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We’ve been trodding on the winepress much to long, Rebel, rebel!

We’ve been taken for granted much to long, Rebel rebel!

Babylon System, Bob Marley

Abstract. This is the first part of a paper, in which I invite you to take
a step aside current quantum field theory (QFT): QFT has been said to
be ”well-established” since the 80’s of the last century by its foremost
theorists (see: [10, p.iv]), and the majority of physicists consider it to
be essentially complete since the discovery of the Higgs particle.
It will be interesting to see, what that really means: What are the prob-
lems left over to the younger generations? I’ll show you that a.o. it fails
in its Lagrangian formalism, its postulate of positivity of energy, I’ll
show the uselessness of the uncertainty principle as to electromagnetic
fields, and we’ll see that there are serious doubts as to its conception of
the photonic nature of electromagnetic fields, which a simple experiment
could test against.

1. Introduction
No doubt, QFT is the most extraordinary theory of all physical theories: It
is the most recent of all theories, claims to have a universal range, to be
the most satisfactory and most beautiful, best tested, and most exact of all
theories, has been assembled in the shortest time, and with by far the biggest
budget ever.

It also holds the record of the gap it leaves between its promises and
what it delivers; amongst them are its unability to explain the missing 80% of
dark matter and energy in the universe, its inability to derive how a sponta-
neous symmetry breaking during big bang occurred, its lack of any estimates
of created energy from vacuum during the big bang, and its unability to prove
consistency in its explicit and implicit assumptions (known as non-triviality
problem in axiomatic quantum field theory), just to name a few well-known
ones.

But what makes it truely singular is its non-readiness to expose its
possible failure as a dangling price for further exploration. Nothing shows
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this better than the official placement of the Yang-Mills mass gap problem as
Millenium problem by the Clay institute (see [1]): Only affirmative solutions
of existency are acceptable, a proof of non-existency is to be rejected.

A building that must not be changed is a monument. A monument
which is not resting on firm grounds and walls is a dooming danger. QFT
will have to accept an investigation for its solidness.

2. Preliminary Conventions
I assume ~ ≡ 1 and c ≡ 1 throughout, denote with x = (x0, . . . , x3) ∈ R4 a
point in space-time, where x0 is the time coordinate, and base the Minkowsi
metric tensor g on the signature (+,−,−,−).

3. Relativisic Hamiltonian Function
Non-relativistic classical mechanics is pillared by two principles: The first is
the Galileo invariance of all equations of motion, and the second the conser-
vation of energy for closed dynamical systems.
The Galileo invariance implies that all the coordinates of time and location
as well as energy and momentum are unique only modulo the addition of
arbitrary constants, i.e. the affine group of displacements. And the conserva-
tion of energy puts the Hamiltonian H : R2n+1 3 (t, q, p) 7→ H(t, q, t) ∈ R as
the energy function of (time t) location q and the momentum variables p into
the center of that theory. Putting both together, it follows that the Hamil-
tonian of a free particle must be invariant w.r.t. the Galileo transformations
(modulo the addition of constant energy and momentum).

Things are different in relativistic mechanics: The Poincaré group re-
places the Galileo group, and the energy won’t be an invariant, even for
the free particle. Followers of QFT therefore propose to take a leave from
Hamiltonian mechanics, and it’s a common, but unfounded belief that the
Hamiltonian mechanics won’t be applicable in relativistic state of affairs:
We know: The Hamiltonian of a free particle must be an energy-valued func-
tion of time and momentum that is to be Poincaré invariant. We also know
that with p0 := E: p2

0 − p2
1 − p2

3 − p2
3 = m2

0 holds, where m0 is the rest mass.
Therefore γ0p0 + · · ·+ γ3p3 = m14, where the γµ are the Dirac matrices, 14
is the 4×4 unit matrix, and the solution is unique modulo U(4), the group of
unitary transformations on C4 (see [4]). That equation is Poincaré invariant,
and by its U(4) invariance, we can choose the sign deliberately: That makes

H =
∑

0≤µ≤3
γµpµ = m0

the candidate for the free relativistic Hamiltonian. Let’s prove it:
Because the Hamilton function is the rest mass, the conjugated time quantity
is the eigentime, and time derivatives will have to be taken w.r.t. the eigentime
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τ . H does not depend on time and location coordinates q0 = τ, . . . , q3, so,
with P := γ0p0 + · · · + γ3p3, Q := γ0q0 + · · · + γ3q3, and referring to [5] as
to derivatives of P : Ṗ := dP/dτ = −∂H/∂Q = 0. Further, ∂H/∂P = 1 =
(1/m0)P = Q̇ = dQ/dτ , so Q̇ = (1/m)P , which fits perfectly and at the same
time shows that L := m0Q̇ = m0(γ0 + · · ·+ γ3q̇3) is the associated Lagrange
function. In particular, we see that Lagrangian and Hamiltonian function are
very simple, and the field theortetic one will turn out again to be simple (as
opposed to what QFT is dealing with as their Lagrangian (see: [4])).
Before proceeding with more complex dynamical systems, it will pay out to
explore what is inside that Hamiltonian:

