . The fact that
there are no restrictions on the phase functions ψj(t) , comes from the vectors
orthonormality |j >. Of course, not everyone orthonormal set of orthonormal

6



vectors is appropriate, which can be seen in the case of cat paradox: let us take
a state which is a superposition of states: the cat dead and cat alive and other
states. We immediately become confused if we assume that these radically dif-
ferent states of cat correspond to ’simultaneous reality’, instead of to different
possibilities - related to or identified with our knowledge about the system.

The above arbitrariness of the phase functions can be used for incorporation
in theory the fundamental property of physical systems which is responsible for
unique or probabilistic predictions, namely the causality condition, see below.

4 Schrodinger equations, Newton’s principle, uni-
tarity and causality conditions

Of course, we could derive the Schrodinger equation by the identification of
vectors |j >with eigenvectors of the Hamilton operator Ĥ. Then, for constant
coefficients cj , and for

ψj(t) = − t
~
Ej (27)

where Ej are eigenvalues related to eigenvectors |j >,we would obtain the
Schrodinger equation satisfied by the state vector |Ψ(t) >. But here, we would
like to derive this equation, insofar as this is possible, based on an analogy with
the classical approach in which the averaging is done with respect to the initial
positions and the momenta of the system. But in the case of QM, the dynamic
equations, (Newtonian equations), will not be used directly as in the case of
classical statistical mechanics. Adapting the formula (25) to the continuous
case and using the function notation for vectors, e.g. |j >→ f(x, j), we propose
the following formula:

Ψ(t, x) =

ˆ
dpeixpexp{− i

~
[t ·H(p, x) +G(t; p, x)]}c(p) (28)

for
G(0; p, x) = Ġ(0; p, x) = 0 (29)

where dot over G means the time derivative. Here, H(p, x) is a Hamiltonian
function, i.e. the energy of the classical system expressed by means of momenta
and positions of the system elements. Products of three functions occurring in
the above integral correspond to the ’conjunction’ of three properties, from
which the first two are expressed by GLPEI and third is affiliated with other
properties as the conditions of causality and/or probabilistic interpretation of
the theory.

Assuming that the formula (28) satifies the causality condition (35), the
restriction (29) guarantees that the Schrodinger equation

i~
∂

∂t
Ψ = ĤΨ (30)
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is satified with the Hamilton operator Ĥ which is expressed by the classical
Hamilton function with non-commuting variables, see also below.

Let us consider briefly where the naturalness of the proposed formula lies.
Please note that

Ψ(0, x) =

ˆ
dpeixpc(p) (31)

and this means that if Ψ satisfies a first order equation of evolution,
then the formula (28) satisfies ’any’ (broad) initial condition for this equation.
The first order evolution equation is a characteristic feature of the one-time
probabilistic approch to classical systems.

Further, the occurrence of the t
~H(p, x) is also quite natural in view of the di-

mensinlessness of such combination of three dimensional quantities: t, ~, H(p, x).
The function A = exp{−i t~H(p, x)} expresses the GLPEI. Moreover, if we
agree that this function expresses the dynamics of the system, then apart from
LPEI (Sec.3), the equation:

A?A = 1 (32)

very likely expresses also the Newton’s principle of independence of system
dynamics from the initial variables (initial conditions). Moreover, because of
the conservation of energy, these principles can be valid for any instant of time.
Of course, we could say the same thing about the L instead of H. But history
of QM teaches us that the extension of the space system at the primary level
and the introduction of phase space rather than configuration space, shows us
the heuristic validity of this step.

Now, calculating the time derivative of the expression (28), at t = 0, we get:

∂

∂t
Ψ(t, x)t=0 = operator ·Ψ(0, x) (33)

If the operator appearing in the equation does not depend explicitly on the
time, and this is the case for the energy integral, it can be assumed that the
above equation holds for all times, see 38, and this is the Schrodinger equation
in which, for systems not composed of ’atoms’, constant ~ may be replaced by
another constant.

The above reasoning can be justified as follows:

Ψ(t, x)⇐⇒ |Ψ(t) >= Û(t)|Ψ(0) > (34)

where U(t) is an operator transforming the initial state of the system represented
by the vector |Ψ(0) >into the vector |Ψ(t) >representing the actual state. The
causality condition means that, for an arbitrary t > 0 and an arbitray
increment ∆t ,

Û(∆t+ t) = Û(∆t)Û(t) (35)

For ∆t ' 0,
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Û(∆t) = (I + ∆t
˙̂
U(0) + o(∆t))Û(t) (36)

where the dot over a symbol indicates the time derivative at t=0. Hence,

Û(∆t+ t)|Ψ(0) >= (I + ∆t
˙̂
U(0) + o(∆t))Û(t)|Ψ(0) > (37)

and, finally:

˙|Ψ(t) >=
˙̂
U(0)|Ψ(t) > (38)

The causality condition tells us that an infinitesimal increment of the given
evolution, (Ψ(∆t + t) − Ψ(t)), at any time t, does depend in a linear way on
the present state of the system where the operator coefficient describing the
dynamics of the evolution is constant in time. In fact, in the general case, the
causality condition 35 is the simplest relation of the linearity to nonlinearity,
which means that these notions complement one another, see also [19]. Due to
this relation, the initial lost of information is transfered to an arbitrary moment
of the system evolution, see (35). This is a Marcov process.

