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Abstract:

Various geometric aspects of the Nambu-Goldstone ( NG ) type symmetry
breakings ( normal, generalized, and anomalous NG theorems ) are summa-
rized, and their relations are discussed. By the viewpoint of Riemannian
geometry, Laplacian, curvature and geodesics are examined. Theory of Ricci
flow is investigated in complex geometry of the NG-type theorems, and its
diffusion and stochastic forms are derived. In our anomalous NG theorems,
the structure of symplectic geometry is emphasized, Lagrangian submanifolds
and mirror duality are noticed. Possible relations between the Langlands cor-
respondence, the Riemann hypothesis and the geometric nature of NG-type
theorems are given.
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1 Introduction

Needless to say, a consideration on symmetry and its breakdown in a physical
system provides an important way to approach a problem of modern physics.
The Nambu-Goldstone ( NG ) theorem on spontaneous symmetry breaking
gives one of main ”principles” in theoretical physics [29,46,47,75,88,90,99,100]
[107,108,109,110,111,112,113,114,116,117,118,119,120,140,143,147,160,170,172],
and it may be regarded as a theory of phase transitions.

Recently, several schema of symmetry breakings in the NG-type theorem
was classified into three categories. A spontaneous symmetry breaking of a
system which has an exact continuous symmetry given by a Lie group from
the beginning is considered by the ordinary NG theorem [46,47,107,108]: It
should be called as the normal Nambu-Goldstone ( NNG ) theorem [116,117,118,119].
It is a well-known fact that all of the NG bosons generated in an NNG case
is massless. If the system contains an explicit symmetry breaking param-
eter which breaks a symmetry of a Lie group, and simultaneously a VEV
dynamically develops toward the same direction broken by the parameter,
then the symmetry breaking phenomenon is described by the generalized
Nambu-Goldstone ( GNG ) theorem [30,116,122]: Due to the explicit sym-
metry breaking parameter, the degeneracy of vacua in the NG boson space is
lifted, and an NG boson associated with the symmetry breaking has a finite
mass. A typical example is the flavor symmetry which is explicitly broken
by the current mass matrix of quarks, and the constituent mass matrix de-
velops toward the same direction. The anomalous NG ( ANG ) theorem is
found in a Lorentz-symmetry-violating systems ( a ferromagnet as a nonrela-
tivistic system, a relativistic model with a finite chemical potential, so on
) [3,14,20,49,60,76,98,109,117,118,119,127,136,146,153,154,155,156,157]. In
an ANG case, a subset of the NG boson space acquire finite masses un-
der a certain mechanism, while the complement of the subset gives massless
bosons. ( See also, Refs. [61,91]) In the symmetry-breaking mechanism of the
ANG theorem, an emergence of a (quasi-)Heisenberg algebra coming from a
set of VEVs of a semisimple Lie algebra symmetry is found, and the (quasi-
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)Heisenberg algebra plays the crucial role in a realization of characteristic
aspect of the ANG theorem [117,118,119]. It was shown in Ref. [117] that
the (quasi-)Heisenberg algebra gives an uncertainty relation in a canonical
conjugate symplectic pair obtained from a pair of Lie algebra generators in
the Cartan decomposition, and the uncertainty relation determines the global
geometric structure of the one-loop effective potential of a kaon condensation
model.

In Ref. [116], the mathematical structure of the GNG theorem is studied
in detail ( Lie algebras/groups, topology, differential geometry, algebraic ge-
ometry, and number theory ). In Ref. [117], the mathematical structure of
the ANG theorem is revealed, and several important facts we use here are
obtained. In this paper, by utilizing those previous results, we discuss several
differential geometric aspects of the NG-type theorems ( NNG/GNG/ANG
). Especially, Riemannian, complex ( Hermitian, Kähler, and their general-
izations ), and sympletic geometry in the NNG/GNG/ANG theorems will
be studied.

This paper is organized as follows. After giving some general situations
of the NG-type theorems useful for us, Riemannian, complex, and symplec-
tic geometry in the NG-type theorems are studied in Sec. 2. In Sec. 3, we
discuss mathematical structure of phase of a matrix in theoretical physics,
since the NG-type theorems also consider phases of matrices. In Sec. 4, al-
gebraic geometry of renormalization groups is discussed, since the method of
renormalization groups is frequently combined with an evaluation of physical
quantity under a symmetry breaking in the NG theorem. A summary and a
perspective of this work is presented in Sec. 5.