4. PCT and Spin
When Dirac proposed the Dirac equation, he noticed that the energy factor
γ0 preserves the energy of the upper two vector components, but inverts the
energy for the third and fouth components of χ ∈ C4. Applying the Platonic
philosophy that positive energetic things are above negative ones, he feared
that the positive parts could annihilate with the negative ones by falling
down, releasing twice their positive energy; in order to prevent this, he in-
vented the (infinite) Dirac sea.
As a result, he sacrificed the symmetry of time inversion, one of the highest
goods of physics before, for the sake of a simple belief:
Let me ask a seemingly profane question: What is the antiparticle of an elec-
tron? Of course, we all learnt that this is to be a positron, which is actually
a very inadequate answer: Let’s be more precise:
Particle annihilation is defined as process in which two colliding particles
completely dissolve or transform into an electromagnetic field. Given a parti-
cle, its antiparticle is defined as a particle that is able to annihilate with the
given particle. That said, a positron, which is defined as a charge inverted
electron, is not at all the electron’s antiparticle: Because spin and rest mass
are to be conserved besides the charge, and because the electromagnetic field
is known to have spin one, rest mass zero, and charge zero, charge and mass
must add to zero for the electron and positron in order to qualify as ea-
chothers’ antiparticles, and their spin must add to ±1, i.e.: the electron and
its antiparticle must have the same spin and they must be CT inversions of
eachother (unless 3rd particles are involved). That immediately conjures up
a major problem:
PCT is held to be a universal symmetry - under all conditions. However, we
must make sure that we can tell the PCT -inverted electron apart from the
electron itself. Because, if not, then the CT -inverted electron would be equiv-
alent to its P-inversion, which would a.o. mean that the T C-inverted electron
has opposite spin and therefore cannot be the qelectron’s antiparticle.

Let’s inspect the free particle’s Hamiltonian:
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Given H =
∑

0≤µ≤3 γµpµ, the energy is inverted through a transforma-
tion of the matrix by T := iγ1γ2γ3, which is an inversion, because T 2 = 14.
Similarly, P := γ0 inverts parity, as it transforms H to γ0p0−γ1−· · ·−γ3p3.
Finally, the charge e enters the energy E = p0 and the momentum p =
(p1, p2, p3) as a scalar factor of positive and negative value. So, charge inver-
sion (defined up to a factor ±1) is the product C = γ5 := iγ0 · · · γ3 = PT ,
and we get:

CPT = PT C = 14,

which is also the reason, why PCT always must be a symmetry: it’s the iden-
tity! So, what’s the antiparticle? Let’s dig a little deeper:

The 4×4-matrices operate on a vector space C4, and an orthonormal ba-
sis of this space can be chosen deliberately. Now, all it takes to disambiguate
the four states necessary that span C4, are two of the three anticommuting
inversions, and traditionally these are T and P. So, the first two components
are taken to be spanning the eigenspace of T to the eigenvalue +1, and the
other two span the eigenspace to the eigenvalue −1. That sounds good. The
problem only is that two observers A and B may disagree upon the sign of
the eigenvalue! Now, when A is filling all the negative states but a few ones,
B will be complainig to A for filling up what he suspects to be the upper
states, all the more fearing that everything will drop down!
Mathematically, it is clear that in an inversion symmetric model there is no
way to tell which part is positive and which negative, and every trial to do
so, cannot come to a good end.
Proceeding with the T P partioning of C4, it is standard to choose the first
component (1, 0 . . . , 0) to be of positive energy and positive parity (+,−),
the second one (+,−), the third (−,−), and the fourth (−,+). And, because
the awareness for parity first arose within the quantum-mechanical Stern-
Gerlach experiment, it was called spin ±1/2 and viewed as a new quantum
theoretical quantity - yet another misbelief:

P is the product of C and T , so, we can express P in terms of the other
two inversions, or, even smarter, we may partition C4 by the eigenvalues ±1
of T and C, (+,+), (+,−),(−,−), and (−,+) again.
That is interesting, because T and C differ just by the factor P, which affects
the spin, that in turn is subject of the Stern-Gerlach experiment: We would
expect an electron to strictly keep its sign of charge as well as its sign of
energy, however the Stern-Gerlach experiment appears to tell a different story.
Anyhow, the takeaway here is: in order to tell a positive energetic electron
apart from a negative energetic positron, one needs to measure its spin!

Remark 4.1. Whatever Lorentz transformation we apply to the free Hamil-
tonian, the right hand side in

∑
0≤µ≤3 γµpµ = m014 stays invariant. So it

is tempting to choose the value of m0 to be positive in all cases in order
to directly identify this value with the positive rest mass itself. That would
however break the energy and/or time inversion symmetry, which is, why I
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refrain from that. We’ll revisit this in a later section. That said, the next best
guess for the elecrtromagnetic rest mass will be its absolute value, |m0|.

To name things, let e++, e+−, e−−, and e−+ be an orthonormal basis
of C4. We let these represent what we esteem to be spanning the positive
negative energy/spin eigenstates according to the + and − signs. What we
are essentially doing by that, is to gauge the system. Because each of these
vectors is unique up to an arbitrary complex phase factor, these vectors rep-
resent states in the quantum theoretical terminology. Let’s say we have a
free, charged particle of positive energy and positive spin of energy momen-
tum (p0, . . . , p3). Then its motion in our gauge will have to be described
by He++ =

∑
0≤µ≤3 γµpµe++. And the motion of another free particle of

negative energy and negative spin will then be He−− =
∑

0≤µ≤3 γµp
′
µe−−.

When these two particles are electron and positron colliding overhead with
opposite momentum ±p, then the total rest energy is p0e++ + p0e−− =
γ0
(
m0(e++ + e−−) +

∑
1≤µ≤3 γµpµ(e++ − e−−)

)
, which is unequal zero, and

in fact has the absolute value
√

2
√
m2

0 + p2
1 + p2

2 + p2
3 > 0. Now, according

to special relativity, this rest energy must be kept constant. To think of any
way of dissolving this energy into a photonic field (of rest energy zero), just
means playing bogus with the underlying physical laws. As long as these hold,
particle annihilation is a fairy tale!

5. Particles in an External Potential
In non-relativistic classical mechanics, energy and momentum are indepen-
dent. Given Hamiltonian functions E and E′ for two particles or energy-
conserving mechanical systems, the composed system has the Hamilton func-
tion H = E+E′+U . Then, in case the potential U does not explicity depend
on time, the composed system has the marvelous property that its center of
mass moves freely with the total momentum. That means that how compli-
cated the internals of that system might be, the overall system is a free theory
(again). As a consequence, when we know that one of the two systems, E′ say,
is much bigger than the other, E, then the impact of E on E′ is neglectable,
E′ must be approximately overall free, and we can separate E′ out, which
leaves us E + U , where U now is the external potential.

