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Abstract

Some Lie-algebraic structures of three-dimensional quantum Nambu mechan-
ics are studied. From our result, we argue that the three-dimensional quan-
tum Nambu mechanics is a natural extension of the ordinary Heisenberg
quantum theory, and we give our insight that we can construct several can-
didates ”beyond the Heisenberg quantum theory”.

1 Introduction

Needless to say, the framework of Hamiltonian mechanics [2] is the basis
for theories of modern physics, including quantum mechanics, quantum field
theory, statistical physics, ..., so forth. The Nambu mechanics [3,9,14,19,24]
is a famous example for a generalization of the framework of Hamiltonian
mechanics, in which the preservation of a volume element expressed by the
canonical variables of a dynamical system is the main motive. One of the
important fact in the Hamiltonian mechanics from the context of this paper is
its symplectic structure expressed by a pair of canonical conjugate variables
(x, px), namely dx ∧ dpx or the Poisson bracket {x, px}, and its algebraic
extension gives a Heisenberg algebra [x, px] = −[px, x] = ±ih̄. The Nambu
mechanics introduces a canonical conjugate variables more than two, namely
a triplet (X, Y, Z), a quartet (X, Y, Z,W ), ..., so on. Thus, the algebraic
nature of the canonical variables in the framework of Nambu mechanics is
changed from that of the Hamiltonian mechanics, and then a Nambu bracket,
a generalization of a Poisson bracket, was introduced. Until now, a large part
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of several works on the Nambu mechanics in literature mainly concentrated
on algebras of the Nambu-Poisson brackets of classical Nambu mechanics. In
this paper, we investigate some mathematical aspects of algebraic nature of
the Nambu mechanics, especially its quantization.

This paper is organized as follows. In Sec. 2, we summarize some math-
ematical properties of the classical Nambu mechanics from the perspective
of dynamical systems. Sec. 3 contains the main results of this paper: The
quantization condition of quantum Nambu mechanics introduced by Nambu
himself is examined in detail. Sec. 4 will be devoted for some possible ap-
plications of the quantum Nambu mechanics, especially for a treatment of
neutrino oscillation. The summary of this paper and some interesting prob-
lems for our future works is given in Sec. 5.

2 Classical Theory

In this section, we give a short discussion on some mathematical structures
of classical Nambu mechanics. Main purpose here is to prepare a comparison
between classical and quantum theories of the Nambu mechanics. It is an
obvious fact that several aspects of theory of classical Hamilton ( conserva-
tive ) and dissipative mechanics are also valid in the framework of Nambu
mechanics [2,3,10,14,24]. Especially the general theory of dynamical systems
is useful for us to understand the structure of Nambu mechanics: The frame-
work of classical Nambu mechanics was firstly given by a generalization of
the classical Hamilton mechanics, while several notions of dissipative system
can also be introduced in the framework. A volume element dx1 ∧ · · · ∧ dxN
of a phase space is conserved in a Hamiltonian dynamics, while it shrinks
in a dissipative system under a time evolution. In the ordinary Hamiltonian
mechanical system, N must be an even number, while the Nambu mechanics
can have both the cases of even and odd numbers. These conditions are
written by the following Jacobian:

∂(x̃1, · · · , x̃N)

∂(x1, · · · , xN)
≤ 1. (1)

( Here, we give a Jacobian of a case of continuous dynamics, though we can
also consider a discrete dynamical system = cellular automata, under the
same manner. ) Here, the left-hand side is smaller than 1 in a dissipative
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case, while it is exactly kept as 1 in a conservative case. Equivalently, a
continuity equation ∂ν ẋ

ν = 0 holds in a conservative system. Usually, a
transformation ( time evolution ) of conservative case is caused by a group
action of symplectic map Sp(V ) ( V : a vector space ) which preserves area
and orientation. While, a Nambu mechanics can takes a set of canonical
variables of odd number, thus a symplectic group cannot be utilized for
a transformation of volume element naively. The Jacobian given above is
known as a Nambu bracket in literature [9,14,24]. Usually, a chaotic behavior
will be found in a dissipative case under a bifurcation with respect to the
variation of a parameter of the dynamical system: Such a bifurcation can
takes place also in a dissipative Nambu mechanics [3]. The general form
of classical Nambu mechanics, containing both conservative and dissipative
cases, is given by

d

dt
F =

∂

∂t
F +

∂(F,H1 · · · , HN−1)

∂(x1, x2, · · · , xN)
. (2)

( F : a function ) and especially [14],

d

dt
xl =

∂(xl, H1 · · · , HN−1)

∂(x1, x2, · · · , xN)
. (3)

Then, an equilibrium ( fixed point ) is defined by

0 =
∂(xl, H1 · · · , HN−1)

∂(x1, x2, · · · , xN)
. (4)

Here, (H1, · · · , HN−1) are usually called as Hamiltonians.

