Generalized Relational Expression of Unified All

Dimensional Uncertainty Relations

Yong Bao
100 Renmin South Road, Luoding 527200, Guangdong, China
E-mail: baoy ong9803@163.com

We propose a generalized relational expression (GRE), which unifies all dimensional uncertainty relations (URs) through dimensional analy sis. Here we find the general expression of UR, where the product of two or n dimensional non-commutative physical quantities (PQs) is equivalent to the power product of the reduced Planck constant h, the gravitational constant G, the speed of light in vacuum c, the Boltzmann's constant k and the base charge e, and find out that any dimensional PQ has a corresponding Planck scale. Since the dimensions are the same, many PQs have the same Planck scale. All Planck scales fall into two categories, one for the basic Planck scale and the derived Planck scale, and the other for the Femi-Planck scale, the Bose-Planck scale, and other-Planck scales. The corresponding Planck scale for any PQ is proven to be equal to the power product of Planck length, Planck time, Planck mass, Planck temperature, and base charge (or Planck charge). The GRE is found and the power product of the non-switched PQ is found to be equal to the corresponding Planck scale. Apply ing GRE we also found the Big Bang UR on the temperature and volume of the Big Bang, and the Schwarzschild Black Hole (SBH) UR on the mass and volume of the SBH. These URs suggest no singularities in the Big Bang and SBH considering quantum effects. We show that GRE is generalized, interesting and significant.

1. Introduction

The Heisenberg uncertainty principle [1] made great progress in applications [2, 3], developments [4, 5] and experiments [6, 7]. These solidify its solid foundation and expand its connotation. Now there are many dimensional uncertainty relations (URs):

$$
\Delta p \Delta r \geq \hbar[1] ; \Delta E \Delta t \geq \hbar[1] ; \delta t=\beta \mathrm{t}_{\mathrm{P}}^{2 / 3} t^{1 / 3}[8] ; \eta / s \geq 4 \pi \hbar /
$$ $\kappa[9] ; \Delta T \Delta X \sim \mathrm{~L}_{\mathrm{S}}^{2} \sim \mathrm{~L}_{\mathrm{P}}^{2} / \mathrm{c}[10] ; \delta x \delta y \delta t \sim \mathrm{~L}_{\mathrm{P}}^{3} / \mathrm{c}[11] ; L_{\mu \nu} \sim$ $\sqrt{\mathrm{L}_{\mathrm{P}} L} \quad[12] ; \varepsilon(Q) \eta(P)+\varepsilon(Q) \sigma(P)+\sigma(Q) \eta(P) \geq$ ћ / 2 [7]; $(\delta t)(\delta r)^{3} \geq \pi r^{2} \mathrm{~L}_{\mathrm{P}}^{2} / \mathrm{c}$ [13], etc.

where Δp is the momentum fluctuation, Δr the position momentum, \hbar the reduced Planck constant; ΔE the energy fluctuation, Δt the time fluctuation; δt the time fluctuation, β an order one constant, $t_{P}=\sqrt{\hbar G / c^{5}}$ Planck time, G the gravitational constant, c the speed of light in vacuum, t the time; η the ratio of shear viscosity of a given fluid perfect, s its volume density of entropy, κ the Boltzmann constant; ΔT the time-like, ΔX its space-like, L_{S} the string scale, $\mathrm{L}_{\mathrm{P}}=\sqrt{\hbar \mathrm{G} / \mathrm{c}^{3}}$ Planck length; $\delta x, \delta y, \delta t$ are the position fluctuation and time fluctuation separately; $L_{\mu \nu}$ the transverse length, L the radial length; Q the position of a mass, $\varepsilon(Q)$ the root-mean-square error, P its momentum, $\eta(P)$ the root-mean-square disturbance, $\sigma(P)$ the standard deviation; δt and δr the sever space-time fluctuations of the constituents of the system at small scales, and r the radius of globular computer.

So there are two problems: (i) Why is there no G on the right
hand of some URs? (ii) Do they have a unitive form? In this paper, we answer that G disappears because of being reduced fitly and the unitive form is the generalized relational expression (GRE). Moreover, for the origin and development of Planck length, Planck time, Planck mass $M_{P}=\sqrt{\hbar c / G}$, Planck energy $E_{P}=\sqrt{\hbar c^{5} / G}$ and Planck temperature $T_{P}=\sqrt{\hbar c^{5} / \kappa^{2} G}$, please refer to the literature [14-18].

This paper is organized as follows. In Sec. 2, we derive the general expression of two and n URs and basic relationship. In Sec. 3, we obtain the Planck scale and classify them. In Sec. 4, we prove the corresponding Planck scale of any PQ being rewritten as the power product of basic Planck scale; find and prove the GRE, and prove the URs in Sec. 1. In Sec. 5, we find the Big Bang UR and SBH UR. We conclude in Sec. 6.

2. General Expression of URs and Basic Relationship

In this section, we discover the normal form of URs, derive the general expression of two and n URs and basic relationship.

2.1 General expression of URs of two PQs

Observing these URs, we can discover the physical constants such as \hbar, G, c and κ on the right hand and the physical quantities (PQs) on left hand. We rewrite them as
$\Delta p \Delta r \geq \hbar^{1} ; \Delta E \Delta t \geq \hbar^{1} ; \delta t / \beta t^{1 / 3}=\mathrm{t}_{\mathrm{p}}^{2 / 3}=\hbar^{1 / 3} \mathrm{G}^{1 / 3} \mathrm{c}^{-5 / 3} ; \eta$ $/ 4 \pi s \geq \hbar \kappa^{-1} ; \Delta T \Delta X \sim \mathrm{~L}_{\mathrm{S}}^{2} \sim \mathrm{~L}_{\mathrm{P}}^{2} / \mathrm{c}=\hbar \mathrm{hcc}^{-4} ; \delta x \delta y \delta t \sim \mathrm{~L}_{\mathrm{P}}^{3} / \mathrm{c}$ $=\hbar^{3 / 2} \mathrm{G}^{3 / 2} \mathrm{c}^{-11 / 2} ; L_{\mu \nu} / \sqrt{L} \sim \sqrt{\mathrm{~L}_{\mathrm{P}}}=\hbar^{1 / 4} \mathrm{G}^{1 / 4} \mathrm{c}^{-3 / 4} ; 2[\varepsilon(Q) \eta(P)$ $+\varepsilon(Q) \sigma(P)+\sigma(Q) \eta(P)] \geq \hbar^{1} ;(\delta t)(\delta r)^{3} / \pi r^{2} \geq \mathrm{L}_{\mathrm{p}}^{2} / \mathrm{c}=\hbar \mathrm{hc}^{-4}$, etc.
Therefore the power product of physical constants appears on the right hand. These are their normal form. Considering two noncommutative dimensional PQs, we obtain the general expression of URs

