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We propose the generalized relation to unify all the uncertainty relations (URs) with dimensions by the dimensional analysis. From 

normal forms of URs, an assumption is proposed which physical quantities have the formal symmetry with physical constants. Here 

we find the basic relation. Any physical quantity with dimension has a corresponding Planck scale and many physical quantities have 

the same Planck scales because of same dimensions. All Planck scales can be classified by two methods, one is the basic Planck scale 

and derived Planck scale, and another is Femi-Planck scale, Bose-Planck scale and Other-Planck scale. The basic relation can be 

rewritten as the ones of corresponding Planck scales. We find the generalized relation which the power products of physical quantities 

are equivalent to the ones of corresponding Planck scales. We also find the Big Bang UR between its temperature and volume by the 

generalized relation, and the Schwarzschild black holes (SBH) UR between its mass and volume. These suggest no singularity at Big 

Bang and in SBH with the quantum effect. We show that the generalized relation is generalized, interesting and significant.  

 

 

1. Introduction 

The Heisenberg uncertainty principle’s [1] application [2, 3], 

development [4, 5] and experiment [6, 7] made great progress. 

These founded the firm foundation for it and extended its 

connotation. Now there are many uncertainty relations (URs) with 

dimensions:  

ΔpΔr ≥ ħ [1]; ΔEΔt ≥ ħ [1]; δt = β tP
2/3

𝑡1/3 [8]; η／s ≥ 4πħ／

κ [9]; ΔTΔX ～ LS
2  ～ LP

2 ／c [10]; δxδyδt ～ LP
3 ／c [11]; 𝐿𝜇𝜈～

 LP𝐿  [12]; ε(Q)η(P) ＋ ε(Q)ζ(P) ＋ ζ(Q)η(P) ≥ ħ ／ 2 [7]; 

(δt)(δ𝑟)3 ≥ π𝑟2LP
2 ／c [13], etc.  

where Δp is the momentum fluctuation, Δr is the position 

momentum, ħ is the reduced Planck constant; ΔE is the energy 

fluctuation, Δt is the time fluctuation; δt is the time fluctuation, β 

is an order one constant, tP  =  ħG/c5 is Planck time, G is the 

gravitational constant, c is the speed of light, t is the time; η is the 

ratio of shear viscosity of a given fluid perfect, s is its volume 

density of entropy, κ is the Boltzmann constant; ΔT is the time-like, 

ΔX is its space-like, LS  is the string scale, LP  =   ħG/c3  is 

Planck length; δx, δy, δt are the position fluctuation and time 

fluctuation separately; 𝐿𝜇𝜈  is the transverse length, L is the radial 

length; Q is the position of a mass, ε(Q) is the root-mean-square 

error, P is its momentum, η(P) is the root-mean-square disturbance, 

ζ(P) is the standard deviation; δt and δr are the sever space-time 

fluctuations of the constituents of the system at small scales, and r 

is the radius of globular computer. 

So there are two problems: (i) Why hasn't G on some 

formulas right hand? (ii) Whether has the unitive form for them? 

In this paper, we solve that G disappears because of being 

reduced fitly and the unitive form is the generalized relation. 

Moreover, for the origin and development of Planck length, 

Planck time, Planck mass  MP =   ħc/G , Planck 

energy  EP =   ħc5/G  and Planck temperature  TP  =   ħc5/κ2G , 

please refer to the literature [14-18]. 

This paper is organized as follows. In Sec. 2, we propose an 

assumption, and derive the basic relation. In Sec. 3, we obtain the 

Planck scales and classify them. In Sec. 4, we prove the basic 

relation being rewritten as the one of corresponding Planck scales, 

find the generalized relation, and prove the URs in Sec. 1. In Sec. 

5, we find the Big Bang UR and SBH UR. We conclude in Sec. 6. 

 

2. An Assumption and Basic relation 

In this section, we propose an assumption, and derive the 

basic relation. 

 

2.1 An assumption and basic relation 

Observing these URs, we can discover the physical constants 

such as ħ, G, c and κ on the right hand and the physical quantities 

on left hand. We rewrite them as 

ΔpΔr ≥ ħ1; ΔEΔt ≥ ħ1; δt／β𝑡1/3 = tP
2/3

= ħ1/3G1/3c−5/3; η

／4πs ≥ ħκ−1; ΔTΔX ～ LS
2  ～ LP

2 ／c = ħGc−4; δxδyδt ～ LP
3 ／c 

= ħ3/2G3/2c−11/2 ; 𝐿𝜇𝜈 ／ 𝐿～ LP  = ħ1/4G1/4c−3/4; 2[ε(Q)η(P)

＋ε(Q)ζ(P)＋ζ(Q)η(P) ] ≥ ħ1; (δt)(δ𝑟)3／ π𝑟2  ≥  LP
2 ／c = ħGc−4, 

etc.  

