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Abstract

The Heisenberg uncertainty principle is a consequence of the postulate that
coordinate and momentum representations are related to each other by the
Fourier transform. This postulate has been accepted from the beginning of
quantum theory by analogy with classical electrodynamics. We argue that the
postulate is based neither on strong theoretical arguments nor on experimental
data. A position operator proposed in our recent publication resolves inconsis-
tencies of standard approach and sheds a new light on important problems of
quantum theory. We do not assume that the reader is an expert in the given
field and the content of the paper can be understood by a wide audience of
physicists.
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1 Introduction

The postulate that in quantum theory the coordinate and momentum representations
are related to each other by the Fourier transform is described in every textbook on
quantum mechanics. The Heisenberg uncertainty principle is a consequence of this
postulate. However, in our opinion, even in textbooks the following issues are not
clearly explained:

• 1) Are the representations equivalent or one of them is more fundamental?

• 2) In what situations do we need to use transformations from one representation
to another?

• 3) Is the above postulate based on strong theoretical arguments and/or experi-
mental data?
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In Ref. [1] those problems have been discussed in detail with motivations, calculations
and their comparison with experimental data. The goal of the present paper is to
discuss the most fundamental problems related to issues 1)-3) on the level accepted
in textbooks such that the material should be understandable by a wide audience of
physicists.

In Sec. 2 we describe how those issues are treated in standard quantum
theory. In particular, we argue that the definition of standard position operator is
not physically consistent. A consistent construction of this operator is described in
Sec. 3. The results shed a new light on important problems of quantum theory. They
are briefly discussed in Sec. 4.

2 Uncertainty principle and position operator in

standard theory

Standard quantum theory is based on the postulate that physical states are described
by wave functions ψ which are elements of a Hilbert space H, and physical quantities
are described by selfadjoint operators in this space. To formulate the Heisenberg
uncertainty principle one needs to use the following notions. If (..., ...) is the scalar
product in H then the norm in H is defined as ||ψ|| = (ψ, ψ)1/2. If ||ψ|| = 1 and A is
an operator of a some physical quantity then its mean value and uncertainty in the
state ψ are defined as Ā = (ψ,Aψ) and ∆A = ||(A− Ā)ψ||, respectively.

In terms of these notions the Heisenberg uncertainty principle states that
if ∆Xj is the uncertainty of the jth component of the position operator X and ∆Pk

is the uncertainty of the kth component of the momentum operator P (j, k = 1, 2, 3)
then ∆Xj∆Pk ≥ h̄δjk/2 where δjk is the Kronecker symbol.

The coordinate representation is defined as a space of states ψ(x) such that
the operator X in this space is the operator of multiplication by x. Analogously, the
momentum representation is defined as a space of states χ(p) such that the operator
P in this space is the operator of multiplication by p. It is usually assumed that the
scalar products in those representations are chosen as (ψ2, ψ1) =

∫
ψ2(x)∗ψ1(x)d3x

and (χ2, χ1) =
∫
χ2(p)∗χ1(p)d3p, respectively.

The uncertainty principle is a consequence of the postulate accepted from
the beginning of quantum theory that the coordinate and momentum representations
are related to each other by the Fourier transform. The historical reason was that in
classical electrodynamics the coordinate and wave vector k representations are related
analogously and we postulate that p = h̄k. Then, although the interpretations of
classical fields on one hand and wave functions on the other are fully different, from
mathematical point of view classical electrodynamics and quantum mechanics have
much in common (and such a situation does not seem to be natural).

For example, in classical electrodynamics a wave packet moving even in
empty space inevitably spreads out and this fact is well known. As pointed out by

2



Schrödinger (see pp. 41-44 in Ref. [2]), in standard quantum mechanics a packet does
not spread out if a particle is moving in a harmonic oscillator potential in contrast to
”a wave packet in classical optics, which is dissipated in the course of time”. However,
as a consequence of the similarity, a free quantum mechanical wave packet inevitably
spreads out too. This effect is called wave packet spreading (WPS) and is described
in textbooks and many papers (see e.g. Ref. [3] and references therein).