For example, the types of orbits are classified as (i) ( multiply ) periodic
and (ii) aperiodic, and the phase space of a dynamical system is divided
by those orbits [2,10]. In both of the cases of Hamilton and dissipative
dynamical systems, a region of chaos consists with unstable aperiodic orbits
( non-quasiperiodic system = chaos ): In a dissipative case, the phase space
has a basin B and an orbit inside it approaches to an attractor A ( a kind
of invariant/symmetric set at t → ∞ such that f t · A = A, f t ∈ G, such as
a fixed point, a limit cycle, a torus, and G can be a Lie group ) at the limit
t → ∞ of a time-evolution of a sequence of a mapping: A =

⋂∞
n=0 f

(n)B (
f is a mapping of the dynamical system ). In a conservative case, invariant
tori are embedded into chaotic regions. An N -dimensional Nambu mechanics
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may have an invariant torus TN in its phase space. For example, a three-
dimensional Nambu mechanics has three canonical variables (X, Y, Z), and a
(quasi)periodic orbit of them becomes a ”hyper-torus” T3, while the chaotic
region will be found in the region between tori in the phase space. One can
consider the Thom’s toral automorphism for such a torus, M : TN → TN

( M : an N × N matrix ). If M has an eigenvalue µ with |µ| > 1, then a
chaotic behavior takes place in the automorphism. A Lyapunov exponent λ
is defined by [10]

λ = lim
T→∞

1

T
ln
∣∣∣(DXf

(T ))δX
∣∣∣ (5)

( δX: a small deviation between initial states ), and it corresponds to an
eigenvalue of the Jacobian matrix defined above: The case where a Lyapunov
exponent is nonzero ( an eigenvalue of Jacobian does not have its value in
a unit circle ) is called as hyperbolic, and a chaos may take place if the
Lyapunov exponent is positive. For example, in a three-dimensional case
(X, Y, Z), the Jacobian is a 3 × 3 matrix, and its eigenvalues are given by
one real number with two real or a pair of complex conjugates. Thus, if we
express eigenvalues of the Jacobian in the three-dimensional case such that
(a, reiθ, re−iθ) ( a, r, θ ∈ R1 ), then a torus will be obtained by a = r = 1,
while the eigenvalues must deviate from them to give a chaotic orbit. In
general, G of a transformation of canonical variables GX = X′ belongs to
SL(N,R) in a conservative case ( X is an N -dimensional linear space ), and
the mapping of G can cause a chaos when it is hyperbolic. From the Pesin
formula, we know that the production rate of Kolmogolov-Sinai entropy is
given by a sum of positive Lyapunov exponents: This must valid also in the
classical Nambu mechanics. It is a known fact that a topological entropy
htop(f) of the map f : M → M ( M : a manifold ) gives the volume growth
rate. The definition of ergodicity of classical Nambu mechanics is also the
same with the usual dynamical system:

ρ(f) =
∫
f(X)ρ(dX) = lim

T→∞

1

T

∫ T

0
f(X(t))dt. (6)

Namely, if the measure ρ is indecomposable, the system is ergodic. Let
X(l) = f (l)X(0) be a chaotic orbit of a Nambu mechanics, and let F(X(l))
be a function of the chaotic orbit. An observable of a chaotic system of
the classical Nambu mechanics is defined by the same manner of theory of
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dynamical systems:

〈F(X)〉 = lim
N→∞

1

N

N−1∑
l=0

F(X(l)). (7)

3 Quantum Theory

In this section, we will examine quantum Nambu mechanics, especially its
three-dimensional case. It is given by canonical variables (X1, X2, X3) with
the following quantization condition called as a quantum Nambu bracket [9,14,24]:

[Xσ(1), Xσ(3), Xσ(3)] = sgn(σ)[X1, X2, X3], (8)

[X1, X2, X3] = [X1, X2]X3 + [X2, X3]X1 + [X3, X1]X2 = ±ih̄. (9)

Namely, it is defined as a total sum of cyclic permutations ( a Galois group
) of [Xσ(1), Xσ(2)]Xσ(3) in the three-dimension. To investigate this algebraic
relation, we assume the triplet (X, Y, Z) gives a three-dimensional Lie algebra
Lie(G) ( G: a Lie group ). Then the algebra which the Nambu bracket
belongs is determined by the Lie brackets [X, Y ], [Y, Z], and [Z,X]. Then
the Nambu bracket acquires the following expression of structure constants
of the Lie algebra, especially in Lie(SU(2)) or Lie(SO(3)):

[X1, X2, X3] = if123 + if231 + if312, (10)

for [Xi, Xj] = ifijkXk ( here, a summation convention has been used ).
Namely, this is an adjoint representation. Let us write the Nambu bracket
as [X1, X2, X3] = D, where the case D ∈Lie(G). From the following relation,

Ad(G)D = Ad(G)([X1, X2, X3]) = [Ad(G)X1,Ad(G)X2,Ad(G)X3], (11)

we find Ad(G)D = D must holds for a consistent quantization. This fact
indicates that the quantization of Nambu bracket is a choice of an adjoint
orbit in G, and it defines a homogeneous space G/(Ad(G)D = D): In that
case, the dynamical system is defined over the homogeneous space, and one
can say it is a kind of symmetry breaking. ( Namely, a symmetry breaking
by a quantization condition. ) Note that D given here does not have to
be a c-number, can take a matrix of Lie(G). It should also be mentioned
that a quantum theory gives an observable after taking an expectation value
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of a (Nambu-)Heisenberg equation of motion, not an algebra itself. An-
other choice of D is a Casimir element of the universal enveloping algebra of
Lie(G) [14]. A characteristic feature of the quantum Nambu bracket is its
symplectic structure. Since