Therefore the physical constants appear power products on 

the right hand. These are their normal form. Applying the π law 

[19], any physical quantity can be expressed as the power 
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products of basic ones. Using the five units, we obtain 

A = 𝑟𝛼𝑚𝛽𝑡𝛾𝑇𝛿𝑄𝜀                    (1) 

where A is any physical quantity, r, m, t, T and Q are the length, 

mass, time, temperature and electric charge separately, α, β, γ, δ 

and ε are the real number. From the normal form of above URs, 

we can assume 

𝑟𝛼𝑚𝛽𝑡𝛾𝑇𝛿𝑄𝜀  ～ ħ𝑥G𝑦c𝑧κ𝑤 e𝑢           (2) 

where x, y, z, w and u are the unknown number, and e is the 

elementary charge. (2) shows that the physical quantities have the 

beautiful formal symmetry with the physical constants. By the 

dimensional analysis [19], we obtain 

 L 𝛼  M 𝛽  t 𝛾  T 𝛿  Q 𝜀～

{[L2][M][t−1]}𝑥{[L3][M−1][t−2]}𝑦 {[L][t−1]}𝑧  

{[L2][M][t−2][T−1]}𝑤{[Q]}𝑢      (3) 

where L, M, t, T and Q are the dimensions of length, mass, time, 

temperature and electric charge separately. Solving (3) we gain 

x = (α＋β＋γ＋δ)／2, y = (α－β＋γ－δ)／2,  

z = (3α－β＋5γ－5δ)／2, w = －δ, u = ε 

Thus we find the basic relation. 

𝑟𝛼𝑚𝛽𝑡𝛾𝑇𝛿𝑄𝜀  ～

[ħ 𝛼+𝛽+𝛾+𝛿 G 𝛼−𝛽+𝛾−𝛿 c 3𝛼−𝛽+5𝛾−5𝛿 κ−2𝛿e2𝜀 ]1/2  (4) 

It shows that the power products of the length, mass, time, 

temperature and electric charge which express any physical 

quantity are equivalent to the one of ħ, G, c, κ and e. 

 

3. Planck Scales 

In this section, we obtain the Planck scales, and classify them. 

 

3.1 Basic Planck scale 

Ordering α = 1, β = γ = δ = ε = 0 in (4), we obtain Planck 

length immediately 

            𝑟P  = LP  =  ħG/c3 

Instructing γ =1, α = β = δ = ε = 0, obtain Planck time 

            tP  =  ħG/c5 

Ordering β = 1, α = γ = δ = ε = 0, obtain Planck mass 

            mP  = MP  =  ħc/G 

Instructing δ = 1, α = β = γ = ε = 0, obtain Planck temperature 

            TP  =  ħc5/κ2G 

Ordering ε = 1, α = β = γ = δ = 0, obtain elementary charge 

(or Planck charge) 

            QP  = Qe  = e 

These are the basic Planck scale. 

 

3.2 Derived Planck scales 

From (4), the corresponding Planck scale AP  of A is 

AP  = [ħ 𝛼+𝛽+𝛾+𝛿 G 𝛼−𝛽+𝛾−𝛿 c 3𝛼−𝛽+5𝛾−5𝛿 κ−2𝛿 e2𝜀 ]1/2  (5) 

Consequently any physical quantity with dimension has a 

corresponding Planck scale. 

A ～ AP                             (6) 

For example  

Planck energy EP  

[EP] = [L2][M][T−2], EP  =  ħc5/G 

Planck momentum PP  

[PP] = [L][M][T−1], PP  =  ħc3/G 

Planck curvature tensor RμνP  

[RμνP] = [L−2], RμνP= c3／ħG 

Because many physical quantities have the same dimensions, 

they have the same Planck scales, for example 

Planck energy density ρP  

[ρP] = [L−1][M][T−2], ρP  = c7／ħG2 

Planck pressure pP  

[pP] = [L−1][M][T−2], pP  = c7／ħG2 

Planck force per unit area fP  

[fP] = [L−1][M][T−2], fP  = c7／ħG2 

Planck energy- momentum tensor TμνP  

[TμνP] = [L−1][M][T−2], TμνP= c7／ħG2 

Etc. These are belonging to the derived Planck scale. 