For relativity we don’t have this principle in general; but we can impose
conditions on the interaction potential U , such that a similar result holds:
Let H =

∑
µ γµpµ and H ′ =

∑
µ γµp

′
µ be two relativisic particles spatially

apart, interacting with eachother through a potential V . Then H + H ′ =
m0 +m′0 + V , where V = U + U ′ splits into the sum of the of the potential
of p′ on p and of p on p′. I now demand that U is an harmonic functions
of
∑
µ γµ and U ′ an harmonic function of

∑
µ γµx

′
µ (see: [5]). That means

that U and U ′ possess complex extensions, denoted by U and U ′ again,
which are analytic in

∑
µ γµxµ. Hence U = V1 + V2 as well as U ′ = V ′1 +
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V ′2 , with V1(
∑
µ γµ(xµ + yµ)) =

∑
k≥0 c2k+1(

∑
µ γµyµ)2k+1, V2(

∑
µ γµ(xµ +

yµ)) =
∑
k≥0 c2k(

∑
µ γµyµ)2k, and analogously, V ′1 is the odd, and V ′2 the

even part of the power series expansion of V ′. But V1 = (
∑
µ γµxµ)W and

V ′1 = (
∑
µ γµxµ)W ′, where W and W ′ are even power series expansions of∑

µ γµxµ and
∑
µ γµx

′µ, respectively. Therefore, H+H ′ = m0 +m′0 +V +V ′

is equivalent to:∑
µ

γµ(pµ − xµW ) + (p′µ − x′µW ′) = m0 + V2 +m′0 + V ′2 .

So, by substituting pµ 7→ pµ − xµW , p′µ 7→ p′µ − xµW
′, m0 7→ m0 + V2,

and m′0 7→ m′0 + V ′2 , the composite system can be split into the sum of two
apparently free evolving systems. And, if one of the two systems is by its
energy much bigger than the other, the bigger one can be separated out
as an approximately free system of its own. Finally, I demand that Aµ :=
(1/pµ)xµW , (0 ≤ µ ≤ 3) are well-defined, so that, in particular, the external
fields should vanish when charges and mass converge zero. Then

∑
µ γµpµ(1−

Aµ) = m0 + V2, where A :=
∑
µ γµAµ inverts under the charge inversion

γ5 := iγ0 · · · γ3. Now, in order that the covariant Maxwell equations are to
be satisfied, the 2nd order derivative �A must be the 4-vector flux

∑
µ γµjµ,

which means that V2 must be identical zero.
So we end up with: ∑

µ

γµpµ(1−Aµ) = m0.

This describes the fields as a result of space-time curvature.

Remark 5.1. That way, the left hand side would be the Hamiltonian function
for that system, and when the pµ are being substituted by the generalized
velocities (1/m0)dxµ/dτ , it would be the Lagrangian function.

Two things can be learnt from the above: First, it shows that we can get
at what is called ”principle of minimal coupling”, just by assuming analyticity
of the sources as functions of

∑
µ γµxµ: it means that in order to describe a

charged particle in an external electromagnetic field, it suffices to replace the
free energy momentum p by p−A, where A is the electromagnetic 4-potential.
That is something, that the Maxwell equations themselves do not deliver, but
which is used all over in quantum-electrodynamics (see: [3, Vol.III, Ch. 21]
for a heuristical quantum-mechanical explanation; most often, it is common
to accept this as a ”de facto” principle).
The other takeaway is that mass, charge, and their potential fields can both
be integrated and appear to be two sides of the same coin as two equivalent
views of the same objective: Let’s drill deeper into it:
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6. Some mathematical background: Integration of Dirac
operators

Let φ :
∑
µ γµxµ 7→ φ(

∑
µ γµxµ) ∈ C be analytic as in [5]. Then, locally:

φ(
∑
µ γµ((x+ y)µ) =

∑
k≥0 ck(

∑
µ γµyµ)k; so,

Iφ :
∑
µ

γµ(x+ y)µ 7→
∑
k≥0

ck(k + 1)−1(
∑
µ

γµyµ)k+1

is a primitive of φ, i.e.: dIφ/d(
∑
µ γµxµ) = φ (see: [5]). As had been worked

out in that article, the underlying differentiability is very strict. In particular,
differentiability implies analyticity. The ”normal” Euclidean definition of dif-
ferentiabiliy relies on existence of the partial derivatives ∂µ, 0 ≤ µ ≤ 3, which
is weaker: Let φ be differentiable as defined in [5]. Then, clearly all partial
derivatives do exist and are continuous. (The converse is wrong, because a
non-constant function that has a vanishing partial derivative generally is not
differentiable in the above, stricter sense.)
However, we have for all n ∈ N: ∂µ(

∑
µ γµxµ)n = nγµ(

∑
µ γµxµ)n−1, and

therefore:

(γ0∂0 + · · ·+ γ3∂3)(
∑
µ

γµ∂µ)n

= −2n(
∑
µ

γµxµ)n−1 = −2 d

d(
∑
µ γµxµ) (

∑
µ

γµxµ)n,

hence
(
∑
µ

γµ∂µ)φ = −2 d

d(
∑
µ γµxµ)φ. (6.1)

Hence,
Iφ = −2(

∑
µ

γµ∂µ)−1φ, (6.2)

whenever φ is analytic w.r.t.
∑
µ γµxµ.

On the other hand,
∑
µ γµ∂µ has a bigger domain of definition:

D : Cl1,3(C)⊗ S ′(C4) 3 T 7→ (
∑
µ

γµ∂µ)T ∈ Cl1,3(C)⊗ S ′(R4)

is a continuous linear operator on the metrizable and complete vector space
Cl1,3(C) ⊗ S ′(R4) (see: [4]). Now, the Fourier transform F , defined as the
transpose of the mapping

F : Cl1,3(C)⊗ S(R4) 3 f

7→ (2π)−2
∫
e−i(x0y0+···+x3y3)f(y)dy0 · · · dy3 ∈ Cl1,3(C)⊗ S(R4)

is an isomorphism which maps D into the multiplication operator

D̂ : Cl1,3(C)⊗ S ′(R4) 3 T 7→ (2π)−2(
∑
µ

γµxµ)T ∈ Cl1,3(C)⊗ S ′(R4).