ηXY = [X, Y ] = −[Y,X], ηY Z = [Y, Z] = −[Z, Y ], ηZX = [Z,X] = −[X,Z],

(12)

the quantum Nambu bracket contains three symplectic structures. ( Note
that this fact is also valid in the classical Nambu mechanics, since it consists
with the algebra of dX∧dY ∧dZ ( for example, the Nambu-Poisson brackets,
the volume form, ... ). On the contrary, the canonical Hamiltonian mechanics
only has dX∧dY pairwisely in the space of total canonical variables. ) Let us
introduce the notion of symplectic homogeneous space (G,H,Ω), in which G
is a semisimple connected Lie group, and H is a closed connected subgroup,
while Ω is a G-invariant symplectic form [1,7,8]. It is known fact that a
symplectic homogeneous space can be constructed by an adjoint orbit [1,7]:

OG(Z) = {g ∈ G|Ad(g)Z = Z}, (13)

with a symplectic form given by the Killing form defined as follows:

ΩZ = −K(Z, [X, Y ]). (14)

Here, ΩZ is defined for a fixed Z, and G-invariant from its definition. Then
the coset G/OG(Z) becomes a symplectic homogeneous space, with the fol-
lowing group extension:

1→ OG(Z)→ G→ G/OG(Z)→ 1. (15)

Usually, Z is chosen from the Cartan subalgebra of Lie(G), though we can
consider other generators due to isotropy of the space of Lie algebra. For ex-
ample [7], in the case ofG = SL(2,R), a triple (G,H,Ω) = (SL(2,R), SO(2),ΩZ)
is obtained for Z = iσ2, while (G,H,Ω) = (SL(2,R), SO(1, 1),ΩZ) is ob-
tained for Z = σ3. Therefore, the three-dimensional quantum Nambu bracket
implicitly determines three symplectic forms,

ΩX = −K(X, [Y, Z]), ΩY = −K(Y, [Z,X]), ΩZ = −K(Z, [X, Y ]), (16)

and three homogeneous spaces by the projections,

πX : G→ G/OG(X), πY : G→ G/OG(Y ), πZ : G→ G/OG(Z). (17)
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Thus, a three-dimensional vectorial nature of the quantum Nambu bracket
is understood. In fact, by the definition, the Nambu bracket

[X, Y, Z] = [X, Y ]Z + [Y, Z]X + [Z,X]Y (18)

contains three Lie brackets along with three orthogonal coordinates X, Y, Z.
The Nambu bracket is given by an inner product of those Lie brackets and
coordinates, namely X ·X∧X ( X = (X, Y, Z) ): The geometric meaning of
this quantity is well-known.

From the observation of classical and quantum cases of three-dimensional
Nambu brackets, we have understood that they have three symplectic struc-
tures we have to consider simultaneously for a canonical triplet. On the con-
trary, the ordinary Hamiltonian mechanics has only one symplectice structure
for a canonical pair. There are several famous works for deformation quan-
tizations of Poisson structures ( namely, Hamiltonian mechanical systems )
in literature [6,11]. Thus, one can consider the following *-product for a
deformation quantization:

f(X, Y, Z) ∗ g(X, Y, Z)

= f(X, Y, Z) exp

[
ν
(←−
∂X
−→
∂Y −

←−
∂Y
−→
∂X
)

+ν
(←−
∂Y
−→
∂Z −

←−
∂Z
−→
∂Y
)

+ ν
(←−
∂Z
−→
∂X −

←−
∂X
−→
∂Z
)]
g(X, Y, Z). (19)

Namely, the quantum structures will be introduced into the three directions
( they are orthogonal with each other ) indicated by the projections of sym-
plectic structures discussed above. It is interesting for us to investigate an
equivalence class of our *-product: In the usual case of deformation quanti-
zation of a Poisson manifold, a Hochschild cohomology provides a main tool
to express an equivalence class. Such a systematic investigation is our plan
of future work, and it might give us several variants of quantum theory, as
we will mention soon in this paper. Since the three-dimensional quantum
Nambu mechanical system (X, Y, Z) has three symplectic structures in the
Nambu bracket, one could say it is isotropic in S2. While, due to the fact that
the Heisenberg-type quantum mechanics shares some mathematical nature
with the canonical Hamiltonian mechanics, the set of dynamical variables is
pairwisely decomposed: Thus it could be said that the Heisenberg quantum
theory is anisotropically ( S1 ), embedded in the quantum Nambu mechanics.
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According to the work of Nambu himself, we choose the following dynam-
ical system as the three-dimensional quantum Nambu mechanics [14]:

i
d

dt
F = [F,H1, H2]. (20)

An equilibrium ( fixed point ) of quantum Nambu mechanics in the phase
space is determined by

0 = [X, H1, H2]. (21)

In classical Nambu mechanics, a second-order Casimir element is frequently
used for H1 or H2, though one of (H1, H2) must not be a Casimir element
to make the quantum theory of Nambu mechanics non-trivial. Since we
do not assume it is the case that the quantum theory of Nambu mechanics
always has its classical counterpart, we have a large freedom for our choice for
Hamiltonians H1 and H2. ( Of course, it is natural to assume [H1, H2] = 0
for a physical theory. ) Our logic for constructing a system of quantum
Nambu mechanics is summarized as follows: (1) Find a three-dimensional
Lie algebra Lie(G) which can satisfy the quantization of the Nambu bracket
[X, Y, Z], X = (X, Y, Z) ∈ Lie(G). (2) Then we construct a Hamiltonian
H and a Casimir element C defined by X = (X, Y, Z). (3) The dynamical
system is, for example, defined by

ih̄
d

dt
X = [X, H(X), C(X)]. (22)