The unitarity condition

Û(t)Û+(t) = Û+(t)Û(t) = Î (39)

imposed on an evolution of the system provides the probabilistic interpretation
of the state (wave) function Ψ(t, x) and its coefficients. If the state function
(state vector) is expanded on an appropriate, physically motivated, orthogonal
base, e.g., we are using the eigenvectors of certain observables, then appropriate
physical interpretation can be attached to the coefficients of the expansion. In
fact, to probabilistic interpretation is needed only one of the above equations
(one-side unitarity):

Û+(t)Û(t) = Î (40)

which could be used in the case of the non-Hermitian Hamilton operators!
The general form of formula 28 can also be justified by taking into account

the operator solution of the causality and unitarity conditions:

Û(t) = et·B̂ , B̂ = −B̂† (41)

where †means Hermitian conjugation of the operator B̂. From Schrodinger
equation 30, we know that

B̂ = − it
~
Ĥ (42)

Ĥ is Hermitian Hamilton operator. Hence, using Dirac notation, we can write:

|Ψ(t) >= e−
i
~ tĤ |Ψ(0) > (43)

This evolution equation can be rewriten in a function form as follows:
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< x|Ψ(t) >=

ˆ
dp < x|e− i

~ tĤ |p >< p|Ψ(0) > (44)

where < x|Ψ(t) > is interpreted as the probability amplitude of finding the
system in the state |Ψ > at the configuration x.

The unit operator ÎP , in the space spanned by the complete set of orthogonal
vectors |p >, is represented by

ÎP =

ˆ
dp|p >< p| (45)

The vectors |x >∈ R3N , refering to the x-configuration of the system through
the amplitude (44), are connected with the vectors |p >through the equation:

< x|p >= eixp (46)

which in the simplest way expresses the GLPEI relating to measurements of the
particle’s position or momentum. On the other hand, the above equality simply
represents the relationship between the QM bases from which one describes the
particle(s) positions and the second its momenta.

We also need the assumptions:

< x|p̂2|p >= p2eixp, < x|U(x̂)|p >= U(x)eixp (47)

Hence, we get

< x|Ĥ|p >= H(p, x)eixp (48)

where H(p, x) is a classical Hamiltonian.
At these assumptions, taking from 44 the time derivative at t = 0, one can

get the Schrodinger equation at zero time. From the causality condition (35),
the Schrodinger equation at any time t has the same form.

5 Physical and mathematical principles of super-
position and GLPEI

What conclusions can be drawn from the foregoing? First of all, in the case
of incomplete information about elements of the systems, both classical and
quantum systems can and should be described by linear equations. There is
however one essential difference between the linearity of equations which result
from the incomplete knowledge about the system and the linearity of Maxwell’s
equations, for example. In the first case, any linear combination of the two
solutions is not physical and we call the mathematical principle of superposition,
and in the second it is, and we call the physical principle of superposition.
In other words, what we considered to be a fundamental feature of quantum
systems is not a fundamental feature but rather is a result of the impossibility
of a detailed description of the system. We hypothesize here that the classical
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and quantum systems are more similar to each other, [4], than it is generally
thought to be the case, see however: [12]. We believe that this conviction is
also expressed in the GLPEI (generalized Laplace Principle of Equal Ignorance),
which, due to the structure 1 of the probability, is able to combine the Principle
of Equal Ignorance with classical dynamical functions. The LPEI expresses our
belief that if we do not know anything about a set of random events,
the best thing is to accept equal probabilities for different events. The
GLPEI relates this belief to certain functions depending on these events.

In fact, in QM we see the composition of three things:

QM ⇐⇒ {GLPEI + classical dynmics + linear evolution} (49)

This allows us to derive Schrodinger equations in quantum as well as in clas-
sical cases. In the first case, it is related to the fact that the measurement of
positions randomly changes the momenta of a system, and in the second case,
that the scale of the phenomenon and its dynamics - invalidates the impor-
tance of specific values of variables, for example, the momenta. The assumption
about linear evolution of a system is taken from observation that a less precise
description of any system can be described by linear equations for averaged or
smoothed solutions and their correlations, see e.g. [3]. The linear evolution
contains automatically the causality condition.