$$
\begin{equation*}
A B \sim \hbar^{x} \mathrm{G}^{y} \mathrm{c}^{z} \kappa^{w} \mathrm{e}^{u} \tag{1}
\end{equation*}
$$

where A and B are non-commutative PQs, x, y, z, w and u the unknown number, and e is the elementary charge. Applying the dimensional analysis [19] (here we use the LMTQQ units [20] ${ }^{1}$), the dimensions of A and B are expressed as

$$
\begin{align*}
{[A] } & =[\mathrm{L}]^{\alpha_{1}}[\mathrm{M}]^{\beta_{1}}[\mathrm{~T}]^{\gamma_{1}}[\Theta]^{\delta_{1}}[\mathrm{Q}]^{\varepsilon_{1}} \\
{[B] } & =[\mathrm{L}]^{\alpha_{2}}[\mathrm{M}]^{\beta_{2}}[\mathrm{~T}]^{\gamma_{2}}[\Theta]^{\delta_{2}}[\mathrm{Q}]^{\varepsilon_{2}} \tag{2}
\end{align*}
$$

where $\mathrm{L}, \mathrm{M}, \mathrm{T}, \Theta$ and Q are the dimensions of length, mass, time, temperature and electric charge separately, $\alpha_{1}, \alpha_{2}, \beta_{1}, \beta_{2}, \gamma_{1}$, $\gamma_{2}, \delta_{1}, \delta_{2}, \varepsilon_{1}$ and ε_{2} the known real number. The dimensions of $\hbar^{x} \mathrm{G}^{y} \mathrm{c}^{z} \mathrm{~K}^{w} \mathrm{e}^{u}$ are
$\left[\hbar^{x} \mathrm{G}^{y} \mathrm{C}^{z} \kappa^{w} \mathrm{e}^{u}\right]=\left\{\left[\mathrm{L}^{2}\right][\mathrm{M}]\left[\mathrm{T}^{-1}\right]\right\}^{x}\left\{\left[\mathrm{~L}^{3}\right]\left[\mathrm{M}^{-1}\right]\left[\mathrm{T}^{-2}\right]\right\}^{y}\left\{[\mathrm{~L}]\left[\mathrm{T}^{-1}\right]\right\}^{z}$

$$
\begin{equation*}
\times\left\{\left[\mathrm{L}^{2}\right][\mathrm{M}]\left[\mathrm{T}^{-2}\right]\left[\Theta^{-1}\right]\right\}^{w}\{[\mathrm{Q}]\}^{u} \tag{3}
\end{equation*}
$$

By the dimensional analysis, we obtain

$$
\begin{align*}
& {[\mathrm{L}]^{\alpha_{1}}[\mathrm{M}]^{\beta_{1}}[\mathrm{~T}]^{\gamma_{1}}[\Theta]^{\delta_{1}}[\mathrm{Q}]^{\varepsilon_{1}}[\mathrm{~L}]^{\alpha_{2}}[\mathrm{M}]^{\beta_{2}}[\mathrm{~T}]^{\gamma_{2}}[\Theta]^{\delta_{2}}[\mathrm{Q}]^{\varepsilon_{2}} } \\
=\{ & \left\{\left[\mathrm{L}^{2}\right][\mathrm{M}]\left[\mathrm{T}^{-1}\right]\right\}^{\alpha_{x}}\left\{\left[\mathrm{~L}^{3}\right]\left[\mathrm{M}^{-1}\right]\left[\mathrm{T}^{-2}\right]\right\}^{y}\left\{[\mathrm{~L}]\left[\mathrm{T}^{-1}\right]\right\}^{z} \\
& \times\left\{\left[\mathrm{L}^{2}\right][\mathrm{M}]\left[\mathrm{T}^{-2}\right]\left[\Theta^{-1}\right]\right\}^{w}\{[\mathrm{Q}]\}^{u} \tag{4}
\end{align*}
$$

Solving the equation (4), we gain

$$
\begin{align*}
x & =\left[\left(\alpha_{1}+\alpha_{2}\right)+\left(\beta_{1}+\beta_{2}\right)+\left(\gamma_{1}+\gamma_{2}\right)+\left(\delta_{1}+\delta_{2}\right)\right] / 2, \\
y & =\left[\left(\alpha_{1}+\alpha_{2}\right)-\left(\beta_{1}+\beta_{2}\right)+\left(\gamma_{1}+\gamma_{2}\right)-\left(\delta_{1}+\delta_{2}\right)\right] / 2 \\
z & =-\left[3\left(\alpha_{1}+\alpha_{2}\right)-\left(\beta_{1}+\beta_{2}\right)+5\left(\gamma_{1}+\gamma_{2}\right)-5\left(\delta_{1}+\delta_{2}\right)\right] / 2, \\
w & =-\left(\delta_{1}+\delta_{2}\right), u=\left(\varepsilon_{1}+\varepsilon_{2}\right) \tag{5}
\end{align*}
$$

Thus we find the general expression of URs of two PQs

$$
\begin{align*}
A B \sim & {\left[\hbar^{\left(\left(\alpha_{1}+\alpha_{2}\right)+\left(\beta_{1}+\beta_{2}\right)+\left(\gamma_{1}+\gamma_{2}\right)+\left(\delta_{1}+\delta_{2}\right)\right)}\right]^{\frac{1}{2}} } \\
& \times\left[\mathrm{G}^{\left.\left(\left(\alpha_{1}+\alpha_{2}\right)-\left(\beta_{1}+\beta_{2}\right)+\left(\gamma_{1}+\gamma_{2}\right)-\left(\delta_{1}+\delta_{2}\right)\right)\right]^{\frac{1}{2}}}\right. \\
& \times\left[\mathrm{c}^{-\left(3\left(\alpha_{1}+\alpha_{2}\right)-\left(\beta_{1}+\beta_{2}\right)+5\left(\gamma_{1}+\gamma_{2}\right)-5\left(\delta_{1}+\delta_{2}\right)\right)}\right]^{\frac{1}{2}} \\
& \times \kappa^{-\left(\delta_{1}+\delta_{2}\right)} \mathrm{e}^{\left(\varepsilon_{1}+\varepsilon_{2}\right)} \tag{6}
\end{align*}
$$

It shows that the product of two non-commutative dimensional PQs is equivalent to the power product of the reduced Planck constant, gravitational constant, speed of light in vacuum, Boltzmann constant and elementary charge.