Namely, we have arrived at the notion that a quantum theory is given by a
Lie algebra ( such as Lie(SU(2)), Lie(SL(2,R)), Lie(H3), ... ) which has the
same dimension with the number of canonical variables. The usual quantum
mechanics of Heisenberg can be interpreted as a special case of those possi-
bilities of quantum theories, i.e., it chooses Lie(H3) for constructing a theory.
An interesting example is the Holstein-Primakoff transformation, which gives
an approximation of spin variables of Lie(SU(2)) by creation/annihilation op-
erators a, a† of the Heisenberg algebra Lie(H3). For example, the conformal
algebra of Lie(SL(2,R)) is given by,

[L, T ] = T, [H,L] = H, [H,T ] =
1

2
L. (23)

Here, L, T and H are algebra generators of dilatation, special conformal
transformation, and translation, respectively. It can satisfy the quantization
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condition of the three-dimensional Nambu bracket. Moreover, if the VEV of
them becomes

〈[L, T ]〉 = 0, 〈[H,L]〉 = 0, 〈[H,T ]〉 =
1

2
〈L〉 6= 0 (24)

in a quantum field theory, a Heisenberg algebra is obtained and it is a situ-
ation of the anomalous Nambu-Goldstone theorem [18,19].

An interesting viewpoint will be obtained from the perspective of quater-
nions: What we will argue here is that the map q̃ : (X, Y, Z) ∈ R3 →
(X, Y, Z) ∈ H1 is just a quantization. A quaternion q is defined by

q = a+ ib+ jc+ kd, H ≡ {a+ ib+ jc+ kd|a, b, c, d ∈ R}. (25)

Here, the following relations are satisfied:

i2 = j2 = k2 = −1, ij = −ji = k, jk = −kj = i, ki = −ik = j. (26)

Thus, the Nambu bracket of quaternions becomes

[i, j, k] = 2(i2 + j2 + k2) = −6. (27)

Thus, the algebra of quantization condition of the Nambu bracket [X, Y, Z] =
±ih̄ is isomorphic with the quaternion algebra of (i, j, k). ( An interesting fact
is that both of the Hamiltonian mechanics and quaternions ware discovered
by the Irish genius mathematician William Rowan Hamilton. ) If we express
the algebra of Nambu bracket by LieSU(2) ( similar results will be obtained
by Lie(SO(3)), or a conformal algebra of Lie(SL(2,R)) ),

[X, Y, Z] = i(X2 + Y 2 + Z2) = ±ih̄. (28)

Thus, the Nambu bracket defines a unit sphere X2 +Y 2 +Z2 = 1, in the case
of positive sign with h̄ > 0. Hence, a three-dimensional quantum Nambu
mechanics naturally has a structure of conformal geometry. Thus, if a three-
dimensional quantum Nambu mechanics gives a ”quantum chaos”, it might
be found as an unstable aperiodic orbit over a conformal geometry S2. An
interesting subject is how we can understand the Ehrenfest theorem in the
three-dimensional quantum Nambu mechanics, which might be useful to un-
derstand ”quantum chaos” and dissipative dynamics of quantum Nambu me-
chanics. The equation of unit sphere can be regarded as a projective space,
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and we obtain a homogeneous equation U2 − X2 − Y 2 − Z2 = 0. Namely,
it is a ”light-cone” in theory of relativity. Thus, we can say SO(3, 1) or
SO(4) acts on the quantization condition of Nambu bracket implicitly. If
we consider a multiple Nambu triplets ((X1, Y1, Z1), · · · , (XN , YN , ZN)), then

the coset SO(4N)/(

N︷ ︸︸ ︷
SO(4)⊗ · · · ⊗ SO(4)) is found via a set of homogeneous

equations. An interesting fact is that each factor of SO(4) of this coset con-
tains a set of triple-symplectic structures. It is known from the Ostrowski
theorem that only R, C, Fq and Qp are locally compact topological field,
and H is not contained in it. Thus, a translation from classical to quantum
Nambu mechanics by quaternions seems to demand us to change the nature
of topological characters of number fields. ( A quantum theory may change
an algebra and/or the nature of topological space of the classical counter-
part. ) Since the quantization condition of Nambu mechanics has a nature
of quaternions, it is interesting for us to find a Fourier transform defined over
H, to give an appropriate definition of quantum numbers of quantum vari-
ables via a Pontrjagin-type duality, and also to find a Weyl representation
for the quantum Nambu mechanics. ( Such a Fourier transform ( integral
transform ) over H relates with Weil representations [25], harmonic analysis,
automorphic representations, and arithmetic of quadratic forms [26]. ) A
Weyl representation might be found from the ”group element”,

g(α, β, γ) = e−iαXe−jβY e−kγZ . (29)

A systematic investigation of quaternionic aspects of the algebra and group
of quantum Nambu brackets will be given by our future work, possibly by
employing methods of quaternionic geometry, hyper-Kähler geometry, and
quaternionic geometry. Since quaternions are utilized for expressions of ro-
tations of R3 and R4, it seems natural that an Euler top [14] appears as a
typical example of the Nambu mechanics. Moreover, it should be mentioned
that the Clifford algebra γµγν + γνγµ = 2gµν ( gµν = diag(1,−1,−1,−1)
) is isomorphic with the algebra defined for a quaternion, by the following
correspondences:

γ0 ↔ 1, γ1 ↔ i, γ2 ↔ j, γ3 ↔ k, (30)

q = v01 + v1i+ v2j + v3k = γνvν . (31)