Does it make sense to consider the wave function for the entire universe?
On this question we will try to give an answer in terms of the classic model:
We assume a classical description of the universe in which the initial conditions
are random variables. In this case, the theory provides only average results but
observations of the universe provide, at best, only one result. But this universe
is not measured with absolute accuracy and this may be an argument for the
use of mean values.

See also [5], where QFT is used to explain the measurement problem.
It seems to me that the considerations presented here suggest that the am-

plitude of the wave function is a carrier of information, and not material repre-
sentative of any particle or particles related to a given point in the 3D space.
This belief is particularly clear in the case of the N particles, for N> 1, be-
cause otherwise it would mean that this material representative ’lives’ in the
n-D space, where n is an arbitrary integer, but we should have more respect to
Ockham’s razor principle.

A similar issues concerning complex probability structure can be found in [8]
and in the literature given there. See also Feynman’s negative probabilities and
what he says about the mystery of QM. Personally I think that the structure
1 is also an expression of the relativity of information : Information exists
only in a relative sense - that is, in relation to some other information, [14].

Finally, we could sum up this article as follows: micro-particles are classical
objects with specified momenta and positions, but the inability to determine
them exactly forces us to use ’quantum’ description which differs from the clas-
sical canonical description in that it uses a complex structure of the probability,
1, which allows to connect the total energy of the system with the Laplace
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Principle of Equal Ignorance (LPEI). To such conclusion, I think, allows us to
come this article and a surprising analogy of classical and quantum descriptions
in the case of incomplete information about a system, see [7, 3]. It should be
added that after the discovery of the Schrodinger equation additional dicovery
was important about the meaning of eigenvectors and eigenvalues of certain
operators which describe the system after a given measurement when repeated
measurements no longer brings anything new in classical as well as in quantum
case.

We must also add that the structure 1 must be further generalized to take
into account relativistcally invariant theories.

We can also say that not taking into account a detailed description of the
components of the system it relates to nonlocality, [3]. This inherently involves
the absence of a sharp definition of certain notions and variables, expressed by
randomness, vagueness or ambiguity, see [2]. But this is connected with informa-
tion about the system and I think again that nonlocality of quantum description
is inherently related to information and not to any physical interactions. Here
for information we rather understand knowledge, which does not exclude the
immediate transfer of the measurement results between distant points.

One more: Determination of initial and/or the boundary conditions is asso-
ciated with the measurement. If the measurement of the part of variables in a
particular moment of the time is such that the values of the remaining variables
are completely disrupted, then we are dealing with quantum mechanical descrip-
tion. In this sense, we can say that properties of the measuring instruments are
included in the theoretical description.

6 Probability amplitudes in classical physics
Let us assume that all possible states of a system are described by the function
called also the field

ϕ = ϕ[x̃;α] (50)

where x̃ desribes different points in the space-time and different components of
the field ϕ. It is also the functional, if we take into account its dependence on
the initial and/or boundary conditions imposed on the system and denoted by
α. In the case of ’wild’ solutions, different averaging or smoothing procedures
are used (n-point information (n-pi)), which satisfy the linear equation, see [3];
App.1. In such cases, the probability density or the weight density, due to the
linearity of equations for n-pi, can be substituted by the corresponding density
of probability amplitude. Then, to obtain a physically verified formula,
we have to take into account either only real or only imaginary parts of the
corresponding n-point functions (n-pi). But I hope that this work suggests that
the probability amplitude should also be used in situations where it makes no
sense to talk about the differentiable trajectories of the system and the only
guarantee of any rationality is the Laplace Principle of Equal Ignorance or its
generalization ((G)LPEI).
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App.1 A proposed experiment
It is not clear, for me, whether the structure of the probability 1 is an expres-
sion of the disturbing influence of the measurement process or the results of
the wave properties of the system, see, e.g., [9]. Perhaps, with this dilemma
can be resolved in the weightlessness conditions by a chaotic stream of macro-
scopic particles passing through two slits to mimic the lack of knowledge of their
momenta. If, by appropriate selection of the parameters of the slits and the du-
ration of the experiment, we were to obtain an ’interference’ image or just a
picture differing from the cumulative image obtained with a subsequent closed
the first and the second slit, this could mean that the wave description may be
replaced by a classical statistical description in which the particles do not have
a defined momenta and wherein the probability has a structure 1. Perhaps, the
experiments done with entities much larger than electrons and photons confirm
this possibility (Wikipedia (2013)).

Suggestions of some authors about the possibility of using QM beyond the
microscopic scale, see [11], provide some hope of getting positive result.