In particular, the WPS effect has been investigated by de Broglie, Darwin
and Schrödinger. The fact that WPS is inevitable has been treated by several au-
thors as unacceptable and as an indication that standard quantum theory should be
modified. For example, de Broglie has proposed to describe a free particle not by the
Schrödinger equation but by a wavelet which satisfies a nonlinear equation and does
not spread out (a detailed description of de Broglie’s wavelets can be found e.g. in
Ref. [4]).

At the same time, it has not been explicitly shown that numerical results
on WPS are incompatible with experimental data. For example, it follows from Dar-
win’s result [5] that for macroscopic bodies the effect of WPS is extremely small.
Probably it is also believed that in experiments on the Earth with atoms and ele-
mentary particles spreading does not have enough time to manifest itself. Probably
for these reasons the majority of physicists do not treat WPS as a drawback of the
theory.

However, a natural problem arises what happens to photons which can
travel from distant objects to Earth even for billions of years. As shown in Ref. [1], a
standard treatment of the WPS in directions perpendicular to the photon momentum
leads to several striking paradoxes. Hence a problem arises whether the postulate can
be substantiated.

As shown in textbooks on quantum mechanics (see e.g. Ref. [6]), the
above postulate is equivalent to ones that the momentum operator in coordinate
representation is P = −ih̄∂/∂x or the position operator in momentum representation
is X = ih̄∂/∂p. In either case the commutation relations between the position and
momentum operators are

[Xj, Xk] = [Pj, Pk] = 0, [Xj, Pk] = ih̄δjk (j, k = 1, 2, 3) (1)

and it is well-known that the uncertainty principle is a rigorous mathematical conse-
quence of those relations (see e.g. Ref. [1]).

In Ref. [7] Heisenberg argues in favor of his principle by considering
Gedankenexperiment with Heisenberg’s microscope. Since that time the problem
has been investigated in many publications. A discussion of the current status of
the problem can be found e.g. in Ref. [8] and references therein. A general opin-
ion based on those investigations is that Heisenberg’s arguments are problematic but
the uncertainty principle is valid, although several authors argue whether the above
mathematical notion of uncertainty is relevant for describing a real process of mea-
surement. However, a common assumption in those investigations is that one can
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consider uncertainty relations for all the components of the position and momentum
operators independently. Below we argue that this assumption is not based on solid
physical arguments.

In view of the above discussion one might think that the position and
momentum operators are on equal footing. However, this is not the case for several
reasons. For example, as argued in Ref. [9], symmetry on quantum level should
be defined not by the choice of the space-time background but by the choice of the
symmetry algebra. In particular, Poincare symmetry is defined by the choice of the
Poincare algebra as the symmetry algebra. Then each elementary particle is described
by an irreducible representation (IR) of this algebra. This IR has a natural imple-
mentation in momentum space and the components of the momentum operator are
three of ten linearly independent representation operators. Hence those operators are
consistently defined. On the other hand, among the representation operators there is
no position operator. In addition, the results of existing fundamental quantum the-
ories describing interactions on quantum level (QED, electroweak theory and QCD)
are formulated exclusively in terms of the S-matrix in momentum space without any
mentioning of space-time. Hence for investigating such stationary quantum problems
as calculating energy levels, form-factors etc., the notion of the position operator is
not needed.

As an example, one of the arguments in favor of choosing standard position
and momentum operators is that the nonrelativistic Schrödinger equation correctly
describes the hydrogen energy levels, the Dirac equation correctly describes fine struc-
ture corrections to these levels etc. Historically these equations have been first written
in coordinate space and in textbooks they are still discussed in this form. However,
from the point of view of the present knowledge those equations should be treated as
follows.

A fundamental theory describing electromagnetic interactions on quantum
level is QED the results of which are formulated exclusively in momentum space. As
follows from Feynman diagrams for the one-photon exchange, in the approximation
(v/c)2 the electron in the hydrogen atom can be described in the potential formalism
where the potential acts on the wave function in momentum space. So for calculating
energy levels one should solve the eigenvalue problem for the Hamiltonian with this
potential. This is an integral equation which can be solved by different methods.
One of the convenient methods is to apply the Fourier transform and get standard
Schrödinger or Dirac equation. Hence the fact that the results for energy levels are
in good agreement with experiment shows only that QED defines the potential cor-
rectly and standard coordinate Schrödinger and Dirac equations are only convenient
mathematical ways of solving the eigenvalue problem. For this problem the physical
meaning of the position operator is not important at all. One can consider other
transformations of the original integral equation and define other position operators.