8 Hüttenbach

The operator D̂ has a nontrivial kernel consisting of all Tx ∈ Cl1,3(C)⊗
S ′(R4), with a continuous support contained in the light cone itself. (This
kernel does not contain all distributions with support in the light cone,
though: Dirac distributions are not contained in the kernel.) Nevertheless,
the kernel is a closed subspace of Cl1,3(C) ⊗ S ′(R4), and I call its preimage
kern(D) = F−1kern(D̂) the space of plane waves. As discussed in [4], it fol-
lows that the space Cl1,3(C)⊗S ′(R4) = ran(D)⊕kern(D) is the topological
direct sum of the range of D and its kernel, D is continuously invertable on
its range ran(D); then D−1 is defined modulo plane waves (because ran(D)
is isomorphic to the quotient space

(
Cl1,3(C)⊗ S ′(R4)

)
/kern(D)).

As a result:

Proposition 6.1. 1. The range of D, ran(D) equals the range ran(�) of
the d’Alembert operator �, likewise their kernels kern(D) = kern(�)
are equal, which is, why I called the elements of kern(D) ”plane waves”,
and their inverses, D−1 and �−1 are well-defined continuous operators
on ran(D).

2. The vector space Y of functions f :
∑
µ γµxµ → Cl1,3(C), which are

analytic w.r.t.
∑
µ γµxµ and have a polynomial growth is a subspace of

ran(D).

Now, it would be nice to have the space Y of analytic functions f :∑
µ γµxµ 7→ f(x) ∈ Cl1,3(C) be dense in ran(D), because then one could use

the power series of
∑
µ γµxµ as a universal tool to approximate the elements

of ran(D). But that turns out to be untrue:
The elements of Y have in common the spherical symmetry w.r.t. the

Minkowsi metrics, and this peculiar symmetry is preserved under the Fourier
transform F , since e−ix0y0+···+x3y3 can be rewritten as e−i(

∑
µ
γµxµ)(

∑
µ
γµyµ).

And so the closure of Y in ran(D) all consists elements with that symmetry,
which is a proper subspace of ran(D). But, since for given y ∈ R4 the function∑

µ

γµxµ 7→ e
−i(
∑

µ
γµxµ)(

∑
µ
γµyµ)

is in Y , the elements of ran(D) still can be written as an integral of these
functions. So, the closure of Y in ran(D) is a rich subspace to which I’ll
restrict in the rest of this document.

With φ ∈ Y being analytic, Iφ also is; so we can integrate another
time, and we get an analytic function I2φ, which is odd (i.e. its power series
expansion has only odd powers of

∑
µ γµyµ), if and only φ is. The converse

also holds: with φ also
∑
µ γµ∂µ (and �φ) are analytic.

7. Time Inversion, Causality, and the Solutions of the Wave
Equation

Let me begin with a perhaps striking statement:
There is no law in classical mechanics, that does imply the positivity of the
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inert mass: Take its basic equations - which typically are linear in the energy
E and the mass m - and multiply these on both sides with −1. Mathemat-
ically, it is an equivalent equation. Physically, what you end with by doing
so, is that you invert the energy along with all the inert masses. That means
that the inversion of mass and energy is a symmetry, it means that we can
in principle avoid negative masses and energy,but in no way that means that
negative masses must not exist at all!
Some physicists believe that negative masses must not exist, because negative
masses would accelerate by themselves, which is a fallacy:
Two observers A and A’ might disagree upon the sign of a particle of mass
m. While observer A might measure a positive mass +m, so that this mass
resists acceleration, because of a positive energy that has to be added, A’
will deduce the same resistance, because a negative energy will have to be
added! By no way A’ is wrong: he uses just a different scale. That is what
the symmetry of time-inversion really is about!

That said, let A =
∑
µ γµAµ be an electromagnetic 4-potential. Ac-

cording to the covariant Maxwell equations, �Aµ give us the sources jµ
of that field, where, of course, � := ∂2

0 − · · · − ∂2
3 is the d’Alembert or

wave operator. For a moment, let me assume there was a function K :
R4 × R4 3 (x, x′) 7→ K(x′, x) ∈ C, such that A(x′) =

∫
R4 j(x)d4x for ev-

ery sufficiently well-behaved j, then, given another well-behaved test current
j′, E(x′, x) := j′(x′)K(x′, x)j(x) will be the density of interacting energy-
momentum of the two interacting currents j′ and j, and for (t′ = x′0) ∈ R
then E(t′) :=

∫
R4×R4 j

′(t′ . . . , x′3)K(t′, . . . , x′3, x)j(x)d3x′d4x will be the total
energy-momentum of the current interaction at the time t′ (given that the
j, j′ vanish rapidly enough, such that the integral exists).
The mathematical solution of K is plain vanilla: K must satisfy �K(x′, x) =
δ(x − x′), where δ : f 7→ f(0) ∈ C is the Dirac distribution, and therefore
K(x′, x) = ψ(x′−x), where ψ satisfies �ψ ≡ 1, so ψ is the Fourier inverse of
ψ̂ : ξ 7→ (2π)−2 −1

ξ2
0−···−ξ2

3
δ(ξ).

