
The logical difference in quantum mathematics
separating pure states from mixed states
context: quantum randomness

Steve Faulkner

17th November 2015

Abstract I give a short explanation of how quantum mathematics representing
pure states, is logically distinct from the mathematics of mixed states. And further:
how standard quantum theory easily shows itself to contain logical independence.
This work is part of a project researching logical independence in quantum math-
ematics, for the purpose of advancing a complete theory of quantum randomness.
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1 Introduction

Quantum physics suffers from logical problems and yet classical physics does not.
The fault lays with logical discrepancies where quantum theory doesn’t tell the full
story of quantum experiments. Specifically, the machinery of quantum indetermin-
acy is ‘missing’.

Actually, that machinery is to be found, already present, as mathematical in-
formation making up the mathematics of quantum theory.

In classical physics, experiments of chance, such as coin-tossing and dice-throwing,
are deterministic, in the sense that, perfect knowledge of the initial conditions would
render outcomes perfectly predictable. The ‘randomness’ stems from ignorance of
physical information in the initial toss or throw.

In diametrical contrast, in the case of quantum physics, the theorems of Kocken
and Specker [4], the inequalities of John Bell [3], and experimental evidence of Alain
Aspect [1,2], all indicate that quantum randomness does not stem from any such
physical information.

As response, Tomasz Paterek et al offer explanation in mathematical informa-
tion. They demonstrate a link between quantum randomness and logical independ-
ence in (Boolean) mathematical propositions [5,6]. Logical independence refers to
the null logical connectivity that exists between mathematical propositions (in the
same language) that neither prove nor disprove one another. In experiments meas-
uring photon polarisation, Paterek et al demonstrate statistics correlating predict-
able outcomes with logically dependent mathematical propositions, and random
outcomes with propositions that are logically independent.

While those Boolean propositions do convey definitive information about quantum
randomness, any insight they offer is obscure. In order to advance a full and com-
plete theory of quantum randomness and indeterminacy, understanding is needed
of logical independence, inherent in standard textbook quantum theory.

In the Paterek et al experiments, the predictable, logically dependent outcomes
correspond to measurement aligned parallel with the prepared state; whereas the
random, logically independent outcomes correspond to measurement aligned across,
orthogonal to the prepared states. Hence logical dependence is associated with pure
states and logical independence with mixed states.
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Possible versus necessary information

In another quantum system – that of the free particle – the mathematics outwardly
exhibits the logical difference between pure and mixed states.

It is helpful to understand the difference between syntactical information versus
semantical information. Syntax concerns rules used for constructing or transform-
ing symbols and formulae – here, in this case – the rules of Elementary Algebra.
Semantics, on the other hand, concerns interpretation. Here, interpretation does not
refer to physical meaning, but to mathematical meaning: whether symbols might be
understood to mean: complex scalars, real scalars, or rational. Such interpretation
has null connectivity with the rules of algebra — the syntax. Indeed, typically, the
interpretation may be only in the theorist’s mind and not asserted by the mathem-
atics, at all.

A most relevant example is the comparison of syntax versus semantics in the
mathematics representing pure eigenstates, set against mixed states, in system of
the quantum free particle. Consider the eigenformulae pair:

d

dx
[Φ (k) exp (+ikx)] = +ik [Φ (k) exp (+ikx)] (1)

d

dk
[Ψ (x) exp (−ikx)] = −ix [Ψ (x) exp (−ikx)] (2)

This pair of formulae is true, irrespective of any interpretation placed on the variable
i. But in contrast, the superposition pair:

Ψ (x) =
∫

[Φ (k) exp (+ikx)] dk (3)

Φ (k) =
∫

[Ψ (x) exp (−ikx)] dx (4)

is true, only if we interpret i as pure imaginary. (And if k is restricted to real or
rational k; and if x is restricted to real or rational x.) In the case of the eigenvalue
pair (1)& (2) the imaginary interpretation is purely in the mind of the theorist,
but for the superposition pair (3)& (4), the imaginary interpretation is implied by
the mathematics. Whilst for the superposition pair (3)& (4), specific interpretation
is necessary, for the eigenvalue pair (1)& (2), interpretation is possible, but not
necessary.

In Mathematical Logic, ‘necessary information versus possible information’ is
recognised as constituting what is known as a ‘modal logic’. However, in textbook
quantum theory, the distinction separating possible from necessary is not notice-
able, nor is it recognised; and the logical distinction between pure states and mixed
states is lost. The crucial difference in expressing pure states is that their inform-
ation derives from pure syntax. The transition in forming mixed states from pure
states demands the creation of new information1. That creation goes unopposed.

The important point is that the logical status of pure states and mixed is
distinct, not only in experiments, but also in Theory.

The fact is that quantum theory for pure states need not be unitary (or self-adjoint);
whereas, for mixed states, unitarity is necessary. The jump between pure states and
mixed states represents a logical jump between possible unitarity and necessary
unitarity.

Historically, the distinction between necessary and possible unitarity has not
been noticed, as any point of significance. No doubt, standard quantum theory
ignores the fact for reasons of consistency. But, re-writing (1) – (4) as formulae in
first order logic shows there is no contradiction, and that the possible / necessary
information can be conveyed by a single theory. Thus, for pure states:

∀η | d

dx
[Φ (k) exp (+ηkx)] = +ηk [Φ (k) exp (+ηkx)] (5)

∀η | d

dk
[Ψ (x) exp (−ηxk)] = −ηx [Ψ (x) exp (−ηxk)] (6)

And for mixed:

∃η | Ψ (x) =
∫

[Φ (k) exp (+ηkx)] dk (7)

∃η | Φ (k) =
∫

[Ψ (x) exp (−ηxk)] dx (8)

1 In some way, yet to be understood, this information is lost again during measurement.
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2 The Unitary (or self-adjointness) Postulate is redundant

But having rewritten formulae as (5) – (8), these new formulae are inconsistent
with the Postulates of Quantum Mechanics. Specifically, (5)& (6) disagree with
unitarity (or self-adjointness) – imposed by Postulate. Whilst (5) – (8) represent a
mathematical system that is logically self-consistent, and conveys the whole inform-
ation of unitarity, that conveyance of whole information is gained at the expense
of quantum theory’s most treasured fact.

Not to worry. The postulated unitarity (or self-adjointness) is not needed. Unit-
arity is implied where it is needed – in the mathematics of the mixed states. Else-
where, unitarity (or self-adjointness) is redundant.

3 Logical Independence

Crucially, once free of the Unitary Postulate, the imaginary unit no longer exists ax-
iomatically, but is implied in (7)& (8). And because it is not axiomatic, and neither
does its existence contradict the algebra, but is consistent with it, the imaginary
unit is logically independent in the mathematics. This opens up the possibility
that quantum randomness (or indeterminacy) in the quantum free particle may
have origins in logical independence.
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