However, the choice of the position operator is important in nonstationary
problems when evolution is described by the time dependent Schrödinger equation
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(with the nonrelativistic or relativistic Hamiltonian). For any new theory there should
exist a correspondence principle that at some conditions the new theory should repro-
duce results of the old well tested theory with a good accuracy. In particular, quantum
theory should reproduce the motion of a particle along the classical trajectory defined
by classical equations of motion.

Our conclusion on issues 1) and 2) in Sec. 1 is that the momentum rep-
resentation is fundamental while the coordinate one and the position operator are
needed only in semiclassical approximation and they should be defined from addi-
tional considerations. Hence one should start from momentum space and try to find
arguments for constructing a physical position operator. Note that in textbooks (see
e.g. Ref. [6]) the standard choices for the momentum and position operators are
justified from the point of view that they give a correct description in semiclassi-
cal approximation. However, the requirement that an operator should have correct
properties in semiclassical approximation does not define the operator unambigu-
ously. Indeed, if an operator B disappears in semiclassical approximation then on
semiclassical level the operators A and A+B are equivalent.

By definition, a quantity corresponding to the operator A is semiclassical
in state ψ if the uncertainty is much less than the mean value, i.e. ∆A � |Ā|.
Therefore the quantity cannot be semiclassical if Ā is rather small or Ā = 0. In
particular, as explained in textbooks on quantum mechanics (see e.g. Ref. [6]),
semiclassical approximation cannot be valid in situations when the momentum is
rather small.

Consider first a one-dimensional case. If the mean value of the x compo-
nent of the momentum px is rather large, the definition of the coordinate operator
ih̄∂/∂px can be justified but this definition does not have a physical meaning in
situations when px is small.

Consider now the three-dimensional case. If all the components pj (j =
1, 2, 3) are rather large then all the operators ih̄∂/∂pj can have a physical meaning.
A semiclassical wave function χ(p) in momentum space should describe a narrow
distribution around the mean value p0. Suppose now that coordinate axes are chosen
such p0 is directed along the z axis. Then the mean values of the x and y components
of the momentum operator equal zero and, in view of the above remarks the opera-
tors ih̄∂/∂pj cannot be physical for j = 1, 2, i.e. in directions perpendicular to the
particle momentum. The situation when a definition of an operator is physical or not
depending on the choice of coordinate axes is not acceptable. Hence our conclusion
is that standard definition of the position operator is not physical.

In view of the above remarks, a position operator should exist not only in
the nonrelativistic case but in the relativistic case as well. A generalization of standard
position operator to the relativistic case has been first proposed by Newton and
Wigner [10]. Several authors proposed modifications of the Newton-Wigner position
operator (see the discussion in Ref. [1]) but in semiclassical approximations all the
modified operators are equivalent to the Newton-Wigner one. In the Newton-Wigner
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construction the coordinate and momentum representations are also related to each
other by the Fourier transform. Hence the Newton-Wigner position operator has the
same foundational problems as standard one (see the discussion in Ref. [1]).

We conclude that standard position operator in directions perpendicular
to the particle momentum is unphysical. As a consequence, the results on WPS in
those directions are not trustworthy. As shown in Ref. [1], in the case of photons
moving to Earth for a rather long period of time the results on WPS obtained with
standard position operator lead to several striking paradoxes. Hence, at least in
directions perpendicular to the particle momentum, standard position operator should
be modified.

Our conclusion on issue 3) in Sec. 1 is that the postulate that the momen-
tum and coordinate representations are related to each other by the Fourier transform
is based neither on strong theoretical arguments nor on experimental data.