Remark 7.1 (The Mathematics Behind That). The mathematical rationale
behind has already been dealt with in [4]: The d’Alembert operator � is a
continuous linear operator on the space S ′(R4) of tempered distributions, and
that space is a metrizable complete topological vector space, for which the
open-mapping theorem holds. Continuous linear operators A on these spaces
X have the property akin from finite dimensional linear algebra: X is the
(topological) direct sum X = kern(A)⊕ ran(A) of its kernel kern(A) and its
range ran(A), and A−1 : ran(A) → X/kern(A) exists and is a continuous,
linear operator. Now, the Fourier transform F is an isomorphism on S ′(R4),
therefore S ′(R4) = F(kern(�))⊕F(ran(�)), and in particular, F(kern(�))
is the space of all T ∈ S ′(R4) for which f · T = 0 with f : (x0, . . . , x3) 7→
x2

0−· · ·−x2
3. That is the subspace of all (tempered) distributions with support

contained in the light cone, and their Fourier inverses are what is called ”plane
waves”. So, �−1 is defined and continuous modulo plane waves.
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Well, the only problem is that since 125 years in theoretical physics
it is held that the correct solution was the Fourier inverse of ω̂ : ξ 7→
(−2πξ2

0)−2 1
1−ξ−1

0 (ξ2
1+ξ2

2+ξ2
3)1/2 δ(ξ), where the Fourier transform is defined as:

F : f 7→ (f̂ : χ 7→ f̂(χ) := (2π)−2 ∫ e−i(y0χ0+···+y3χ3)f(y)d4y) (see e.g. [3,
Vol.II, Ch.21]).
So, what goes wrong, and why?
Let’s look at ψ, we have:

1
ξ2
0 − · · · − ξ2

3
= 1

2ξ2
0(1 + ξ−1

0 (ξ2
1 + · · ·+ ξ2

3)1/2)
+ 1

2ξ2
0(1− ξ−1

0 (ξ2
1 + · · ·+ ξ2

3)1/2)
.

The right hand side is interpreted as the sum of an advanced wave, mov-
ing backwards in time, and a retarded wave, moving forward in time, where
the first term is considered to be physically impossible. So, the hope is that
twice the retarded wave would yield the physically correct solution.
It means, playing the same trick as in 4.1 and as at this section’s beginning:
Because the two terms are time-inversions of eachother, the symmetry of
time-inversion is taken as justification to solely rely on one ”positive” time
direction. Contrary to non-relativistic mechanics, however, there will be a
high price to pay: The right term with the retarded wave accounts only for
the action the charged source takes on the test charges (factored from the
left). The left term then is the action that the test charges take on the source,
and both are unequal! That is, one will loose the principle of ”actio equals
reactio” from non-relativistc mechanics. (Note that the left term not at all
enforces the action to be directed into the past: it is equivalent (up to spin)
to the action of the inverted charge directed to the future.)
Conversely, the sum of both terms is symmetric, and therefore, the sum not
only is the correct, more complete solution, but it also maintains that New-
tonian axiom.
Plus, the physical problem of picking the retarded wave as Green’s function,
is accompanied by a mathematical one:
For smooth functions f : R4 3 x→ R4 with support outside an ε-environment
{x ∈ R4 : |x2

0 − · · · − x2
3| < ε}, f(x)

x2
0−x2

1−···−x2
3

does not have problems with
x0 ≡ 0: f(x)

x2
0−···−x2

3
→ −f(0,x1,...,x3)

x2
1+···+x2

3
as x0 → 0 outside the ε-environment, and

it converges to zero within this environment. But f(x)x−1
0

1
x0−(x2

1−x2
2−x2

3)1/2

diverges for x0 → 0, unless f(0, x1, . . . , x3) ≡ 0 and ∂0f(0, x1, . . . , x3) ≡ 0
for all xk. That’s the mathematical origin of the infinite self-interaction: a
mistaken Green’s function!

In all, it was shown that physics does not get around the acceptance
of negative energy and masses (althemore, since up to parity they proved to
be equivalent to negative charges). That said, we’d be better off by describ-
ing mass/charge and the energy as complex numbers; the phase symmetry
then just reflects the symmetry of mass/charge inversion. This answers the
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question posed in 4.1: For now, the ”mass” in classical physics is to be the
absolute value of a complex, phase symmetric number.

Remark 7.2. It is not by accident that the sum of the two terms on the right
is just the Fourier transform of what Wheeler and Feynman came across in
1947, and since then became what is now known to be the Wheeler-Feynman
absorber theory (see e.g.: [11]), and in fact, as we saw above, the first term
cancels out the infinite self-interaction of the second.

For the sake of completeness, let’s write the solution out:

K(x′, x) = K
(
(t′, ~x′)− (t, ~x)

)
= −(8π)−1δ(t′ − t)

(
δ(t+ ‖~x′ − ~x‖) + δ(t− ‖~x′ − ~x‖)

) 1
‖~x′ − ~x‖

,

which may not be the best representation, though, since it is not covariant.
We can base that on the eigentime τ of our local coordinate system, wich
gives in covariant notation, putting yµ := x′µ − xµ:

K(x′(τ ′), x(τ)) = −(8π)−1δ(τ ′ − τ)
(
δ(τ +

√
yµyµ) + δ(τ −

√
yµyµ)

) 1
√
yµyµ

.

Let us now define two regions Ω1,Ω2 ⊂ R4 to be separated, if their closures
Ω̄1 and Ω̄2 satisfy: The Minkowski distance d(x, y) is unequal zero for all
x ∈ Ω̄1 and all y ∈ Ω̄2.

With this, let ρ and ρ′ be two charge densities with a disjoint support.
For any eigentime τ ∈ R let x(τ) ∈ R4 be the points on the hypersurface
Mτ ⊂ R4 of all points x whose Minkowsi distance d(x, 0) from the origin is
τ . Further, let’s assume that ρ and ρ′ are sufficiently smooth functions and
that the intersections of Mτ with the support of ρ and ρ′, Mτ ∪ supp(ρ) and
Mτ ∪ supp(ρ), are bounded. Then, with ρ̄ being the complex conjugate of ρ,∫

ρ̄′(τ, x′(τ ′))K(τ ′, x′(τ), τ, x(τ))ρ(τ, x(τ))dτd3x(τ)d3x′(τ)

exists for each τ ′ 6= 0 and is to be interpreted as interaction energy of the
two charge densities at eigentime τ ′. That renders the interaction energy of
two charges as a sequilinear form, and the charge interaction itself as a linear
operator on the charge source, and that linear operator happens to be �−1!
Let’s invent a nifty symbol for that:

< ρ′,�−1ρ >τ ′ :=∫
ρ̄′(τ ′, x(τ ′))K

(
(τ ′, x′(τ)), (τ, x(τ))ρ(τ, x(τ)

)
dτd3x(τ)d3x′(τ ′).

