FORCE AND GEOMETRY

Alberto Coe

albamv8@hotmail.com

Abstract.

Will describe a geometric link related with the ratio between two physical forces, gravitational force and electromagnetic force.

Keywords. Gravity, electromagnetism, geometry.

Let’s write gravitational force between proton and electron:

\[F_G = \frac{G e_p m_p}{r^2} \]

Newtonian constant of gravitation \(G = 6.6735 \times 10^{-11} \frac{m^3}{kg s^2} \)
Electron mass = \(9.109382 \times 10^{-31} \) Kg
Proton mass = \(1.67262 \times 10^{-27} \) Kg

Now the electromagnetic force between two units of electric charge:

\[F_{EM} = \frac{KQ^2}{r^2} \]

Coulomb’s constant = \(8.9875518 \times 10^9 \frac{N m^2}{C^2} \)
Electric charge = \(1.602176 \times 10^{-19} \) J

Since the distance (\(r \)) is the same in the two forces, shall ignore.

The comparison, ie the ratio, between gravitational force and electromagnetic force when proton and electron are used:

\[\frac{F_G}{F_{EM}} = 4.4074 \times 10^{-40} \]

Will see what type of geometric value matches the dimensionless value described before. First write the length’s geometric unit from which we start:

\[\text{it} = \left(\frac{1}{10^{34}} \right) \]

(in reference to the expression coined by the physicist J.A.Wheeler: “its from bits”)[1].
Note that one ‘it’ is close to the Planck scale = \(10^{-35}\)

Now let’s define a particular volume’s unit:

\[V_{it} = \frac{32}{3} \pi \left[N_A(it) \right]^4 \]

Or, in order to an easier visualization (fig 1):

\[V_{it} = \frac{4}{3} \pi \left[N_A(it) \right]^3 \left[8N_A(it) \right] \]

\(N_A\) refers to Avogadro’s number = 6.02214 \(x\) \(10^{23}\)

Resulting \(V_{it} = 4.4074 \times 10^{-40}\)

Therefore:

\[\frac{F_G}{F_{EM}} = V_{it} \]

Bibliography.