2 Geometric Nature of the NG-type Symme-

try Breakings

Modern framework of differential geometry [77] have mainly Riemannian, (
almost ) complex, and symplectic structures as the fundamental structures.
In this section, we discuss several aspects of Riemannian, complex, and sym-
plectic geometry in our NNG/GNG/ANG theorems.
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2.1 General Situation

In this subsection, we discuss a general situation it is valid in various breaking
schema of the NG-type symmetry breakings.

To determine what we will consider for ”geometry” in this paper, we will
give the following general discussion. Any case of the NG-type theorems con-
siders the following triple: (X,FX , G), where X is a ( topological, Hausdorff
) space with a certain type of measure, possibly has a definition of distance,
FX is a space of mathematical objects defined over X such as functions (
for example, an effective potential ), distributions, hyperfunctions, sheaves,
bundles, sections, or operator algebras, and G is a ( Lie/topological ) group,
or a set of mappings of a dynamical system, acts on X and/or FX . Fre-
quently, X is given as X = G−H in a breaking scheme π : G → H. Thus,
we have two classes of mathematical objects, X and FX , to study their ge-
ometry. While X can be studied in theory of Lie groups/algebras [58], an
investigation on FX provides us some special and characteristic aspects of
the NG-type theorems: Thus, we mainly focus on geometric nature of FX ,
which is typically expressed in an effective potential Veff of a quantum field
theoretical example, by employing some apparatus of theory of X. If G is a
Lie group, it is locally homeomorphic with a Euclidean space. A symmetry
and its breaking in the NG-type theorems is usually assumed G as a con-
tinuous group, i.e., a Lie group. A Hausdorff nature is important to obtain
a stationary point of a theory by a variational calculus. For example, the
so-called classical-quantum correspondence can be expressed for a function
f ∈ FX such that

f = f (0) + f (1)h̄+ f (2)h̄2 + · · · . (1)

Each term of the infinite-order series is subjected by a ( Lie ) group ac-
tion. If such a function f defines a space ( especially, a manifold ), then
a sequence of quantum correction possibly changes the topological nature
of the space, and then a similar notion with ”so-called” quantum cohomol-
ogy might be concerned. An effective potential as a tool to investigate a
symmetry breaking belongs to such a function space f . Since an effective
potential generally depends on a gauge choice, the gauge degree of freedom
should carefully be treated. After the gauge degree of freedom ( or high-
frequency/momentum components ) is integrated out, sometimes a certain
type of topological invariant is obtained, and a partition function or an effec-
tive potential contains it ( given by it ). If an effective action is expanded as
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a series given above, then the geometry and topology of it ( geometry given
by the effective potential itself ) are interpreted as expansions in terms of h̄,
and sometimes the nature of geometry of an effective action is altered by a
choice of truncation of the expansion. This is a kind of ”quantization” of a
geometry, and a non-perturbative evaluation for an expansion of geometry is
crucial to understand the Nambu-Goldstone-type symmetry breaking. Such
a non-perturbative evaluation usually employs a mean field approximation.
For example, a Hartree-Fock nonperturbative approximation is ”integrable”,
and an expansion of the Hartree-Fock potential by quantum fluctuations is
an expansion of geometry, makes the integrable model non-integrable ( a
quantum fluctuation is interpreted as a displacement from an integrable sys-
tem ). In other words, a mean-field approximation frequently utilized for
investigating a symmetry breaking is a fixing of geometry with a physical
assumption ( Ansatz ), especially via a variation principle. A path integral
is defined by using a measure µ(X) such that

∫
X dµ(X)f , and a large part

of information of the NG-type theorems is derived by examinations of the
path integral. A steepest decent is frequently employed for an estimation of
a path-integral, by a justification of a mean-field theory: Hence, a steepest
decent implies a fixing of geometry. If we use a Gaussian measure for the
path integration, then a random geometry will be obtained.

Another important aspect of the NG-type theorems is that a space of
our consideration will be divided into two parts, ”symmetric” and ”broken”
spaces. A mixing of two parts does not take place after a breaking scheme is
chosen, and then the dimension of NG manifold is kept fixed. In a viewpoint
of Lie group, it implies a subgroup and its orthogonal complement. While
a submanifold/subvariety will be a subject of our consideration, from the
viewpoint of manifold, variety and geometry. Thus, even if geometric na-
tures of symmetric and broken spaces are changed by a quantum correction,
the dimensions of them should be kept, and a morphism which changes the
dimension of a manifold/variety is not found. This fact gives a restriction
for usage of several morphisms studied in algebraic geometry.