Thus, a spin group also be introduced in our prescription of quantization of
Nambu mechanics. It should be mentioned that the quaternion-like algebra of
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the quantum Nambu bracket can also be expressed by Lie(Sp(1)). We know
the following well-known relation, Sp(1) ' Spin(3) ⊂ Sp(1)⊗Sp(1) ' Sp(4),
and Spin(3) is a covering group of SO(3). Thus, Sp(1) ' SO(3) acts on the
quaternion representation of the Nambu triplet (X, Y, Z). Needless to say,
SO(3) is a Wigner little group of the Lorentz group SO(3, 1), and isomorphic
with a subalgebra of the Clifford algebra. Another mathematically interest-
ing fact is found from the fact that H1 ( or more generally, H1\{0}/Γ where
Γ is a finite subgroup of SU(2) ) is a hyper-Kähler manifold. Because we
mainly need to satisfy the quantization condition [X, Y, Z] = ±ih̄ for con-
structing a quantum Nambu mechanical system, and it can be achieved by
the quaternionic algebra, the domain of (X, Y, Z) has various choices: An ex-
ample for it is the K3 surface. When a 4n-dimensional manifold M is almost
quaternionic, a subbundle of End(TM) is expressed by a basis defined by
the triplet of almost complex structures (I, J,K) at any point x ∈ M . The
triplet forms the quaternionic algebra. Hence one can take a Nambu triplet
(X, Y, Z) over a Kähler manifold of almost quaternionic structure. From
our observation, the isomorphism (X1, X2, Y3) ∼ (i, j, k) can be utilized for
constructing quantum theory of Nambu mechanics. Thus,

X1 = x1i+ y1j + z1k, (32)

X2 = x2i+ y2j + z2k, (33)

X3 = x3i+ y3j + z3k, (34)

H1(H) = h101 + h11i+ h12j + h13k, (35)

H2(H) = h201 + h21i+ h22j + h23k, (36)

ih̄
d

dt
Xl = [Xl, H1(H), H2(H)]. (37)

The right-hand side of the Nambu-Heisenberg dynamical equation can be
expanded further by utilizing the algebra of quaternions. A Hilbert space for
this dynamical system may be subjected to an action of quaternion algebra.
In the axiomatic quantum field theory, a local field operator is defined by

ψ(f) =
∫
d3xψ(x)f(x), (nonrelativistic), (38)

ψ(f) =
∫
d4xψ(x)f(x), (relativistic). (39)

Here, f is a cutoff function defined over three- ( nonrelativistic ) and four- (
relativistic ) dimensional supports. Because a statistical algebra of a bosonic
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case is commutative,

ψ(x) ∝ φ(x)⊗H, (40)

ψ(x) ∝ φ(x)⊗H, (41)

can satisfy the quantization condition of Nambu bracket. In this case, a
quantum field is given in terms of a triplet:

Φ(x) = φ1(x)i+ φ2(x)j + φ3k. (42)

A partition function of classical Nambu mechanics takes the following
form [14,19]:

Z =
∫ dXdY dZ

(2π)3/2
e−β1H1−β2H2 , dXdY dZ ∈ R3. (43)

If we use the quaternion representation of the quantum Nambu triplet (X, Y, Z) ∈
H, then the quantum theory might be given by the following path integral:

Z ∼
∫
DXDYDZ exp(−S(H1(H) +H2(H))), dXdY dZ ∈ H. (44)

Here, S indicates an action derived from the Hamiltonians (H1, H2) defined
over the quaternion H. In our perspective, a transform from dXdY dZ ∈
R3 → dXdY dZ ∈ H is a quantization. ( A possibility of deformation quan-
tization of a function space over H was considered by the author in Ref. [16].
It was indicated that an associativity of the algebra of deformation quanti-
zation seems to be broken. )

Let us examine the uncertainty relation in the three-dimensional quantum
Nambu mechanics. By the following definitions,

(∆A)2 = 〈(A− 〈A〉)Ψ|(A− 〈A〉)Ψ〉, (45)

(∆B)2 = 〈(B − 〈B〉)Ψ|(B − 〈B〉)Ψ〉, (46)

(∆C)2 = 〈(C − 〈C〉)Ψ|(C − 〈C〉)Ψ〉, (47)

( A,B,C ∈ Lie(G); canonical variables ), we get

∆A∆B∆C ≥
√

1

(2i)3
〈[A,B]〉〈[B,C]〉〈[C,A]〉. (48)
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Here, we have used the ordinary Heisenberg uncertainty relations ( we can
call them as the two-dimensional uncertainty relation from the context of
this paper ) for any pair of (A,B,C) obtained by using the Cauchy-Schwarz
inequality:

∆A∆B ≥ 1

2i
〈[A,B]〉, (49)

∆B∆C ≥ 1

2i
〈[B,C]〉, (50)

∆C∆A ≥ 1

2i
〈[C,A]〉. (51)

For example, if we apply the ferromagnetic case 〈S1〉 = 〈S2〉 = 0, 〈S3〉 6= 0,
then we yield ∆S1∆S2∆S3 ≥ 0. This indicates that ∆X1∆X2∆X3 ≥ 0
generically holds in a three-dimensional Heisenberg algebra: This fact is a
direct result of symplectic structure of Hamiltonian mechanics where a set of
dynamical variables are decomposed into conjugate pairs. Since the Nambu
mechanics is given by a triplet of canonical variables, there may be another
quantum uncertainty relation. There is a systematic classification of three-
dimensional Poisson-Lie algebra in literature [4], and the result is