2.2 Basic relationship

Ordering $\alpha_{1}=\alpha_{2}=\alpha, \beta_{1}=\beta_{2}=\beta, \gamma_{1}=\gamma_{2}=\gamma, \delta_{1}=\delta_{2}=\delta$, and $\varepsilon_{1}=\varepsilon_{2}=\varepsilon$ in the general expression of URs (6), that is A and B having the same dimensions

[^0]We obtain

$$
\begin{align*}
& \hbar^{(\alpha+\beta+\gamma+\delta)} \mathrm{G}^{(\alpha-\beta+\gamma-\delta)} \mathrm{c}^{-(3 \alpha-\beta+5 \gamma-5 \delta)} \mathrm{K}^{-2 \delta} \mathrm{e}^{2 \varepsilon} \\
= & \mathrm{A}_{\mathrm{P}} \mathrm{~B}_{\mathrm{P}}=\mathrm{A}_{\mathrm{P}}^{2}=\mathrm{B}_{\mathrm{P}}^{2} \tag{8}
\end{align*}
$$

where A_{P} and B_{P} are the corresponding Planck scale of A and B separately. Extracting the square root, we find the basic relationship

$$
A \sim \mathrm{~A}_{\mathrm{P}}=\left[\mathrm{h}^{(\alpha+\beta+\gamma+\delta)} \mathrm{G}^{(\alpha-\beta+\gamma-\delta)} \mathrm{c}^{-(3 \alpha-\beta+5 \gamma-5 \delta)} \mathrm{K}^{-2 \delta} \mathrm{e}^{2 \varepsilon}\right]^{\frac{1}{2}}(9)
$$

The above relationship shows that any Dimensional PQ has a corresponding Planck scale which is equivalent to the power product of $\hbar, \mathrm{G}, \mathrm{c}, \kappa$ and e .

2.3 General expression of URs of n PQs

Similarly considering n non-commutative dimensional PQs, we have

$$
\prod_{\mathrm{i}=1}^{\mathrm{n}} A_{\mathrm{i}} \sim \hbar^{x} \mathrm{G}^{y} \mathrm{c}^{z} \mathrm{\kappa}^{w} \mathrm{e}^{u}, \mathrm{i}=1,2,3 \ldots n(10)
$$

where A_{i} is the $\mathrm{PQ}, A_{\mathrm{i}}$ and $A_{\mathrm{i}+1}$ are non-commutative. The dimensions of $\prod_{\mathrm{i}=1}^{\mathrm{n}} A_{\mathrm{i}}$ are

$$
\begin{equation*}
\left.\left[\prod_{\mathrm{i}=1}^{\mathrm{n}} A_{\mathrm{i}}\right]=[\mathrm{L}]^{\sum_{\mathrm{i}}^{\mathrm{n}} \alpha_{\mathrm{i}}}[\mathrm{M}]^{\sum_{\mathrm{i}}^{\mathrm{n}} \beta_{\mathrm{i}}}[\mathrm{~T}]\right]_{\mathrm{i}}^{\mathrm{n}_{\mathrm{i}}}[\Theta]^{\sum_{\mathrm{i}}^{\mathrm{n}} \delta_{\mathrm{i}}}[\mathrm{Q}]^{\sum_{\mathrm{i}}^{\mathrm{n}} \varepsilon_{\mathrm{i}}} \tag{11}
\end{equation*}
$$

where $\alpha_{\mathrm{i}}, \beta_{\mathrm{i}}, \gamma_{\mathrm{i}}, \delta_{\mathrm{i}}$ and ε_{i} are known real number. By the dimensional analysis also, we find the general expression of URs of $n \mathrm{PQs}$

$$
\begin{align*}
\prod_{\mathrm{i}=1}^{\mathrm{n}} A_{\mathrm{i}} \sim & {\left.\left[\hbar\left(\sum_{\mathrm{i}}^{\mathrm{n}} \alpha_{\mathrm{i}}\right)+\left(\sum_{i}^{\mathrm{n}} \beta_{\mathrm{i}}\right)+\left(\sum_{\mathrm{i}}^{\mathrm{n}} \gamma_{\mathrm{i}}\right)+\left(\sum_{i}^{\mathrm{n}} \delta_{\mathrm{i}}\right)\right)\right]^{\frac{1}{2}} } \\
& \left.\times\left[\mathrm{G}\left(\sum_{i}^{\mathrm{n}} \alpha_{\mathrm{i}}\right)-\left(\sum_{\mathrm{i}}^{\mathrm{n}} \beta_{\mathrm{i}}\right)+\left(\sum_{i}^{n} \gamma_{\mathrm{i}}\right)-\left(\sum_{i}^{\mathrm{n}} \delta_{\mathrm{i}}\right)\right)\right]^{\frac{1}{2}} \\
& \times\left[\mathrm{c}^{\left.-\left(3\left(\sum_{i}^{\mathrm{n}} \alpha_{\mathrm{i}}\right)-\left(\sum_{\mathrm{i}}^{\mathrm{n}} \beta_{\mathrm{i}}\right)+5\left(\sum_{i}^{n} \gamma_{\mathrm{i}}\right)-5\left(\sum_{i}^{\mathrm{n}} \delta_{\mathrm{i}}\right)\right)\right]^{\frac{1}{2}}}\right. \\
& \times \kappa^{-\left(\sum_{i}^{\mathrm{n}} \delta_{\mathrm{i}}\right)} \mathrm{e}^{\left(\sum_{i}^{\mathrm{s}} \varepsilon_{\mathrm{i}}\right)} \tag{12}
\end{align*}
$$

Certainly when $n=2$, it become the general expression of URs (6). Ordering $\alpha_{\mathrm{i}}=\alpha_{\mathrm{i}+1}=\alpha, \beta_{\mathrm{i}}=\beta_{\mathrm{i}+1}=\beta, \gamma_{\mathrm{i}}=\gamma_{\mathrm{i}+1}=\gamma, \delta_{\mathrm{i}}=\delta_{\mathrm{i}+1}=\delta$ and $\varepsilon_{\mathrm{i}}=\varepsilon_{\mathrm{i}+1}=\varepsilon$ in (12), A_{i} and $A_{\mathrm{i}+1}$ having the same dimensions, we obtain

$$
\begin{align*}
& {\left[\mathrm{h}^{\mathrm{n}(\alpha+\beta+\gamma+\delta)}\right]^{\frac{1}{2}}\left[\mathrm{G}^{\mathrm{n}(\alpha-\beta+\gamma-\delta)}\right]^{\frac{1}{2}}\left[\mathrm{c}^{-\mathrm{n}(3 \alpha-\beta+5 \gamma-5 \delta)}\right]^{\frac{1}{2}} \kappa^{-\mathrm{n} \delta} \mathrm{e}^{\mathrm{n} \varepsilon} } \\
= & \mathrm{A}_{\mathrm{P}}^{n} \tag{13}
\end{align*}
$$

Extracting the n th-root, we gain (9) again.