App.2 Bell’s theorem and its consequences
Bell’s Theorem says:

’No physical theory of local hidden variables (HV) can ever reproduce all of
the predictions of Quantum Mechanics’

A theory of local HV may correspond to a classical description of the system
usually reduced to analyzing certain differential equations in which some set
of independent (initial and/or boundary) variables are treated as HV. These
HV are unambiguously related to possible measurements of dynamical variables
(observables).

My comment: (Perhaps the preceding sentence is also my comment?)
So, by taking the n-point information considered e.g. in [7] or in [3], in

which the initial momenta or other variables are treated as hidden (random)
variable, [10], we should not receive, with the help of such a theory, all the QM
predictions. It seems apparent that conclusion, that the loss of information,
which carries GLPEI is so radical that the sense of some of the concepts of
classical, deterministic description of the system as, for instance, the concept of
the differentiable trajectory of each particle of the system, cease to make sense,
see again [7, 3].

App.3 Quotes from Streater, [12].

1. We review the mathematical development of probability, enphasising that
quantum theory is a generalization (p1)

2. ..., Heisenberg, with help of the Copenhagen interpretation, invented a
generalization of the concept of probability, and physicists showed that this was
the model of probability chosen by atoms and molecules. (ps22/3)
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At this point I would like to thank J. Dwyer for pointing me Streater’s paper
[12], see (ResearchGate (2014)).

App.4 Top down causation and Quantum Mechan-
ics
Note first that the Hamiltonian, which appears in the QM, is the classical Hamil-
tonian. This means that it describes the macroscopic objects as planets which
to a large scale can be regarded as point objects. These objects are formed by
atoms whose structure reiterates planetary systems. Recall the Bohr’s planetary
model of atoms. Hence, with the help of GLPEI, we derive the Schrodinger’s
equation. In this sense the OM is an example of the top down causation with
a final structure of the atom that guarantees its stability. At this point I re-
comend very interesting discussion on the ResearchGate forum related to the
Sumanta Chakradorty’s question: ’Does a uniformly accelerated charge radi-
ate?’ (2014/15)

App.5 A proper question?
I think that we should not ask ourself how or with what the universe is made,
but we should ask ourself how best to describe the universe:-)!

Good illustrations of this philosophy are QM, the introduction in astro-
physics of dark energy and matter, and many other scientific papers. See also
[17], [3] and any history of science.

App.6 Semiotic exercise
Semiosis=sign activity, Semiotics=the sciences studying sign activity, see [15].

According to Charles Sanders Peirce (1839-1914) the sign can be used as
a substitute for information. In fact, Peirce understands a sign as a triadic
relation connecting the primary sign to its object through the production of
an interpretant. “These three instances of the sign relation are connected by a
tripod rather than by a triangle in order to emphasize the internal logic
of the sign relation, which should never be confused with a mere summation of
three relations between corners in a triangle” (“,” is a quote from [15]):

A tripod: | QM:
Sign Object |psi> an atom

x........x x x
x...x x x
x x
x x

Interpretant Born or other interpretations
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Can we treat QM with its multiplicity of interpretations as an argument that
the QM has a lot to do with modern art ? See [16].

App.7 Feynman’s integrals and other formulations
of QM
In my opinion GLPEI is used most visually and intensively in the Feynman
integrals also called the path integral formulation. In this approach to QM
is shown immence amount of possibilities for particle displacements caused by
the lack of information. Another approach, the Heisenberg operator approach,
expresses an influence of measurements on information about a system. In the
Heisenberg approach to QM (the Heisenberg picture), the dynamical variables
are substituted by operators (e.g. matrices)

q(t)→ q̂(t) (51)

which satisfies the operator Newton equations. Considering all possible n-’point’
information (n-pi):

< Φ|q̂(t1) · · · q̂(tn)|Ψ > (52)

for n=0,1,..., where |Φ,Ψ >are given arbitrary vectors from, e.g., Hilbert space,
we get for them exactly the same equations as for n-pi (n-point correlation
functions) in the case of classical Newton equations with random initial
conditions. Basic difference is such that classical correlation functions are
permutationally invariant but quantum n-pi are not. However, in the free Fock
space, for the both type of n-pi satisfying identical equations, we can use the
same methods of solutions considered e.g. in previous author papers, see [7, 3].
And that, in my opinion, is a reminiscence of mythical hidden local variables
excluded by the Bell’s theorem. We think that the Heisenberg representation of
QM described in the free Fock space, in which n-pi 52 satisfy linear equations
considered e,g, in [7, 3] are properly handled, may prove to be more effective
than the Schrodinger formulation.

App.8 Insight into the nature
is possible due to connection of macro and micro phenomena through the GLPEI.
It is amazing that a simple function:

R→ S1 : eix (53)

which combines various Sectors of mathematics also combines various sectors of
physics and the fact that this function is mapping a straight line in an infinite
times winding circle is also worthy of reflection.
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