 

3.3 Classifications 

We can classify all the Planck scales by two methods. First 

are basic Planck scale and derived Planck scale. Second are that 

One’s power is the half integer, call it Femi-Planck scale, such as 

LP , tP , MP , TP , EP , PP , etc; another is the integer, call it 

Bose-Planck scale, such as Qe , ρP , pP , fP , RμνP , TμνP , etc; 

others call Other-Planck scale, such as the Planck wave function 

ψP  

[ψP] = [L−3/2], ψP  = (ħG／c3)−3/4 

 

4. Generalized Relation 

In this section, we prove that (4) can be rewritten as the one 

of corresponding Planck scales, find the generalized relation, and 

prove the URs in Sec. 1. 

 

4.1 Proof 

The basic relation (4) can be rewritten as the one of 

corresponding Planck scales 

𝑟𝛼𝑚𝛽𝑡𝛾𝑇𝛿𝑄𝜀  ～ LP
𝛼 MP

𝛽
tP
𝛾

TP
𝛿Qe

𝜀           (7) 

We prove (7) now. From (4), we obtain 

𝑟𝛼𝑚𝛽𝑡𝛾𝑇𝛿𝑄𝜀  ～

[ħ𝛼G𝛼c−3𝛼 ]1/2[ħ𝛽 G−𝛽c𝛽 ]1/2[ħ𝛾G𝛾c−5𝛾 ]1/2[ħ𝛿G−𝛿c−5𝛿 ]1/2κ−𝛿e𝜀  

= [ħG／c3]𝛼/2[ħc／G]𝛽/2[ħG／c5]𝛾/2[ħc5／κ2G]𝛿/2e𝜀  

= LP
𝛼 MP

𝛽
tP
𝛾

TP
𝛿Qe

𝜀  

Thus the basic relation is equivalent to the one of corresponding 

Planck scales. 
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4.2 Generalized relation 

Considering all the physical quantities, we find 

 𝐴i
𝛼 in

i=1  ～  AiP
𝛼 in

i=1 ;  i = 1, 2, 3… n     (8) 

where 𝐴i  is the physical quantity, 𝛼i  is the real number, and  

𝐴iP  is the corresponding Planck scale. This is the generalized 

relation. It shows that the power products of physical quantities 

are equivalent to the ones of corresponding Planck scales. 

 

4.3 Proving URs 

Applying the generalized relation (8), we can prove the URs 

in Sec.1. 

ΔpΔr ～ PPLP =  ħc3/G ħG/c3 = ħ; ΔEΔt ～ EPtP = 

 ħc5/G ħG/c5 = ħ; δt／𝑡1/3～tP／ tP
1/3

= tP
2/3

; η／s ～ ηP／

sP  = c9/ħG3／ c9κ2/ħ3G3 = ħ／κ; ΔTΔX～ tPLP  ～ħG／c4 = 

LP
2 ／ c ～ LS

2 ; δxδyδt ～ LP
2 tP  =  LP

3 ／ c; 𝐿𝜇𝜈 ／  𝐿 ～ LP ／

 LP  =   LP ; ε(Q)η(P) ＋ ε(Q)ζ(P) ＋ ζ(Q)η(P) ～

 ħG/c3 ħc3/G  = ħ; (δt)(δ𝑟)3 ／𝑟2 ～tPLP
3 ／LP

2 = LP
2 ／c, etc. 

where  ηP  = c9/ħG3 is the Planck ratio of shear viscosity of a 

given fluid perfect, and sP  = c9κ2/ħ3G3 is its Planck volume 

density of entropy (from formula (5)). Thus we find that there 

hasn’t G on some formulas right hand because it is reduced fitly. 

 

5. No singularity at Big Bang and SBH 

In this section, we find the Big Bang UR and SBH UR by the 

generalized relation. 

 

5.1 Big Bang UR 

S.W. Hawking and R. Penrose proved that the universe 

originated the Big Bang singularity [20]. Many literatures 

discussed no singularity at the Big Bang and black holes with the 

quantum effect, please refer to [18] [21-24]. The one of the 

characteristic of Big Bang singularity is zero volume and 

limitless high temperature. 

Then we can find the relation of Big Bang temperature and 

its volume by the generalized relation 

𝑇𝐵𝑉𝐵  ～ TPVP  = TPLP
3  = ħ2G／κc2       (9) 

where 𝑇𝐵  is the Big Bang temperature,  𝑉𝐵  is its volume, and 

VP  = LP
3  is the Planck volume. This is the Big Bang UR. It shows 

that it is impossible to measure the Big Bang temperature and its 

volume simultaneously. When ħ → 0, we obtain 

𝑇𝐵𝑉𝐵  ～ 0                          (10) 

Because 𝑇𝐵  > 0, we gain 𝑉𝐵  ～ 0, the Big Bang volume is zero, 

thus the Big Bang singularity appears without the quantum effect. 