A3,1 : [e1, e2] = 0, [e2, e3] = e1, [e3, e1] = 0, (52)

A3,2 : [e1, e2] = 0, [e2, e3] = e1 + e2, [e3, e1] = −e1, (53)

A3,3 : [e1, e2] = 0, [e2, e3] = e2, [e3, e1] = −e1, (54)

A3,4 : [e1, e2] = 0, [e2, e3] = −e2, [e3, e1] = −e1, (55)

A3,5 : [e1, e2] = 0, [e2, e3] = ρe2, [e3, e1] = −e1, (0 < |ρ| < 1), (56)

A3,6 : [e1, e2] = 0, [e2, e3] = e1, [e3, e1] = e2, (57)

A3,7 : [e1, e2] = 0, [e2, e3] = e1 + µe2, [e3, e1] = −µe1 + e2, (µ > 0)(58)

A3,8 : [e1, e2] = e1, [e2, e3] = e3, [e3, e1] = 2e2, (59)

A3,9 : [e1, e2] = e3, [e2, e3] = e1, [e3, e1] = e2. (60)

Here, A3,1 corresponds to the three-dimensional Heisenberg algebra Lie(H3),
while A3,8 and A3,9 are included in Lie(SL(2,R)) and Lie(SO(3)), respec-
tively. Thus, at least from the result of the classification, we recognize
that only Lie(SL(2,R)) and Lie(SO(3)) ( LieSU(2) ) can have three non-
vanishing Lie brackets [X, Y ] 6= 0, [Y, Z] 6= 0, and [Z,X] 6= 0, can have finite
( non-zero ) uncertainty relations, ∆X1∆X2∆X3 ≥ const. > 0. Of course,
this result does not imply that a state of minimal uncertainty ( such as a

13



coherent state of harmonic oscillator in the ordinary Heisenberg quantum
mechanics ) in a quantum theory of three canonical variables expressed by a
Lie algebra A3,l ( l = 1, · · · , 7 ) has ∆X = 0, ∆Y = 0, ∆Z = 0. For example,
in the case of A3,2,

∆e1∆e3 ≥
1

2
|〈e1〉|, ∆e2∆e3 ≥

1

2
|〈e1 + e2〉|, ∆e3∆e1 ≥ 0, (61)

are obtained. The relations of [X, Y ] 6= 0, [Y, Z] 6= 0, and [Z,X] 6= 0 give a
condition for a manifold in which the set of canonical variables (X, Y, Z) is
defined. From these observations, we argue the quantization via quaternions
is a quite natural method for a three-dimensional ( the canonical dimension
is three ) quantum Nambu mechanical system, and it puts the quantum
Nambu mechanics on a place where it is not a simple generalization of the
ordinary Heisenberg-type quantum theory, with obtaining the perspective to
construct several quantum theories different from the ordinary Heisenberg
quantum theory. The dynamical equation consistent with the Heisenberg
algebra Lie(H3) ( namely, A3,1 given above ) is

i〈e1〉
d

dt
e2 = [e2, H(e2, e3)], (62)

i〈e1〉
d

dt
e3 = [e3, H(e2, e3)]. (63)

By using the result of Poisson-Lie algebra, a systematic reduction of three-
dimensional quantum Nambu mechanics can be performed, and we may yield
several theories of quantum mechanics. Then, we may find new perspectives
on quantum information theory, quantum communications, quantum entan-
glement, quantum algorithm, and quantum teleportation.

The quantum uncertainty is important for us to understand the ground
state of a spin system. In a spin system of magnetism, we frequently meet
with a situation where a quantum uncertainty of dynamical degrees of free-
dom gives a ground state which is more ”randomized” ( quantum fluctuation
), and it has the energy lower than that of a classically ordered state. If there
is a physical system which is described by the framework of the quantum
Nambu mechanics, and which shows a phase transition, then the Nambu-
mechanical quantum uncertainty might affect the nature of the ground state
of the system.
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4 On Dynamical Models of Neutrino Oscilla-

tions

First, we discuss general mathematical aspects of neutrino oscillations. Quite
often, the Schrödinger equation for neutrino oscillation is defined as follows:

i
d

dt
|ψ〉 = H|ψ〉, (64)

|ψ〉 = (νe, νµ, ντ ), (65)

H = U−1MU + V , (66)

M = diag(E1, E2, E3), (67)

V = diag(V (x), 0, 0). (68)

Here, U is the so-called PMNS ( Pontecorvo-Maki-Nakagawa-Sakata ) ma-
trix [22,12] of a flavor mixing of neutrino sector which belongs to SO(3) as
a group element, and V (x) is a potential depends on the number of elec-
trons at a point x of the environment. In a more mathematical form, we
can rewrite the essential part of them, with taking into account a possible
collective neutrino oscillation ( neutrino many-body system ) as follows:

i
d

dt
|Ψ〉 = H|Ψ〉, (69)

H = A+ g−1Bg + λ(g−1Cg)(g−1Cg), g ∈ G, (70)

A = diag(a1, · · · , aN), A† = A, (71)

B = diag(b1, · · · , bN), B† = B. (72)

where, λ is a coupling constant for neutrino-neutrino interaction in a dense
neutrino gas, A indicates an external potential of environment, B may gives
the energy eigenvalues of the neutrino sector, and C is a Hermitian matrix.
All of (A,B,C) belong to Lie(G) and they are expanded such as