3 Consistent construction of position operator

Before discussing a consistent construction of the position operator, let us make the
following remark. On elementary level students treat the mass m and the velocity v as
primary quantities such that the momentum is mv and the kinetic energy is mv2/2.
However, from the point of view of Special Relativity, the primary quantities are the
momentum p and the total energy E and then the mass and velocity are defined
as m2c4 = E2 − p2c2 and v = pc2/E, respectively. This example has the following
analogy. In standard quantum theory the primary operators are the position and
momentum operators and the orbital angular momentum operator L is defined as
their cross product. However, if one proceeds from IRs then the operators P and L
are on the same footing and they are consistently defined as representation operators
of the Poincare algebra. At the same time, the definition of the position operator is
a problem. Hence a question arises whether the position operator can be defined in
terms of P and L.

One might seek the position operator such that on classical level the rela-
tion x×p = l will take place where l is the classical value of the angular momentum.
Note that on quantum level this relation is not necessary. Indeed, the very fact
that some elementary particles have a half-integer spin shows that the total angular
momentum for those particles does not have the orbital nature but in semiclassical
approximation the contribution of the spin operator to the total angular momentum
is much less than the contribution of the orbital angular momentum. However, if the
values of p and l are known and p 6= 0 then the requirement that x × p = l does
not define x uniquely. One can define parallel and perpendicular components of x as
x = x||p/p+ x⊥ where p = |p|. Then the relation x×p = l defines uniquely only x⊥
as x⊥ = (p× l)/p2.

On quantum level x⊥ should be replaced by a selfadjoint operator X⊥. For
this purpose one should know the form of the operator L in momentum representation.
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A well-known form of this operator in standard quantum mechanics is L = ih̄(∂/∂p)×
p. This expression is rather general because it is valid not only in nonrelativistic
quantum mechanics but also in the cases of Poincare and de Sitter symmetries [11].

Taking into account that the operators P and L do not commute with
each other and the operator X⊥ should be Hermitian, a quantum generalization of
the expression for x⊥ is

X⊥ =
1

2p2
(P× L− L×P) (2)

In nonrelativistic quantum mechanics the Hamiltonian of a free particle
with the mass m is p2/2m and in relativistic quantum mechanics it is (m2c4+p2c2)1/2.
Therefore an immediate consequence of the definition (2) follows: Since the momen-
tum and angular momentum operators commute with the Hamiltonian, the distribu-
tion of all the components of x⊥ does not depend on time. In particular, there is no
WPS in directions defined by X⊥. On classical level the conservation of x⊥ is obvious
since it is defined by the conserved quantities p and l. It is also obvious that since
a free particle is moving along a straight line, a vector from the origin perpendicular
to this line does not change with time.

However, the relation x × p = l does not make it possible to define the
parallel component of the position operator and a problem arises what physical ar-
guments should be used for that purpose.

We define G as the operator of multiplication by the unit vector n = p/p.
A direct calculation shows that if ∂/∂p is written in terms of p and angular variables
then

ih̄
∂

∂p
= GX|| + X⊥ (3)

where the operator X|| acts only over the variable p:

X|| = ih̄(
∂

∂p
+

1

p
) (4)

The correction 1/p is related to the fact that the operator X|| is Hermitian since in
variables (p,n) the scalar product is given by

(χ2, χ1) =
∫
χ2(p,n)∗χ1(p,n)p2dpdo (5)

where do is the element of the solid angle.
While the components of standard position operator commute with each

other, the operators X|| and X⊥ satisfy the following commutation relation:

[X||,X⊥] = −ih̄
p
X⊥, [X⊥j, X⊥k] = −ih̄

p2

3∑
l=1

ejklLl (j, k = 1, 2, 3) (6)
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where ejkl is the absolutely antisymmetric tensor and e123 = 1. An immediate con-
sequence of these relation follows: Since the operator X|| and different components
of X⊥ do not commute with each other, the corresponding quantities cannot be si-
multaneously measured and hence there is no wave function ψ(x||,x⊥) in coordinate
representation.

As follows from Eq. (4), [p,X||] = −ih̄, i.e. in the longitudinal direction
the commutation relation between the coordinate and momentum is the same as in
standard theory. One can also calculate the commutators between the different com-
ponents of X⊥ and P. Those commutators are not given by such simple expressions
as in standard theory but it is easy to see that all of them are of the order of h̄ as it
should be.