We suggest no singularity at the Big Bang with quantum effect. 

Substituting a = cκT／2πħ [25] into (9), we obtain 

𝑎𝐵𝑉𝐵  ～ 𝑎pVp  = ħG／2πc              (11) 

where 𝑎𝐵  is the Big Bang acceleration, and 𝑎p  =  c7/ħG is the 

Planck acceleration. It is the UR between Big Bang acceleration 

and its volume. 

 

5.2 SBH UR 

Similarly considering the mass and volume of SBH, we find 

𝑀𝐻𝑉𝐻  ～ MPVP  = MP LP
3  = ħ2G／c4     (12) 

where 𝑀𝐻  is the SBH mass, and 𝑉𝐻  is its volume. It is the SBH 

UR. Also it is impossible to measure the SBH mass and volume 

simultaneously. When ħ → 0, we obtain 

𝑀𝐻𝑉𝐻  ～ 0                         (13) 

Because 𝑀𝐻  > 0, we have 𝑉𝐻～ 0, the volume is zero, the SBH 

singularity appears without quantum effect also. We also suggest 

no singularity in SBH with quantum effect. Taking M = ρV to 

(12), we gain  

𝑀𝐻
2／𝜌𝐻  ～ ħ2G／c4, 𝜌𝐻𝑉𝐻

2 ～ ħ2G／c4 (14) 

where 𝜌𝐻  is the mass density of SBH. These are the URs 

between the mass density of SBH and its mass or volume. 

 

6. Conclusion 

In this paper, we investigate the relations between the 

physical quantities and the physical constants by the dimensional 

analysis. We find the following results. 

1) The basic relation is found. The power products of the 

length r, mass m, time t, temperature T and electric charge Q 

which express any physical quantity are equivalent to the one of 

the reduced Planck constant ħ, gravitational constant G, speed of 

light c, Boltzmann constant κ and elementary charge e. 

2) Any physical quantity with dimension has a corresponding 

Planck scale. The Planck length  LP , Planck time  tP , Planck 

mass  MP , Planck temperature  TP , elementary charge  Qe  (or 

Planck charge), Planck energy EP , Planck momentum PP , Planck 

curvature tensor  RμνP , Planck energy density  ρP , Planck 

pressure  pP , Planck force per unit area fP , Planck 

energy-momentum tensor TμνP  etc are found. Many physical 

quantities have the same Planck scales because of the same 

dimensions. 

3) All the Planck scales are classified by two methods. First 

are the basic Planck scales including LP , tP , MP , TP  and  Qe  

and derived Planck scales such as EP , PP , ρP , pP , fP , RμνP , 

TμνP , Planck wave function ψP  etc. Second are the Femi-Planck 

scale which power is the half integer such as LP , tP , MP , TP , 

EP , PP , etc, the Bose-Planck scale which power is the integer 

such as Qe , ρP , pP , fP , RμνP , TμνP , etc and the Other-Planck 

scale which power is others such as ψP . 

4) The basic relation can be rewritten as the one of 

corresponding Planck scales. The power products of r, m, t, T and 
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Q are equivalent to the one of LP , tP , MP , TP  and Qe . 

5) The generalized relation is found. It shows that the power 

products of the physical quantities are equivalent to the ones of 

corresponding Planck scales. The URs in Sec. 1 are proved by the 

generalized relation. G disappears on some URs because of being 

reduced fitly. 

6) The Big Bang UR between its temperature 𝑇𝐵  and 

volume 𝑉𝐵  is found by the generalized relation. It suggests no 

singularity at the Big Bang with the quantum effect. The UR 

between Big Bang acceleration 𝑎𝐵  and its volume 𝑉𝐵  is 

obtained. Similarly the SBH UR between its mass 𝑀𝐻  and 

volume 𝑉𝐻  is found; also no singularity is in SBH with quantum 

effect. The URs between the mass density 𝜌𝐻  of SBH and it’s 

𝑀𝐻  or 𝑉𝐻  is gained. 

7) The generalized relation unifies all URs with dimensions. 

It is generalized, interesting and significant; any UR is its special 

case. Generalized relation includes the quantum gravity such as 

the Big Bang UR and SBH UR. No prerequisite for these 

relations, they are better than other theories to remove the 

singularity of Big Bang and black hole. Because depends on the 

dimensions, generalized relation can’t obtain the factor and 

relation without dimensions. 
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