3. Planck scale

In this section, we obtain the Planck scale, and classify them.

3.1 Basic Planck scale

Ordering $\alpha=1, \beta=\gamma=\delta=\varepsilon=0$ in (7) and (9), we obtain Planck length immediately

$$
L_{P}=\sqrt{\hbar G / c^{3}}
$$

Instructing $\gamma=1, \alpha=\beta=\delta=\varepsilon=0$, obtain Planck time

$$
t_{P}=\sqrt{\hbar G / c^{5}}
$$

Ordering $\beta=1, \alpha=\gamma=\delta=\varepsilon=0$, obtain Planck mass

$$
\mathrm{M}_{\mathrm{P}}=\sqrt{\hbar c / \mathrm{G}}
$$

Instructing $\delta=1, \alpha=\beta=\gamma=\varepsilon=0$, obtain Planck temperature

$$
\mathrm{T}_{\mathrm{P}}=\sqrt{\hbar c^{5} / \kappa^{2} \mathrm{G}}
$$

Ordering $\varepsilon=1, \alpha=\beta=\gamma=\delta=0$, obtain elementary charge

$$
\mathrm{Q}_{\mathrm{e}}=\mathrm{e}
$$

If using $[Q]^{2}=[L]^{3}[\mathrm{M}][\mathrm{T}]^{-2}$, obtain Planck electric charge

$$
\mathrm{Q}_{\mathrm{P}}=\sqrt{\hbar c} \sim \mathrm{e}
$$

These are the basic Planck scale [14].

3.2 Derived Planck scale

From (7) and (9), we gain the derived Planck scale [14] except for the basic one. For example

Planck energy E_{P}

$$
\left[E_{P}\right]=\left[L^{2}\right][M]\left[T^{-2}\right], E_{P}=\sqrt{\hbar c^{5} / G}
$$

Planck momentum P_{P}

$$
\left[\mathrm{P}_{\mathrm{P}}\right]=[\mathrm{L}][\mathrm{M}]\left[\mathrm{T}^{-1}\right], \mathrm{P}_{\mathrm{P}}=\sqrt{\hbar \mathrm{\hbar c}^{3} / \mathrm{G}}
$$

Planck curvature tensor $\mathrm{R}_{\mu \nu} \mathrm{P}$

$$
\left[R_{\mu \nu} \mathrm{P}\right]=\left[\mathrm{L}^{-2}\right], \mathrm{R}_{\mu \nu \mathrm{P}}=\mathrm{c}^{3} / \hbar \mathrm{G}
$$

Because many PQs have the same dimensions, they have the same Planck scale, for example

Planck energy density ρ_{P}

$$
\left[\rho_{P}\right]=\left[L^{-1}\right][M]\left[T^{-2}\right], \rho_{P}=c^{7} / \hbar G^{2}
$$

Planck pressure p_{P}

$$
\left[p_{P}\right]=\left[L^{-1}\right][M]\left[\mathrm{T}^{-2}\right], p_{P}=c^{7} / \hbar G^{2}
$$

Planck force per unit area f_{P}

$$
\left[f_{P}\right]=\left[L^{-1}\right][M]\left[T^{-2}\right], f_{P}=c^{7} / \hbar G^{2}
$$

Planck energy-momentum tensor $T_{\mu \nu} P$

$$
\left[\mathrm{T}_{\mu \nu \mathrm{P}}\right]=\left[\mathrm{L}^{-1}\right][\mathrm{M}]\left[\mathrm{T}^{-2}\right], \mathrm{T}_{\mu \nu \mathrm{P}}=\mathrm{c}^{7} / \hbar \mathrm{G}^{2}
$$

Etc.

3.3 Classifications

All the Planck scales can be divided into two categories. One is the basic Planck scale and derived Planck scale [14]. The other is the Femi-Planck scale its exponent is half integer such as L_{p}, $t_{p}, M_{P}, T_{P}, E_{P}, P_{P}$, and so on, the Bose-Planck scale whose exponents are integer such as $Q_{e}, \rho_{\mathrm{P}}, \mathrm{p}_{\mathrm{P}}, \mathrm{f}_{\mathrm{P}}, \mathrm{R}_{\mu \nu \mathrm{P}}, \mathrm{T}_{\mu \nu \mathrm{P}}$, etc, and Other-Planck scale such as the Planck wave function ψ_{P}.

$$
\left[\psi_{P}\right]=\left[L^{-3 / 2}\right], \psi_{P}=\left(\hbar G / c^{3}\right)^{-3 / 4}
$$

4. GRE

In this section, we prove that basic relationship (9) is rewritten as the power product of basic Planck scale; find and prove the GRE, and prove the URs in Sec. 1,.

4.1 Proof of basic relationship

The basic relationship (9) can be rewritten as

$$
\begin{equation*}
\mathrm{A}_{\mathrm{P}}=\mathrm{L}_{\mathrm{P}}^{\alpha} \mathrm{M}_{\mathrm{P}}^{\beta} \mathrm{t}_{\mathrm{P}}^{\gamma} \mathrm{T}_{\mathrm{P}}^{\delta} \mathrm{Q}_{\mathrm{e}}^{\varepsilon} \tag{14}
\end{equation*}
$$

From (9), we obtain
$\mathrm{A}_{\mathrm{P}}=\left[\hbar^{\alpha} \mathrm{G}^{\alpha} \mathrm{c}^{-3 \alpha}\right]^{\frac{1}{2}}\left[\hbar^{\beta} \mathrm{G}^{-\beta} \mathrm{c}^{\beta}\right]^{\frac{1}{2}}\left[\hbar^{\gamma} \mathrm{G}^{\gamma} \mathrm{c}^{-5 \gamma}\right]^{\frac{1}{2}}\left[\hbar^{\delta} \mathrm{G}^{-\delta} \mathrm{c}^{5 \delta}\right]^{\frac{1}{2}} \mathrm{~K}^{-\delta} \mathrm{e}^{\varepsilon}$

$$
=\left[\sqrt{\hbar G / c^{3}}\right]^{\alpha}[\sqrt{\hbar c / G}]^{\beta}\left[\sqrt{\hbar G / c^{5}}\right]^{\gamma}\left[\sqrt{\hbar c^{5} / \kappa^{2} G}\right]^{\delta} e^{\varepsilon}
$$

$$
=\mathrm{L}_{\mathrm{P}}^{\alpha} \mathrm{M}_{\mathrm{P}}^{\beta} \mathrm{t}_{\mathrm{P}}^{\gamma} \mathrm{T}_{\mathrm{P}}^{\delta} \mathrm{Q}_{\mathrm{e}}^{\varepsilon}
$$

Therefore the corresponding Planck scale of any PQ is equivalent to the power product of Planck length, Planck mass, Planck time, Planck temperature and elementary charge.