Now it will be getting interesting:
We can play the same game with the operator D :=

∑
µ γµ∂µ than was done

before with its square, �, where D is defined on Cl1,3(C) ⊗ S ′(R4), which
naturally contains S ′(R4) through S ′(R4) 3 T 7→ T14 (see: [4]): Fourier
transform it, take its inverse (defined on its range ran(D) which happens
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to be ran(�)), and Fourier invert the multiplication operator to become a
convolution operator, which is just D−1, the square root of �−1. So,

< ρ′,�−1ρ >τ=< ρ′, D−1D−1ρ >τ .

But that equation not only holds for ρ = j0 and ρ′0 = j′0, but also for the
components jk, j′k, (1 ≤ k ≤ 3). So, the (invariant) rest energy of the inter-
action of two currents j =

∑
µ γµjµ and j′ =

∑
µ γµj

′
µ at eigentime τ 6= 0

is:
< j′,�−1j >τ=< j′, D−1D−1j >τ=< D∗−1j′, D−1j >τ ,

where D∗−1 is the adjoint of D−1.
Now, what is D∗? Because γk∗ = −γk for k = 1, 2, 3, we have D∗ = −γ0∂0 +
· · ·+ γ3∂3, i.e.: D∗ is the time inversion of D, and therefore D−1∗ is the time
inversion of D−1. Then, observe, that D−1j is nothing but −(1/2) times the
mechanical action of j (due to Equation 6.2 and assuming analyticity of j).
Put together, we are given a fine rule, how to figure out the rest energy E(τ)
of interaction of two currents j and j′: Take the action of j, multiply that
with the time inverted action of j̄′, divide by 4, and integrate. (In case we
would refrain from taking the complex conjugate of j′, it would be simply
the negative integral over 1/4th of the product of the two actions.)

Sofar in this section, I constrained to electrical particles, only.
It is an unpleasant situation that general relativity did not yet return quant-
fiable results from which the gravitational field can be calculated. The only
relation one can rely upon is that for c→∞ the field has to converge to the
non-relativistic gravitational field.
That in mind, let’s pick the simplest possibility and posulate that - up to a
constant factor �Φ = −m0 holds, where m0 : R4 3 x 7→ m0(x) ∈ C is the
(complex and phase symmetric) rest mass density and Φ its complex valued
gravitational field. Then again, < D∗−1m′0τ,D

−1m0 >τ is the interaction
energy of two rest mass densities at eigentime τ 6= 0 up to a constant factor.

Summarizing, just by restricting to Maxwell’s equations, leaving out un-
proven and inadequate assumptions and assertions, we derived a field model,
which is roughly the relativisic extension of the Newtonian field model of
gravitation, and therefore is fundamentally different from the current one:
The interaction of two particle systems is one fourth of the product of the ac-
tion function of one particle systems times the time inverted action function
of the other. Because, for any action function S the derivative DS is the par-
ticle system itself, there is no field medium necessary and possible, and the
interaction is point to point. Action functions are not a complementary to the
particle view: they are their equivalent. There is no undeterminacy present.
A (closed) particle system in empty space - be it an electron or a supernova -
will retain its overall state and energy over time, although its equivalent ac-
tion function spreads at the speed of light. Interaction with another particle
system sets in, when their action functions meet the other system. On earth
the dissipation of radiation would be the consequence of the interaction of the
source with the abundant atoms in the atmosphere (and earth). Solar cells
then will not capture particles that have been freely emitted by the sun itself
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and would be lost otherwise, but they capture energy through their active
interaction with their environment, and the sun in special. And, whilst pho-
tons are not needed to explain electromagnetic interactions, gravitons won’t
be needed to explain gravitation, and both theories can hopefully be unified.

8. Quantum Mechanics
The equations of quantum mechanics derive in a straightforward manner from
the above:
Outside of external potentials, every particle of mass unequal zero, be it
neutral or not is made of charged subparticles and can reasonably be de-
scribed as a distribution J :=

∑
µ γµjµ ∈ Cl1,3(C) ⊗ S ′(R4) of energy den-

sitiy and flux of momentum. But not only that: Assuming that its energy
won’t be infinite, it must stay away from the light cone, which can be ex-
pressed mathematically by demanding J to be contained the range ran(D)
of D =

∑
µ γµ∂µ (see above). By Equation 6.2 and assuming J is the limit

of analytic functions in
∑
µ γµxµ, the action function IJ of J exists (as

a distribution). Let IJ be a continuous (or at least a locally integrable
function), and let S := Re(IJ) be the real part of IJ . Then e(i/~)S(x)

satisfies: J(x)e(i/~)S(x) = ~−1 d

d
∑

µ
γµixµ

e(i/~)S(x), where we can substitute

(−1/2)
∑
µ γµ∂µ for d/(d

∑
µ γµxµ).

Things get a bit more complicated, when external potentials come into play,
which typically have singularities, and the danger is that these aren’t tem-
pered distributions any more. However, in the case of electronymics and grav-
itation, the potentials are quite benevolent, as we saw in section 5: D−1, de-
fined on ran(D), is a convolution operator T 7→ f ∗ T , where, leaving out
constant factors, f : (

∑
µ γµxµ) 7→ 1∑

µ
γµxµ

is a meromorphic function in∑
µ γµxµ with a pole of order 1 in the origin. So, it is integrable for all paths

not surrounding the origin, and that would mean that the path would be
crossing the boundaries the time-like cone(s)! This gives us integrability of
the external potentials within the time-like cones, and we can write:

(J(x)−A(x))e(i/~)(S−Ψ)(x) = ~
d

d
∑
µ γµixµ

e(i/~)(S−Ψ)(x), (8.1)

where Ψ is the integral of the (vector) potential A =
∑
µ γµAµ.