Equation (3) can be treated as an implementation of the relation x =
x||p/|p| + x⊥ on quantum level. As argued in Sec. 2, standard position operator in
the direction j is not consistently defined if pj is not sufficiently large. However since
the operator X|| contains ih̄∂/∂p, it is defined consistently if only the magnitude of
the momentum is sufficiently large.

In summary, we propose to define the position operator not by the set
(ih̄∂/∂px, ih̄∂/∂py, ih̄∂/∂pz) but by the operators X|| and X⊥ which are consistently
defined if only the magnitude of the momentum is sufficiently large.

One might pose the following question. What is the reason to work with
the parallel and perpendicular components of the position operator separately if,
according to Eq. (3), their sum is the standard position operator? The explanation
follows.

In quantum theory every physical quantity corresponds to a selfadjoint
operator but the theory does not define explicitly how a quantity corresponding to a
specific operator should be measured. There is no guaranty that for each selfadjoint
operator there exists a physical quantity which can be measured in real experiments.

Suppose that there are three physical quantities corresponding to the self-
adjoint operators A, B and C such that A + B = C. Then in each state the mean
values of the operators are related as Ā+ B̄ = C̄ but in situations when the operators
A and B do not commute with each other there is no direct relation between the
distributions of the physical quantities corresponding to the operators A, B and C.
For example, in situations when the physical quantities corresponding to the oper-
ators A and B are semiclassical and can be measured with a good accuracy, there
is no guaranty that the physical quantity corresponding to the operator C can be
measured in real measurements. As an example, the physical meaning of the quan-
tity corresponding to the operator Lx + Ly is problematic. Another example is the
situation with WPS in directions perpendicular to the particle momentum. Indeed,
as noted above, the physical quantity corresponding to the operator X⊥ does not
experience WPS. However, standard position operator is a sum of noncommuting op-
erators corresponding to well defined physical quantities and, as a consequence, there
are situations when standard position operator defines a quantity which cannot be
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measured in real experiments.

4 Conclusion

In Sec. 2 we discuss standard uncertainty principle which is a consequence of choosing
standard position operator. The major theoretical drawback of this choice is that the
consistency of standard position operator depends on the choice of coordinate axis. In
particular, a standard choice inevitably predicts a considerable wave packet spreading
(WPS) in directions perpendicular to the particle momentum and, as shown in Ref.
[1], this leads to several striking paradoxes.

In Sec. 3 we consider a new definition of the position operator proposed
in Ref. [1]. We treat this definition as consistent because, in contrast to standard
position operator, the new one does not depend on the choice of coordinate axis and
is expected to be physical if only the magnitude of the momentum is rather large.

As a consequence of our construction, WPS in directions perpendicular
to the particle momentum is absent and the paradoxes discussed in Ref. [1] are
resolved. Another consequence of the new choice of the position operator is that
now uncertainty relations do not have such a simple form as in Eq. (1). However,
the correspondence principle between quantum and classical theory remains valid
because all the commutators between different components of the momentum and
position operators are proportional to h̄ and therefore they disappear in classical
limit.

Different components of the new position operator do not commute with
each other and, as a consequence, there is no wave function in coordinate representa-
tion. A possibility that coordinates can be noncommutative has been first discussed
by Snyder [12] and is implemented in several modern theories. In those theories
the measure of noncommutativity is defined by a parameter l called the fundamental
length (the role of which can be played e.g. by the Planck length or the Schwarzschild
radius). In the formal limit l → 0 the coordinates become standard ones related to
momenta by a Fourier transform. As follows from the above discussion, this is un-
acceptable for several reasons. One of ideas of those theories is that with a nonzero
l it might be possible to resolve difficulties of standard theory where l = 0. At
the same time, in our approach there can be no notion of fundamental length since
commutativity of coordinates takes place only in the formal limit h̄→ 0.

As discussed in Ref. [1], the new choice of the position operator also sheds
a new light on other problems of quantum theory.
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