4.2 GRE

Considering all the non-commutative PQs , we find the GRE

$$
\prod_{\mathrm{i}=1}^{\mathrm{n}} A_{\mathrm{i}}^{a_{\mathrm{i}}} \sim \prod_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{~A}_{\mathrm{iP}}^{a_{\mathrm{i}}} ; \quad \mathrm{i}=1,2,3 \ldots \mathrm{n}(15)
$$

where A_{i} is the PQ, A_{i} and $A_{\mathrm{i}+1}$ are non-commutative, a_{i} is the real number, and A_{iP} is the corresponding Planck scale of A_{i}. It shows that the power product of non-commutative PQs is equivalent to the ones of corresponding Planck scale.

4.3 Proving GRE

We prove the GRE by the same way in 2.3. Considering n non-commutative PQs with a_{i} power, we have

$$
\begin{equation*}
\prod_{\mathrm{i}=1}^{\mathrm{n}} A_{\mathrm{i}}^{a_{\mathrm{i}}} \sim \hbar^{x} \mathrm{G}^{y} \mathrm{c}^{z} \kappa^{w} \mathrm{e}^{u} \tag{16}
\end{equation*}
$$

The dimensions of $\prod_{\mathrm{i}=1}^{\mathrm{n}} A_{\mathrm{i}}^{a_{\mathrm{i}}}$ are

$$
\begin{equation*}
\left[\prod_{\mathrm{i}=1}^{\mathrm{n}} A_{\mathrm{i}}^{a_{\mathrm{i}}}\right]=[\mathrm{L}]^{\sum_{\mathrm{i}}^{\mathrm{n}} a_{\mathrm{i}} \alpha_{\mathrm{i}}}[\mathrm{M}]^{]^{\mathrm{n}} a_{\mathrm{i}} \beta_{\mathrm{i}}}[\mathrm{~T}]^{\sum_{\mathrm{i}}^{\mathrm{n}} a_{\mathrm{i}_{\mathrm{i}}}[\Theta]^{\sum_{\mathrm{n}}^{\mathrm{n}} a_{\mathrm{i}} \delta_{\mathrm{i}}}[\mathrm{Q}]^{\sum \mathrm{n}} a_{\mathrm{i}} \varepsilon_{\mathrm{i}}} \tag{17}
\end{equation*}
$$

Using the dimensional analysis too, we gain the general expression of URs of n PQs with a_{i} power
where $\mathrm{A}_{\mathrm{iP}}=\mathrm{L}_{\mathrm{P}}^{\alpha_{i}} \mathrm{M}_{\mathrm{P}}^{\beta_{i}} \mathrm{t}_{\mathrm{P}}{\gamma_{\mathrm{i}}}_{\mathrm{P}}^{\delta_{i}} \mathrm{Q}_{\mathrm{e}}^{\varepsilon_{i}}$.

4.4 Proving URs

Applying the GRE (15), we can prove the URs in Sec.1.
$\Delta p \Delta r \sim \mathrm{P}_{\mathrm{P}} \mathrm{L}_{\mathrm{P}}=\sqrt{\hbar \mathrm{c}^{3} / \mathrm{G}} \sqrt{\hbar \mathrm{G} / \mathrm{c}^{3}}=\hbar ; \quad \Delta E \Delta t \sim \mathrm{E}_{\mathrm{P}} \mathrm{t}_{\mathrm{P}}=$ $\sqrt{\hbar c^{5} / \mathrm{G}} \sqrt{\hbar \mathrm{G} / \mathrm{c}^{5}}=\hbar ; \delta t / t^{1 / 3} \sim \mathrm{t}_{\mathrm{P}} / \mathrm{t}_{\mathrm{P}}^{1 / 3}=\mathrm{t}_{\mathrm{P}}^{2 / 3} ; \eta / s \sim \eta_{\mathrm{P}} /$ $\mathrm{s}_{\mathrm{P}}=\sqrt{\mathrm{c}^{9} / \hbar \mathrm{G}^{3}} / \sqrt{\mathrm{c}^{9} \kappa^{2} / \hbar^{3} \mathrm{G}^{3}}=\hbar / \kappa ; \Delta T \Delta X \sim \mathrm{t}_{\mathrm{P}} \mathrm{L}_{\mathrm{P}} \sim \hbar \mathrm{G} / \mathrm{c}^{4}=$ $\mathrm{L}_{\mathrm{P}}^{2} / \mathrm{c} \sim \mathrm{L}_{\mathrm{S}}^{2} ; \delta x \delta y \delta t \sim \mathrm{~L}_{\mathrm{P}}^{2} \mathrm{t}_{\mathrm{P}}=\mathrm{L}_{\mathrm{P}}^{3} / \mathrm{c} ; L_{\mu \nu} / \sqrt{L} \sim \mathrm{~L}_{\mathrm{P}} /$ $\sqrt{\mathrm{L}_{\mathrm{P}}}=\sqrt{\mathrm{L}_{\mathrm{P}}} ; \varepsilon(Q) \eta(P)+\varepsilon(Q) \sigma(P)+\sigma(Q) \eta(P) \sim$ $\sqrt{\hbar \mathrm{G} / \mathrm{c}^{3}} \sqrt{\hbar \mathrm{c}^{3} / \mathrm{G}}=\hbar ;(\delta t)(\delta r)^{3} / r^{2} \sim \mathrm{t}_{\mathrm{P}} \mathrm{L}_{\mathrm{P}}^{3} / \mathrm{L}_{\mathrm{P}}^{2}=\mathrm{L}_{\mathrm{P}}^{2} / \mathrm{c}$, etc. where $\eta_{P}=\sqrt{c^{9} / \hbar G^{3}}$ is the Planck ratio of shear viscosity of a given fluid perfect, and $s_{P}=\sqrt{C^{9} \kappa^{2} / \hbar^{3} G^{3}}$ its Planck volume density of entropy (from basic relationship (9)). Thus we find that there is no G on some URs right hand because it is reduced fitly.