That equation evidently contains the Dirac equation, which means that the
quantum mechanical equations of motion derive from classical theory. In fact,
it was first remarked by R.P. Feynman that, S(x) 7→ e(i/~)S(x) maps a clas-
sical action function S to a quantum mechanical wave e(i/~)S (which in turn
can be resolved into a (divergent) integral of states of a Hilbert space). It’s
only that Feynman made it slightly more complicated by integrating over the
functionals S, instead of the space-time variables

∑
µ γµxµ.
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We proved above that a mechanical system maps 1 − 1 to a quantum
theory under the following condition:

1. The energy-momentum flux J =
∑
µ γµjµ is contained in ran(D)

2. The external field is analytic in
∑
µ γµxµ in the interior of timelike

seperated light cones for the field sources.
That includes all classically known, long-ranged forces. That statement has
no uncertainty. (What then is the uncertainty principle good for?)

9. The Particle Field
Physical theories always stand or fall with the mathematical model they are
based upon. For a large number N of particles, it feels natural to base its dy-
namics on the mass density ρ(x0, . . . , x3) = j0(x) and the flux j1(x), . . . , j3(x)
of the system in spacetime x ∈ R4. This alone imposes severe restrictions on
the dynamical system itself: Let the N particles be moving freely. Each par-
ticle then is moving with its own constant energy momentum. But when we
overlay the motion of these particles, generally the paths of these particles
will cross (without any impact). Sounds easy, but: we end up with N(x)
particles in each point x, where each of these particles has its particular ve-
locity v1, . . . , vN(x), and similary a particular mass m1, . . . ,mN(x), whereas
j(x) only captures the average flux of energy-momentum, does not account
for particles overtaking others, and will therefore describe the expansion of
a set of free particles at a much slower rate than it actually would be! In
other words: j(x) adequately describes a dynamical system of N particles if
and only N(x) is either 0 or 1, which is an implicit assumption commonly
made in statistical physics. And also in electrodynamics, where the currents
homogeneously follow the conducting wire, this model is vastly applicable;
but, as seen above, it fails for the free particle system in general. It will be
too easy to do away with that simply by telling a free particle system to be
non-existent and therefore irrelevant: firstly, because a free theory is the fun-
dament for an iteracting one, and secondly, because superfluids, that behave
as a free particle system. It is not a solution to interpret j(x) in this case
as superposition of waves of different velocities: even then, one still has to
consider j(x) to be composed of a sum

∑
k jk(x) of j1(x), . . . , jk(x), . . . at

each x ∈ R4.
We should accept that generally j(x) either is the aggregated sum of energy-
momentum at x or that the underlying physical model is restricted to all
particles not to collide with eachother.

That said, a free particle field must retain its momentum along its flow
and its energy along its time. That means, its action integral which is the
path integral over along a path in space-time, must exist as a scalar function
Ψ, and jµ(x)dxµ therefore is the total differential dΨ(x) of Ψ. Given the con-
servation law,

∑
µ ∂jµ/∂xµ = 0, then

∑
µ ∂

2Ψ(x)/∂x2
µ = 0 follows. [6] then

extends the previous to closed, or adiabatic systems, i.e.: those that do not
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lose or gain energy from outer systems or space.

The cardinal question now is: Do closed systems exist in vacuum, or do
all systems leak energy over time, even in the absence of surrounding matter?
Whereas physical experience e.g. in view of the non-debris of our solar system
is in favour of the existency of closed systems, current quantum field theory
claims a leakage of energy, and by this conjures up the necessity to cope
with infinite energies of action and self-interaction. The motivation to do
so stems from Einstein’s (i.m.h.o. unfortunate) paper [2] on the inertness of
fields, in which he essentially implicitly partly revokes his famous paper on
special relativity of the same year: wheras in his former paper light was a
signal that travels in vacuum at the speed of light, which is not interacting
with the dynamical system, in the cited latter paper, he proposed that light
would take up energy from the dynamical system, thus leading to a recoil
and a leakage of energy of the dynamical system over time. (Interestingly,
this points to Einstein as the originator of the principle of undeterminacy.)
But Einstein’s statement was a hypothesis, and it isn’t even necessary at all:

As was shown above, Maxwell’s equation imply a point to point interac-
tion of a charge with a ”test” charge. Under earthly conditions, we practively
have many ”test” charges around the source charge that are all interacting
with the source charge. These test charges are termed ”material”, and clearly,
their interaction with the source lead to a dissipation of energy (which again
is why material specific constants µ and ε enter the Maxwell equations). But,
in a vacuum there will be no ”test” charge at all! In other words: No test
charge ⇒ no interaction ⇒ no photons!

Einstein’s assumption therefore not only proves to be unecessary, but
it is also inconsistent with Maxwell’s theory, plus it leads to infinities of self-
interaction. It would be simpler to restrict to what is necessary and to drop
that assumption.