∑
cjTj ( Tj:

generators of Lie(G) ), and thus the Hamiltonian H takes its value in Lie(G).
This Hamiltonian has some similarity with a nonlinear sigma model of a local
spin system such as a Heisenberg model. The form of the Hamiltonian of
neutrino oscillation is interpreted as an expansion by elements of adjoint
orbits, and the group element g is regarded as a transformation between
two coordinate systems. This form of neutrino oscillation model also has a
similarity with a mass matrix the generalized Nambu-Goldstone ( GNG )
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theorem [17], and the matrices (A,B,C) look like order parameters. After
taking expectation values of H, one yields

H = A+ B + λC ·C, (73)

because both g−1Bg and g−1Cg give three-dimensional vectors and group
orbits defined on SO(3). A dynamical equation for CP-violating kaon oscil-
lation system also takes a similar form, by using the notation of Lie(SU(2)):

i
d

dt
|Φ〉 =

(
m̄− i

2
γ̄ δm− i

2
δγ

δm∗ − i
2
δγ∗ m̄− i

2
γ̄

)
|Φ〉 (74)

= σ3(α1σ1 + α2σ2 + α3σ3)|Φ〉. (75)

Here, all of (m, m̄, γ̄, δγ) are complex numbers, and αj ( j = 1, 2, 3 ) are
matrices. Needless to say, Lie(SU(2)) is locally isomorphic with Lie(SO(3)),
and thus this form of the Hamiltonian of kaon oscillation can be converted
into an SO(3) vector model like the neutrino oscillation model without an
interaction term between kaons. While, the essential difference between the
neutrino and kaon systems is the numbers of dimensions of the eigenvector
spaces ( three for the former, two for the latter ). We meet a lot of ex-
amples of Hamiltonians they take their values on Lie algebras: The BCS (
Bardeen-Cooper-Schrieffer ) Hamiltonian [5] of Nambu notation [13] is also
an example, and a Bloch Hamiltonian of electrons of graphene can be ex-
pressed as H = h̄vF (σ1k1 + σ2k2) +mσ3 ( vF ; the Fermi velocity, m; a band
gap ) [15]. A similar Hamiltonian is also found in the dynamics of NMR
( nuclear magnetic resonance ). In that case, the Hamiltonian is given as
H = m(eiωtσ+ + e−iωtσ−) + Mσ3 ( meiωt: rotational magnetic field, M : an
external magnetic field which causes a Zeeman splitting ), and a transforma-
tion to a rotational coordinates is frequently performed: g−1Hg, g ∈ SO(3).

The model of collective neutrino oscillation of a dense neutrino gas dis-
cussed by Raffelt is [23]

H =
∑
ω

ωB ·P(ω) +
µ

2
P ·P. (76)

Here, ω is a frequency, B is an external ”magnetic” field, and the three-
dimensional vector P depicts the polarization of neutrino system in the fla-
vor space. If we fix the length of P, the dynamics of this model gives an
oscillation/precession of an angular momentum and thus P must obey the
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algebra of SO(3), and P · P is a Casimir element of SO(3). On the other
hand, the Galilei group E3 is defined by

[Pi, Pj] = 0, [Li, Lj] = iεijkLk, [Li, Pj] = iεijkPk, (77)

and its second-order Casimir elements are

C1 = P ·P, C2 = L ·P, (78)

where, P = (P1, P2, P3) and L = (L1, L2, L3). Now, the Lie group is E3 and
Lie(SO(3)) is embedded as a closed subalgebra of Lie(E3): Thus, the Hamil-
tonian of collective oscillation will be converted into a linear combination of
the Casimir elements αC1 +βC2 = αP ·P+βL ·P via a transformation from
an axial-vector ( angular momentum ) to a vector ( momentum ).

An example of the Lagrangian of conformal mechanics is found in litera-
ture [20].

L =
1

2
gij
dqi
dt

dqj
dt

+ Ai
dqi
dt
− V (q). (79)

Here, Ai is an external magnetic field, and V (q) is a scalar potential. Im-
mediately we recognize that the Lagrangian is re-expressed in the following
form:

L = q · q + A · q− V (q). (80)

Here, q and A are vector notations. The similarity of the conformal mechan-
ics and neutrino collective oscillation model is now obvious.

The Euler top is a famous example for the classical Nambu mechanics [14].
It is given as follows:

H1 =
1

2

(L2
1

I21
+
L2
2

I22
+
L2
3

I23

)
, (81)

H1 =
1

2

(
L2
1 + L2

2 + L2
3

)
, (82)

( (L1, L2, L3) ∈ LieSO(3) ). Here, H1 is the usual Hamiltonian of an Euler
top, while H2 is a Casimir element ( total angular momentum ) of LieSO(3).
Both of the Hamiltonians are expressed as

H1 = g
(1)
ij (g−1dg)i(g

−1dg)j, H2 = g
(2)
ij (g−1dg)i(g

−1dg)j, (83)
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while the Nambu triplet in this case is

((g−1dg)1, (g
−1dg)2, (g

−1dg)3) (84)

Thus, the quantum mechanical Nambu-Heisenberg equation is

i
d

dt
(g−1dg)k = [(g−1dg)k, H1, H2], (i, j, k = 1, 2, 3). (85)

Again, the similarity between the neutrino oscillation model and the Euler
top is apparent.