$$
\begin{aligned}
& \left.\prod_{\mathrm{i}=1}^{\mathrm{n}} A_{\mathrm{i}}^{a_{\mathrm{i}}} \sim\left[\hbar\left(\sum_{\mathrm{i}}^{\mathrm{n}} a_{\mathrm{i}} \alpha_{\mathrm{i}}\right)+\left(\sum_{\mathrm{i}}^{\mathrm{n}} a_{\mathrm{i}} \beta_{\mathrm{i}}\right)+\left(\sum_{\mathrm{i}}^{\mathrm{n}} a_{\mathrm{i}} \gamma_{\mathrm{i}}\right)+\left(\sum_{\mathrm{i}}^{\mathrm{n}} a_{\mathrm{i}} \delta_{\mathrm{i}}\right)\right)\right]^{\frac{1}{2}} \\
& \times\left[\mathrm{G}^{\left(\sum_{\mathrm{i}}^{\mathrm{n}} a_{\mathrm{i}} \alpha_{\mathrm{i}}\right)-\left(\sum_{\mathrm{i}}^{\mathrm{n}} a_{\mathrm{i}} \beta_{\mathrm{i}}\right)+\left(\sum_{\mathrm{i}}^{\mathrm{n}} a_{\mathrm{i}} \gamma_{\mathrm{i}}\right)-\left(\sum_{\mathrm{i}}^{\mathrm{n}} a_{\mathrm{i}} \delta_{\mathrm{i}}\right)}\right)_{]^{\frac{1}{2}}} \\
& \left.\times\left[\mathrm{c}^{-\left(3\left(\sum_{i}^{\mathrm{n}} a_{\mathrm{i}} \alpha_{\mathrm{i}}\right)-\left(\sum_{i}^{\mathrm{n}} a_{\mathrm{i}} \beta_{\mathrm{i}}\right)+5\left(\sum_{\mathrm{i}}^{\mathrm{n}} a_{\mathrm{i}} \gamma_{\mathrm{i}}\right)-5\left(\sum_{\mathrm{i}}^{\mathrm{n}} a_{\mathrm{i}} \delta_{\mathrm{i}}\right)\right.}\right)\right]^{\frac{1}{2}} \\
& \times \kappa^{-\left(\sum_{i}^{n} a_{i} \delta_{\mathrm{i}}\right)} \mathrm{e}^{\left(\sum_{\mathrm{i}}^{n} a_{\mathrm{i}} \varepsilon_{\mathrm{i}}\right)} \\
& =\left[\sqrt{\hbar G / c^{3}}\right]^{\sum_{i}^{n} a_{i} \alpha_{\mathrm{i}}}[\sqrt{\hbar c / G}]^{\sum_{\mathrm{i}}^{\mathrm{n}} a_{\mathrm{i}} \beta_{\mathrm{i}}}\left[\sqrt{\hbar \mathrm{G} / \mathrm{c}^{5}}\right]^{\sum_{\mathrm{i}}^{\mathrm{n}} a_{\mathrm{i} \gamma_{\mathrm{i}}}} \\
& \times\left[\sqrt{\hbar c^{5} / \kappa^{2} G}\right]^{\Sigma_{\mathrm{i}}^{n} a_{\mathrm{i}} \delta_{\mathrm{i}}} \mathrm{E}_{\mathrm{i}}^{n} a_{\mathrm{i}} \varepsilon_{\mathrm{i}}
\end{aligned}
$$

5. No Singularity at Big Bang and SBH

In this section, we find the Big B ang UR and SBH UR by the GRE.

5.1 Big B ang UR

S.W. Hawking and R. Penrose proved that the universe originated the Big Bang singularity [21]. Many literatures discussed no singularity at the Big Bang and black holes considering the quantum effect, please refer to [18] [22-25]. The one of the characteristic of Big Bang singularity is zero volume and limitless high temperature.

Then we can find the relationship of Big Bang temperature and its volume by the GRE (15)

$$
\begin{equation*}
T_{B} V_{B} \sim \mathrm{~T}_{\mathrm{P}} V_{\mathrm{P}}=\mathrm{T}_{\mathrm{P}} \mathrm{~L}_{\mathrm{P}}^{3}=\hbar^{2} \mathrm{G} / \kappa \mathrm{c}^{2} \tag{19}
\end{equation*}
$$

where T_{B} is the Big Bang temperature, V_{B} its volume, and $\mathrm{V}_{\mathrm{P}}=$ L_{P}^{3} the Planck volume. This is the Big Bang UR. It shows that it is impossible to measure the Big Bang temperature and its volume simultaneously. When $\hbar \rightarrow 0$, we obtain

$$
\begin{equation*}
T_{B} V_{B} \sim 0 \tag{20}
\end{equation*}
$$

Because $T_{B}>0$ [26], we gain $V_{B} \sim 0$, the Big Bang volume is zero, thus the Big Bang singularity appears without the quantum effect. We suggest no singularity at the Big Bang with quantum effect. Substituting $a=\mathrm{c} \kappa T / 2 \pi \hbar$ [27] into (19), we obtain

$$
\begin{equation*}
a_{B} V_{B} \sim a_{\mathrm{p}} V_{\mathrm{p}}=\hbar \mathrm{G} / 2 \pi \mathrm{c} \tag{21}
\end{equation*}
$$

where a_{B} is the Big Bang acceleration, and $a_{\mathrm{p}}=\sqrt{\mathrm{c}^{7} / \hbar \mathrm{G}}$ the Planck acceleration. It is the UR for Big Bang acceleration and its volume.

5.2 SBH UR

Similarly considering the SBH mass and its volume, we find

$$
\begin{equation*}
M_{H} V_{H} \sim \mathrm{M}_{\mathrm{P}} \mathrm{~V}_{\mathrm{P}}=\mathrm{M}_{\mathrm{P}} \mathrm{~L}_{\mathrm{P}}^{3}=\hbar^{2} \mathrm{G} / \mathrm{c}^{4} \tag{22}
\end{equation*}
$$

where M_{H} is the SBH mass, and V_{H} its volume. It is the SBH UR. Also it is impossible to measure the SBH mass and volume simultaneously. When $\hbar \rightarrow 0$, we obtain

$$
\begin{equation*}
M_{H} V_{H} \sim 0 \tag{23}
\end{equation*}
$$

Because $M_{H}>0$, we have $V_{H} \sim 0$, the volume is zero, the SBH singularity appears without quantum effect also. We also suggest no singularity in SBH with quantum effect. Taking $M=\rho V$ to (22), we gain

$$
\begin{equation*}
M_{H}^{2} / \rho_{H} \sim \hbar^{2} \mathrm{G} / \mathrm{c}^{4}, \rho_{H} V_{H}^{2} \sim \hbar^{2} \mathrm{G} / \mathrm{c}^{4} \tag{24}
\end{equation*}
$$

where ρ_{H} is the mass density of SBH . These are the URs for the mass density of SBH and its mass or volume.

6. Conclusion

In this paper, we investigate the dimensional URs by the dimensional analy sis. We find the following results.