10. Particle Annihilation Revisited
As can be looked up in any book on quantum field theory, particle annihilation
and creation are mathematically based on the model of a harmonic oscillator
(see: [12]):
Starting with the 1-dimensional Schrödinger equation(

− (~2/(2m))d2/dξ2) + (1/2)ω2ξ2)Ψ(ξ) = EΨ(ξ),

a substitution ξ =
√

~/(mω)q transforms it into

~/(2ω)
(
−d2/dq2 + q2)Ψ(q) = EΨ(q),

which becomes
~ω
(
a∗a+ 1/2

)
Ψ(q) = EΨ(q)
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with a∗ := (1/2)
(
−d/dq+ q

)
and a := (1/2)

(
d/dq+ q

)
being eachothers’ ad-

joints. The operators a∗a is called number operator, a∗ cration operator, and
a the annihilation operator, because the Schrödinger equation has the dis-
crete spectrum Ek = (k+ 1/2)~ω, (k ≥ 0), and a∗ and a map the eigenstates
Ψk to a∗Ψk =

√
k + 1Ψk+1 and aΨk+1 =

√
k + 1Ψk, respectively. Because

the ground state Ψ0 (for the eigenvalue E0 = ~ω/2) satisfies a∗aΨ0 = 0,
Ψ0 is associated with the vacuum, and in general Ψk then represents a k-
particle state. The hindsight for this association is that a formal substitution
of ξ 7→ φ(x) turns the Hamiltonian operator

−(~2/(2m))d2/dξ2) + (1/2)ω2ξ2,

of the Schrödinger equation we started with into an operator valued function
that is similar to

L(φ(x), ∂µφ(x)) := (−1/2)
(
(∂µφ(x))(∂µφ(x))−m2φ2(x)

)
,

and that function is associated with the Lagrangian of the free scalar theory,
because its Lagrange equation(s) yield(s) the Klein-Gordon equation (see: [4],
[9, 6.2], or [8, 4-4]).

- That is nothing but incorrect:
L(φ, ∂µφ) is not the energy density, but the (negative) intensity: E(x) =
i∂0φ(x) is the (spatial square-root) density of the total energy, P(x) =
−i(∂1, . . . , ∂3)φ(x) the (spatial square root) density of the kinetic energy
density, and M(x) = mφ(x) the (square root) density of the rest mass, so
that S :=

∫
L(φ(x), ∂µφ(x))d4x, therefore is not an action integral, but a

variation of energy squared times the time.

Remark 10.1. In [8, 4-4] H. Kleinert makes an interesting point: The vari-
ation δ

∫
Ω Ld

4x is by definition zero on the boundary Γ(Ω), so it is vari-
ationally irrelevant, therefore invariant w.r.t. integration by parts, hence:
δ
∫

(∂µφ)2 = −δ
∫
φ∂2

µφ, and therefore L and (1/2)(−φ�φ−m2φ2) share the
same extremals. Of course they do, since (1/2)(−φ�φ − m2φ2) = 0 is the
Klein-Gordon equation itself!
Again, it is seen that L is not what it’s supposed to be, namely an action
function of dimension energy by volume, but its intensity.
But, then there appears not to be a single reason, why not to look at φ as
being a state of square density of space-time and to interpret

< φ,−�φ >:= −
∫

(φ�φ)d4x

as the expectation value of the square of the rest energy!

We already worked out the correct classical Hamiltonian and Lagrangian
for the free theory in section 3, so we know that their quantum theoretical
counterparts are not self-adjoint operators (or operator valued functions),
but let’s just play the game of variation over the square of energy, beginning
with k particles, represented by an eigenvector Ψk for the the eigenvalue
Ek = (k + 1/2)~ω for some k > 0: Then, by annihilating that k-particle k
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times, we arrive at the ground state akΨk. The point now is that each Ek is
a square of ±

√
Ek, so the eigenspace consists of two states Ψk and Ψ−k that

in turn are projected into a single state Ψk by the symmetry of squaring.
However, the above relations a∗ = (1/2)

(
−d/dq+q

)
and a = (1/2)

(
d/dq+q

)
imply a∗Ψ−k ≡ −aΨk, so that the annihation of Ψ0 is equivalent to the cre-
ation of Ψ−1 = a∗Ψ−0, where Ψ−0 ≡ Ψ0.

It is as simple as this: Given k electrons, each time I add a proton, the
net charge reduces by 1 electron charge, and upon adding k + 1 protons, I
don’t get zero, but 2k+1 particles with the net charge of −1 electron charge.
Now, what will happen, when the protons are replaced by positrons?

The above Lagrangian formalism might be mistaken by the fact that it
calculates the variations of the square of energy instead of the energy, that
makes an interesting point: It inherently restates the symmetry of particles
of positive and negative energy: According to this symmetry, in a k-particle,
represented by Ψk, there will be no way to tell whether any of its k con-
stituents is actually energetically positive or negative! As a result, when the
addition of k positrons to a k-particle of electrons must give a 2k-particle,
and, neglecting the energy of mutual interaction, its energy is the square root
of the sum of the energy squares of the 2k particles.

In other words, a vacuum state as a unique ground state (which accord-
ing to the Wightman axioms even is to be cyclic), breaks with the funda-
mental physical principle of time symmetry: it is physically invalid! (Another
evident conflict is the Wightman axion holding that the field operators are
to have support contained only in the forward, positive energetic light cone.)

In particular, what the standard model conceives as ”vacuum” must
be matter already and cannot consist of nothing. It may be inferred that
the notion of a vacuum was perhaps understood as being such that the net
energy of its positive and negative energetic constituents are to sum up to
overall zero. But then the square energies still would not be zero, allowing
to count its particles and tell the local intensity of the vacuum ingredience,
and we would identify its square root as mass density, which then must have
a gravitational effect!

In all, we have shown that by theory, physics predicts a composite par-
ticle anti-particle pair with a rest mass unequal zero upon annihilation of a
particle and its antiparticle, an electron and a positron, say.
Althemore, it is astounding that nobody ever checked for that in an exper-
iment, especially when electron and positron had been claimed by quantum
field theorists to dissolve into an electromagnetic field. Sofar, this is nothing
but an unproven assumption.
And all it would need was a large basin of a cool liquid or gas, inject into it
annihilating electrons and positrons in overhead collisions, and check whether
the mass of the basin increases or not.
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Strangely, there is no mention of such a simple experiment ever to have been
carried out!

Moreover, tightly coupled particle-antiparticle pairs would be electro-
magnetically inactive, i.e.: dark, and at a whole, they would easily contribute
30% of cosmic mass. How can it be, that nations spend far more money in
the annual maintainance of the LHC in CERN, than it would cost a to carry
out a relatively cheap particle annihilation mass experiment?
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