The formalism of Nambu mechanics utilizes two Hamiltonians of con-
served quantities, namely constants of motion. One is the usual Hamilton
function, while one can use the second-order Casimir element for the second
Hamiltonian. The Casimir element can be regarded as a constraint for a time
evolution of the dynamical system. This fact just indicates us that the frame-
work of Nambu mechanics strongly correlates with Lie algebras and groups.
A phenomenon of neutrino oscillation which takes place in the three-flavor
neutrino sector, gives the conservation of total amplitude of wavefunctions
as a constraint:

|ψe|2 + |ψµ|2 + |ψτ |2 = 1 (const.). (86)

Namely, this equation defines a unit sphere S2. With respect to the vec-
tor/spin model of collective neutrino oscillation of Raffelt discussed above,
this conserved quantity can be regarded as a Casimir invariant of SO(3).
Therefore, again we argue it is possible to employ the framework of Nambu
mechanics to describe the ( collective ) neutrino oscillation. Moreover, it was
shown in literature that the Reffelt-type model can be converted into the ex-
actly solvable BCS pairing model ( so-called Gaudin model ) [21]. Hence, the
framework of Nambu mechanics could be extended to a system of fermionic
oscillators, in which a (iso)spin vector on the flavor space is defined by a
bilinear form of fermionic operators. This may also relate with a current
algebra of hadron physics. If the neutrino system of oscillations is a conser-
vative system, |ψe|2 + |ψµ|2 + |ψτ |2 is conserved, while it is not a conserved
quantity if any component of neutrinos ( e, µ, or τ ) is dissipative. Of course,
the eigenvalues of Jacobian,

∂(ψ̃e, ψ̃µ, ψ̃τ )

∂(ψe, ψµ, ψτ )
(87)
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can distinguish whether the system is dissipative or not, chaotic or not. It
should be noticed that those considerations given here can also be applied to
the phenomenon of neutral kaon oscillation.

Let us introduce three variables X = (X, Y, Z), with X2 + Y 2 + Z2 = 1
for a system of neutrino oscillation, and parametrize them as follows:

X = r cos θ(t) cosφ(t), Y = r cos θ(t) sinφ(t), Z = r sin θ(t). (88)

Then we obtain a correlation function via the Wiener-Khinchin relation

S(ω) ∝ lim
T→∞

1

T

∣∣∣∣∣
∫ T

0
dteiωtX(t)

∣∣∣∣∣
2

=
∫ +∞

−∞
dteiωt lim

τ→∞

1

τ

∫ τ

0
dτ ′X(τ ′)X(τ ′ + t). (89)

If we assume a precession of θ(t) = θ0=const., φ(t) = φ0t, φ0=const., we find
all of the correlation functions of X, Y , and Z vanishes after an elementary
manipulation. Since the Wiener-Khinchin relation is frequently used to study
an autocorrelation function of a dynamical system, it is interesting for us to
employ the relation to study the neutrino oscillation combined with the three-
dimensional quantum Nambu mechanics. Until now, only the periodic orbits
are found in several experiments of neutrino oscillation, though it is possible
to find a ( quantum ) chaotic behavior in an oscillation.

5 Summary

In this paper, we have summarized the aspect of dynamical systems in the
classical Nambu mechanics in Sec. 2. Our conclusion is that there is no es-
sential difference, no essential difficulty to apply the framework of dynamical
systems in the classical Nambu mechanics. In Sec. 3, we have investigated
the quantization condition of three-dimensional quantum Nambu mechanics,
especially from the viewpoint of Lie algebras/groups. Usually, such an at-
tempt is said that it seems difficult to study a Lie-algebra/group structure
in the framework of Nambu mechanics, since the Nambu-Poisson algebra is
defined not by a binary, but by a ternary operation ( in a three-dimensional
case ). We have observed that we can easily overcome such a difficulty by
employing the notions of symplectic homogeneous spaces and quaternionic
algebra, at least in the three-dimensional case. Some geometric aspects of
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the three-dimensional quantum Nambu bracket has been found by us, and
we have met an example of a realization of unification of algebra and geom-
etry. We also have discussed the fact that the ordinary quantum theory of
Heisenberg by the Heisenberg’s quantization condition is just a special case,
just an example of the quantization condition of three-dimensional Nambu
bracket: We have mentioned that this fact might give us a framework to
find/construct/invent several variants of quantum theories where they are
not defined on the Heisenberg algebra but are embedded in the quantum
Nambu brackets. What we should do in the next step is to make our in-
sight more concrete one, and also to investigate some geometric realizations
of those algebras by employing the framework of quaternionic geometry or
hyper-Kähler and quaternionic Kähler geometry. For example, a quantum
theory of gravity might be constructed by a consistent manner by using a
framework of new quantum theory. Since a new quantum theory might give
us a new paradigm of quantum information/communication theory, we can
consider a possibility that a quantum nature of gravity might have an es-
sential difficulty to detect it by an apparatus constructed on the ordinary
Heisenberg quantum theory. Another possible interpretation for us is that
our insight/speculation of a generalization of the Heisenberg’s quantum the-
ory might approach toward a region/domain of ”beyond quantum physics”.
For a systematic generalization/extension of the Heisenberg’s quantum the-
ory, one might also consider to employ the algebra of octonions. Finally, in
Sec. 4, we have listed some physical systems, especially for describing neu-
trino oscillation phenomena, and have emphasized that their Lie-algebraic
structures have some familiality with that of the quantum Nambu mechan-
ics.

( This paper was submitted to ArXiV at 24 Mar. 2014, and removed at
3 Feb. 2015. )
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