1) The normal form of URs is discovered. The PQs are on the left hand of URs, and the physical constants such as the reduced

Planck constant \hbar, gravitational constant G, speed of light in vacuum c and Boltzmann constant κ are on right hand. These power products of physical constants which are rewritten appear.
2) The general expression of URs is found. It shows that the product of two and n non-commutative dimensional PQs is equivalent to the power product of \hbar, G, c, κ and elementary charge e.
3) The basic relationship is found. Any dimensional PQ has a corresponding Planck scale, which is equivalent to the power product of \hbar, G, c, κ and e.
4) The Planck length L_{P}, Planck time t_{P}, Planck mass M_{P}, Planck temperature T_{P}, elementary charge Q_{e} (or Planck charge), Planck energy E_{P}, Planck momentum P_{P}, Planck curvature tensor $R_{\mu \nu P}$, Planck energy density ρ_{P}, Planck pressure p_{P}, Planck force per unit area f_{P}, Planck energy-momentum tensor $T_{\mu \nu P}$ etc are obtained again. Many PQs have the same Planck scale because of the same dimensions such as ρ_{P}, p_{P}, f_{P} and $T_{\mu \nu P}$.
5) All the Planck scales are divided into two categories. One is the basic Planck scale including $L_{P}, t_{P}, M_{P}, T_{P}$ and Q_{e}, and derived Planck scale such as $E_{P}, P_{P}, \rho_{P}, p_{P}, f_{P}, R_{\mu \nu P}, T_{\mu \nu P}$, Planck wave function ψ_{P} and so on. The other is the Femi-Planck scale its exponent is half integer such as $L_{P}, t_{P}, M_{P}, T_{P}, E_{P}, P_{P}$, etc, the Bose-Planck scale whose exponents are integers such as $Q_{e}, \rho_{P}, p_{P}, f_{P}, R_{\mu \nu P}, T_{\mu \nu P}$, etc, and Other-Planck scale such as Planck wave function ψ_{P}.
6) The corresponding Planck scale of any PQ is proved to be equivalent to the power product of $L_{P}, t_{P}, M_{P}, T_{P}$ and Q_{e}.
7) The GRE is found and proved. It shows that the power product of the non-commutative PQs is equivalent to ones of corresponding Planck scale. The URs in Sec. 1 are proved by the GRE. G disappears on some URs right hand because of being reduced fitly.
8) The Big Bang UR concerning the temperature T_{B} of Big Bang and its volume V_{B} is found by the GRE. It suggests no singularity at the Big Bang considering the quantum effect. The UR concerning Big Bang acceleration a_{B} and V_{B} is obtained. Similarly the SBH UR concerning the SBH mass M_{H} and its volume V_{H} is found; also no singularity is in SBH with quantum effect. The URs concerning the mass density ρ_{H} of SBH and M_{H} or V_{H} is gained.
9) The GRE unifies all dimensional URs. It is generalized, interesting and significant; any UR is its special case. Because depends on the dimension, GRE can't obtain the factor and relation without dimensions.