If we consider a ”continuation” from NNG to GNG, sometimes we will
meet with an example where the cardinality of stationary points of Veff ∈ FX
changes. For example, a broken U(1) symmetry of the NNG case to that of
the GNG case changes the cardinality of set of stationary points:

πGNG : Card(A)→ Card(B), Card(A) > Card(B). (2)
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Here, A and B denote the sets of stationary points of NNG and GNG, re-
spectively. Later, we will discuss Galois groups and the Langlands corre-
spondence [53,148] in our NG-type theorems. Such a change of cardinality
relates with an explicit realization of Galois group in NG-type theorems. At
first glance, the topological nature of the set of stationary points seems to be
changed from an NNG case to a GNG case, but a naive consideration on it
is in fact dangerous, since an NG subspace frequently has a flat direction on
which an effective potential does not depend: An example was found and dis-
cussed in Ref. [117], where an SU(2) model was examined, and it was shown
that a set of stationary points in that model becomes a two-dimensional
plane.

Our effective potential Veff is a section of a sheaf O on the base space
M . For example, we frequently meet with a flag manifold such as G/T =
U(N)/TN as a base space. In such a case, Veff acquires the induced topology
which is coming from a Lie group G/T . A Lie group G acts on the sections
of O as G-equivariant manner. By this set up, we can utilize the method of
geometric representation.

The following statement is a well-known in Lie groups and representation
theory. Let G be a compact connected Lie group, and let T be a maximal
torus of G. Let X = G/T ( i.e., a flag manifold ) be a space which G acts.
By an embedding of G/T to (Lie(G))∗ ( a moment map ), G/T is found as
a symplectic manifold ( so-called Hamiltonian manifold ). Since a diagonal
breaking of NNG, GNG or ANG gives G/T , this fact implies that a sym-
plectic space ( in the base space ) naturally arises in NNG, GNG, and ANG
theorems. Therefore, generically, Riemannian, complex, and symplectic ge-
ometry occupy our main concerning on geometry of the NG-type theorems.
Usually, one employs a method of cohomology to examine a topological na-
ture of a manifold. Such a method of course reduces the total information of
a manifold. It is a well-known fact that a continuous function over a compact
group G is almost periodic. Thus, if Veff defined over a compact group G is
continuous, then it must be almost periodic.

Needless to say, a symmetry breaking considers a ( Lie ) group and its
subgroup. Thus, a lot of examples of symmetry breaking schema consider
homogeneous spaces and their geometric nature. The first step for such a
consideration is provided by the method of differential forms: A p-form over
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the homogeneous space G/H is given by a section of

G×H
p∧

(Lie(G/H)∨)→ G/H. (3)

Similarly, a p-form over a manifold M is given by a C∞-class section of

p∧
(T ∗M)→M. (4)

Here, T ∗M is a cotangent bundle. Namely, it defines a total space of p-form
Ep(M) = Γ∞(M,

∧p(T ∗M)). A Maurer-Cartan 1-form which is frequently
used in the method of Cartan geometry ( for example, nonlinear sigma models
) g−1dg ( and gdg−1 ) belongs to this space. A projection π : G → G/H is
globally defined by a symmetry breaking, and it induces a morphism between
p-forms defined over G and G/H.

The nonlinear Lagrangian of our ANG theorem may be given by

L =
1

2
GµνHαβDµX

αDνX
β, Dν = ∂ν − iAν . (5)

A chemical potential will be introduced as a constant gauge field Aν =
(µ, 0, 0, 0). Later, we frequently utilize some results of Ref. [117] of our ANG
theorem, especially an SU(2) kaon condensation model. The low-energy ex-
citation of the model is described by

∂̃†νΦ
†∂̃νΦ = −Φ†0(g−1∂̃νg)(g−1∂̃νg)Φ0

= −Φ†0
(
g−1(∂ν∂

ν − 2iµ∂0 − µ2)g
)
Φ0, (6)

Φ = gΦ0, g = eiQ
AχA ∈ G, (7)

∂̃ν = ∂ν − iµδ0ν . (8)

Here, Φ is a bosonic field, and χA give NG bosons. After some manipulation
( expansion of g in terms of the Lie algebra generators {QA} ), we get the
following expression which is proportional to µ:

2iµΦ†0g
−1∂0gΦ0 = 2µ

∑∑
A>B

{
χA(∂0χ

B)− χB(∂0χ
A)
}

Φ†0[QA, QB]Φ0 + · · · . (9)

This term gives a Berry phase [119,127,157]. The VEVs Φ†0[QA, QB]Φ0 form
a (quasi-)Heisenberg algebra [117].
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2.2 Riemannian Geometry

