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 Abstract-Two different ways of computing the time between collisions related to the 

electrical conductivity of metals are presented. The combination of them leads to the formula 

for the Fermi energy of metals.  

 

1 - Introduction 

The Fermi energy of metals is usually determined by considering the 

conduction electrons as free particles living in a box, where the occupancy of 

the energy levels is done by taking in account the Pauli exclusion principle, 

reflecting the fermionic character of the charge carriers [1,2,3]. The process also 

takes in account the energy levels of a particle confined in a cubic box, where 

the number of occupied states is fixed by the value of the Fermi energy. As a 

result, it is obtained the next relation for the Femi energy, EF, in three 

dimensions 

 

                                   EF = [ h 
2
 ∕ (8 m)] ( 3 ∕ π) 

2 ∕ 3
 n 

2 ∕ 3
,                                            

 

where h is the Planck’s constant, m the electron mass and n the density of 

conduction electrons. 

   In this paper we are going to deduce the relation for the Fermi energy of 

metals in an alternative way. We consider two different ways of determine the 

time between collisions related to the physics of the electrical conductivity in 

metals. The first one treats this collision time as a particle lifetime. The second 

one makes use of the Drude relation for the electrical conductivity of metals, 

jointly with the ideas advanced by Landauer [4], which states that: “conduction 

is transmition” (please see also [5 and 6]). 
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   2 – Average collision time as a particle lifetime 

 

   There are two characteristics linear momenta that we can associate to the free 

electrons responsible for the electrical conductivity of metals. They are the 

Fermi momentum mvF and the Compton momentum mc. By taking into account 

the fermionic character of the electron, we will write a non-linear Dirac-like 

equation describing the “motion” of this particle. We have [7] 

 

                ∂Ψ ∕ ∂x - (1∕c) ∂Ψ ∕ ∂t = [(m vF) ∕ ħ] Ψ – [(mc) ∕ ħ] | Ψ*Ψ|Ψ.              (1) 

 

We see that eq. (1) contains only first order derivatives of the field Ψ. Besides 

this, the field Ψ exhibits not a spinorial character. Taking the zero  of  (1) and 

solving for |Ψ*Ψ|, we get 

 

                                                |Ψ*Ψ| = vF ∕ c.                                                      (2) 

 

   On the other hand in the collision process, the conduction’s electron loss its 

memory. We may think that this feature looks similar to the annihilation of a 

particle-anti particle pair, each of mass-energy equal to EF. Putting this in a 

form of the uncertainty principle yields 

 

                      2 EF ∆t = h ∕ 2           or              h υ ∕ 2 = 2 EF.                          (3) 

 

Solving equation (3) for υ, we get 

 

                                              υ = 1 ∕ ∆t = 4 EF ∕ h.                                               (4) 
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By combining the results of (2) and (4) we obtain the line width Г tied to the 

“particle” decay 

 

                             Г = (1  3) υ | Ψ*Ψ| = 4 EF vF ∕ ( 3h c ).                                  (5) 

 

We have  introduced the factor one third  in relation (5), thinking that equation 

(1) refers to a case of spherical symmetry, whereas in the presence of  an 

electrical field we have an explicit brake of symmetry , conferring a linear 

character to the problem. 

The averaged time between collisions τ is then given by 

 

                                      τ = 1 ∕ Г = (3 h c ) ∕ ( 4 EF vF ).                                      (6) 

 

 

2- Maximum time between collisions 

 

   Drude formula for the electrical conductivity of metals can be written as 

 

                                                σ = (e
2
 n τ)  m,                                                  (7) 

 

where e is the quantum of electric charge, n is the number of charge carriers per 

unit of volume, τ is the average time between collisions and m is the mass of the 

charge carriers.   

   Besides this in reference [5], starting from Landauer’s paradigm: conduction 

is transmission [4,6], the relation for the electrical conductivity can be put in the 

form 
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                                                σ = e
2
 (𝜋 ℏ ℓ0),                                                  (8) 

 

where  ℓ0 is the size of the channel of conduction. 

   In the case of the charge carrier being the electron, the maximum conductivity 

is reached when the length, ℓ0, becomes equal to the reduced Compton 

wavelength of it, namely 

 

                                                   ℓ0 = ℏ  (mc).                                                    (9) 

Inserting (9) into (8) we get 

 

                                       σmax = (e
2
 m c)  (𝜋 ℏ2

).                                              (10) 

 

Making the identification between the two relations for the electrical 

conductivity, namely equaling (7) and (10), and solving for τ, we obtain for the 

maximum time between collisions the expression 

 

                                      τmax  τ = (m
2
 c)  (n 𝜋 ℏ2

).                                         (11) 

 

3 – Fermi energy formula and concluding remarks 

 

Making the equality between (6) and (11), we obtain that the Fermi energy of 

metals could be expressed as  

 

                                     EF = [h
2
 ∕ (8 m)] (3 ∕ π)

2 ∕ 3
 n

2 ∕ 3
,                                    (12) 

 



 

5 
 

which is identical to the known formula exhibited in literature (please see 

[1,2,3,7].  

Relation (3) can be interpreted as: the vacuum fluctuations, represented by the 

ground state energy of a harmonic oscillator, leads to the creation (annihilation) 

of a particle-antiparticle pair having mass-energy equals to 2EF. Meanwhile, this 

result combined with the Dirac-like equation (1), can be considered as an 

effective field theory account of the electrical conduction in metals. Finally 

formulas (11) and (12) imply that the basic parameters tied to the electrical 

conduction in metals are fixed by the number density of charge carriers. 
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