References

[1] W. Heisenberg, Z. Phys. 43 (1927) 172; The Physical

Principles of the Quantum Theory, University of Chicago Press 1930, Dover edition 1949; J.A. Wheeler, W.H. Zurek (Eds.), Quantum Theory and Measurement, Princeton Univ. Press, Princeton, NJ, 1983, P. 62, 84.
[2] S.W. Hawking, Commun. Math. Phys. 43 (1975) 199-220; Nature (London). 248 (1974) 30.
[3] Y-d. Zhang, J-w. Pan, H. Rauch, Annals of the New York Academy of Scien ces, 755353 (1995), 353-360.
[4] D. Amati, M. Ciafaloni, and G. Veneziano, Phys. Lett. B 216, 41 (1989); A. Kempf, G. Mangano, and R. B. Mann, Phys. Rev. D 52, 1108 (1995); L. N. Chang, D. Minic, N. Okamura, and T. Takeuchi, Phys.Rev. D 65, 125027 (2002); L. N. Chang, D. Minic, N. Okamura, and T. Takeuchi, Phys. Rev. D 65, 125028 (2002); A. Tawfik and A. Diab, submitted to Int. J. Mod. Phys. D (2014); arXiv: gr-qc/1410.0206; J.L. Cortes and J. Gamboa, Phys. Rev. D 71, 065015 (2005); J. Magueijo and L. Smolin, Phys. Rev. D 67, 044017 (2003); G. Amelino-Camelia, Int. J. Mod. Phys. D 11, 35 (2002); G. Amelino-Camelia, Int. J. Mod. Phys. D 11, 1643 (2002); A. Tawfik, JCAP 1307, 040 (2013); A. F. Ali and A. Tawfik, Adv. High Energy Phys. 2013, 126528 (2013); A. F. Ali and A. Tawfik, Int. J. Mod. Phys. D 22, 1350020 (2013); A. Tawfik, H. Magdy and A.Farag Ali, Gen. Rel. Grav. 45, 1227 (2013); A. Tawfik, H. Magdy and A.F. Ali, arXiv: physics.gen-ph/ 1205.5998; I. Elmashad, A.F. Ali, L.I. Abou-Salem, Jameel-Un Nabi and A. Tawfik, Trans. Theor. Phys, 1,106 (2014); A. Tawfik and A. Diab, "Black Hole Corrections due to Minimal Length and Modified Dispersion Relation", in press; A. F. Ali, S. Das and E. C. Vagenas, arXiv: hep-th/ 1001.2642. A. Na. TAWFIK, arXiv: gr-qc/1410.7966. M. Faizal, M. M. Khalil, S. Das, arXiv: physics.gen-ph/ 1501.03111; Jun-Li Li \& Cong-Feng Qiao, Sic. Rep. 5, 12708 (2015).
[5] S. Benczik, L. N. Chang, D. Minic, N. Okamura, S. Ray yan, and T. Takeuchi, Phys. Rev. D 66, 026003 (2002); P. Dzierzak, J. Jezierski, P. Malkiewicz, and W. Piechocki, Acta Phys. Polon. B 41, 717 (2010); L. J. Garay, Int. J. Mod. Phys. A 10, 145 (1995); C. Bambi, F. R. Urban, Class. Quantum Grav. 25, 095006 (2008); K. Nozari, Phys. Lett. B. 629, 41 (2005); A. Kempf, G. Mangano and R. B. Mann, Phys. Rev. D 52, 1108 (1995); A. Kempf, J. Phys. A 30, 2093 (1997); S. Das, and E. C. Vagenas, Phys. Rev. Lett. 101, 221301 (2008); S. Das, E. C. Vagenas and A. F. Ali, Phys. Lett. B 690, 407 (2010); M.J.W. Hall, Phys. Rev. A 62, (2000) 012107; Phys. Rev. A 64 (2001) 052103; M.J.W. Hall and M. Reginatto, J. Phys. A: Math. Gen. 353289 (2002); arXiv: quant-ph /0201084.
[6] ch-F. Li, J-Sh. Xu, X-Y. Xu, K. Li, G-c. Guo, Nature. Phy., 7, 10 (2011) 752, 756.
[7] H. P. Robertson, Phys. Rev. 34, 163-164 (1929); E. Arthurs, \& M. S. Goodman, Phys. Rev. Lett. 60, 2447-2449 (1988); S. Ishikawa, Rep. Math. Phys. 29, 257-273 (1991); M. Ozawa, Quantum limits of measurements and uncertainty principle. pp 3-17 in Bendjaballah, C. et al. (eds) Quantum Aspects of Optical Communications. (Springer, Berlin, 1991); M. Ozawa, Phys. Rev. A 67, 042105 (2003); M. Ozawa, Ann. Phys. 311, 350-416 (2004); M. Ozawa, Phys. Lett. A 318, 21-29 (2003); R. F. Werner, Inf. Comput. 4, 546-562 (2004); M. Ozawa, J. Opt. B: Quantum Semiclass. Opt. 7, S672 (2005); J. Erhart, G. Sulyok, G. Badurek, M. Ozawa and Y. Hasegawa, Nature Physics DOI: 10.1038/NPHYS2194 (2012); Wenchao Ma et al, Phys. Rev. Lett. 118, 180402.
[8] F. Karolyhazy, Nuovo. Cim, A 42 (1966) 390.
[9] P.K. Kovtun, D.T. Son and A. O. Starinets, Phys. Rev. Lett. 94, 111601(2005).
[10] T. Yoneya, Duality and Indeterminacy Principle in String Theory in "Wandering in the Fields", eds. K. Kawarabay ashi and A. Ukawa (World Scientific, 1987), P.419; see also String Theory and Quantum Gravity in "uantum String Theory", eds. N. Kawamoto and T. Kugo (Spring, 1988), P.23; T. Yoneya, Mod. Phys. Lett. A4, 1587 (1989); M. Li and T. Yoney a, Journal of Chaos, Solitons and Fractals on "Superstrings, M,F,S...Theory", arXiv: hep-th/ 9806240.
[11] T. Yoney a, Mod. Phys. Lett. A 4, 1587 (1989); Prog. Theor. Phys. 97, 949 (1997); arXiv:hep-th/9707002; Prog. Theor. Phys. 103, 1081 (2000); Int. J. Mod. Phys. A 16, 945 (2001); M. Li and T. Yoneya, Phys. Rev. Lett. 78, 1219 (1997); Chaos Solitons Fractals 10, 423 (1999); A. Jevicki and T. Yoney a, Nucl. Phys. B 535, 335 (1998); H. Awata, M. Li, D. Minic and T. Yoneya, JHEP 0102, 013 (2001); D. Minic, Phys. Lett. B 442, 102 (1998); L. N. Chang, Z. Lewis, D. Minic, and T. Takeuchi, arXiv: hep-th/1106.0068.
[12] C.J. Hogan, arXiv: astro-ph/0703775; C.J. Hogan, arXiv: gr-qc/0706.1999; M. Li and Y. Wang, Phys. Lett. B 687: 243-247 (2010).
[13] Y-X. Chen and Y. Xiao, Phys. Lett. B 666: 371 (2008).
[14] M. Planck, Akad. Wiss. Berlin, K1. Math.-Phys. Tech.,5: 440-480, 1899; M. Planck, Vorlesungen über die Theorie der Wärmestrahlung, P. 164. J.A. Barth, Leipzig, 1906.
[15] J. Magueijo, and L. Smolin, Phys. Rev. Lett. 88, 190403 (2002); J. Magueijo, and L. Smolin, Phys. Rev. D 71, 026010 (2005); J. L. Cortes and J. Gamboa, Phys. Rev. D 71, 065015 (2005); M. Duff, L.B. Okun, G. Veneziano, J. High Energy Phys., 3: 023 (2002); F. Wilczek, arXiv: physics.gen-ph/
0708.4361; Frank Wilczek web site.
[16] S. Weinstein and D. Rickles, Quantum gravity, in Edward N. Zalta, editor, The Stanford Ency-clopedia of Philosophy. Spring 2011 edition, 2011.
[17] M. Tajmar, Physics Essays 25(3), 466-469 (2012).
[18] Z-Y. Shen, Journal of Modern Physics, 4 (2013), 1213-1380.
[19] E. Buckingham, Physical Review, 1914, 4(4): 345-376; P.W. Bridgman, Dimensional Analysis, New Haven: Yale University Press, 1922.
[20] Chien Wei-Zang, Applied Mathematics, Anhui Science and Technology Press, 1993, P. 154.
[21] S.W. Hawking and R. Penrose, Proc. Roy. Soc. London. A 314 (1970), 529, 48; S.W. Hawking, F.R. Ellis, The large scale structure of space-time, Cambridge University Press, 1973; J.K. Beem, and P.E. Ehrlich, Global Lorentzian Geometry, Marcel Dekker, New York, 1981.
[22] M.B. Green, J.H. Schwarz and E. Witten, Superstring Theory, Cambridge University Press, 1987; M. B. Green, J. H. Schwarz and E. Witten, Superstring Theory, Vol. I and Vol. II, Cambridge University Press, 1988; J. Polchinski, String Theory, Vol. I and Vol. II, Cambridge University Press (1998); K. Becker, M. Becker and J. H. Schwarz, String Theory and M-Theory: A Modern Introduction, Cambridge University Press, 2007.
[23] M. Bojowald, Phys. Rev. Lett. 86 (2001), 5227-5230; H. Viqar, W. Oliver, Phys. Rev. D 69 (2004), 084016; L. Modesto, Phys. Rev. D 70 (2004), 124009; LI ChangZhou, YU Guoxiang, XIE ZhiFang, Acta. Physica. Sinica., 59, 3 (2010).
[24] Y.J. Wang, Black Hole Physics, ChangSha: HuNan Normal University Press, 2000.4.
[25] A.F. Ali, S. Das, Phys. Lett. B 741 (2015) 276-279.
[26] L. Masanes \& J. Oppenheim, DOI: 10.1038/ncomms 14538 (2017).
[27] W.G. Unruh and R.M. Wald, Phys. Rev. D 25, 942; Gen. Rel. Grav., 15195 (1983); Phys. Rev. D 27, 2271 (1983).

[^0]: ${ }^{1}$ Chien Wei-Zang used L, M, T, θ and Q indicated the dimension of length, mass, time, temperature and electric charge sep arately in [20].