The geometric aspects of NG-type theorems may firstly be characterized by
the notions of Riemannian manifolds, if we consider the case the theory is
defined over a usual topological space with a Euclidean norm ( an induced
topology by a Lie group ). A Riemannian manifold is characterized by the
following notions: Metric and tangent spaces, submanifolds and covering
spaces, connections and bundles, several curvatures, geodesics, Laplacians,
exponential mappings, isometry, holonomy groups. In this section, we mainly
discuss on curvature, Laplacian, and geodesic curves in geometry of our NG-
type theorems. Several important transformation groups act on a Rieman-
nian manifold M are summarized such that an isometry group I(M), an
affine transformation group A(M), a projective transformation group P (M),
and a conformal transformation group C(M). Their relations are known as
I(M) ⊂ A(M) ⊂ P (M) and I(M) ⊂ C(M). As we will see, a local struc-
ture of NG manifold found in Veff ∈ FX is not simple compared with X, we
choose other tools for our study.

An interesting and important tool to characterize a compact Riemannian
manifold is provided by a Laplacian 4. We introduce the following known
theorem: Let (M, g) be a C∞-class compact Riemannian manifold, and let
Dp(M) be a space of p-forms defined over the manifold. Then the eigenvalues
of 4 acts on Dp(M) are distributed on [0,∞) discretely, and the degeneracy
of any eigenvalue is finite. If (M, g) and (N, h) are isometric, then they
share the same spectrum. A spectrum can judge whether any geodesic of
(M, g) is periodic ( Duistermaat-Guillemin ). In our problem of the NG-type
theorems, we will meet with mainly three types of Laplacians: The first one
is defined by a second-order Casimir operator C = ρijX

iXj ∼ gijDiDj ( ρ
is a Killing form, Di is a differential operators, X i ∈ Lie(G) at the origin
) of universal enveloping algebra of the Lie algebra. The second example is
coming from an inner product of a tangent space of Veff ( the hypersurface
of Veff ) defined by a Riemannian metric: To give a Laplacian defined over
the hypersurface of Veff globally, one needs to consider a moving frame on
the hypersurface. While, we are interested in the second-order derivative of
Veff ( which gives the curvature of Veff , while generally the second-order
part of a Taylor series of a Riemannian metric also defines a curvature ) as

8



the third example:

θα
∂2Veff
∂θα∂θβ

θβ = θα(λ)αβθβ. (10)

( {θα}; a local coordinate system of a subspace of Lie group. ) Note that
the Laplacian of the third example arising from the second-order derivative
is defined over a Euclidean space ds2 = gαβdθαdθβ with gαβ = diag(1, · · · , 1),
since the field-theoretical Taylor expansion of Veff is given over the Euclidean
coordinate system. Note that a Lie group is locally Riemannian symmetric,
isomorphic with a Euclidean space Rn. Then the Laplacian of the equation
obtained from this,

∂2

∂θα∂θβ
u = λ̃u, λ̃ =

λ

Veff
, (11)

is especially important for us since its eigenvalues correspond to mass eigen-
values of NG bosons: Needless to say, a massless NG boson λ = 0 defines a
harmonic function, while the case λ > 0 is a pseudo-NG bosons, and λ < 0
corresponds to a tachyon ( in the case where the ”scaling factor” Veff is
positive ). Moreover, the action of Laplacian to u defines a metric of Finsler
geometry. Since a second-order Casimir element expressed by the differential
operators of the local coordinate system of a Lie group is a Laplacian, the
set of eigenvalues λ̃ ( namely, the mass spectrum of of NG modes ) of the
Euclidean Laplacian ∂2

∂θα∂θβ
will obtain a relation ( some correspondence )

with the Casimir element via an appropriate coordinate transformation. In
other words, the mass spectrum of NG bosons is determined by the Casimir
element of the universal enveloping algebra of a Lie group: Thus, represen-
tation theory of a Lie algebra ( a famous example is theory of D-modules )
deeply relates with the mass spectrum of an NG manifold.

A topological nature ( for example, the fundamental group ) might be de-
fined for any point by a naive application of some methods formally, though,
when we observe a global structure of Veff ( by specifying its orientation ), it
contains a huge number of components of Riemannian manifolds of positive,
zero, and negative ( locally defined ) curvatures ( a superposition of various
manifolds ). Hence a definition for global/topological nature of Veff is not
familiar with modern theory of geometric topology. Though, if Veff can be
regarded as a Morse-Bott function at a critical point, a topological nature of
it may reflects that of the base space. Moreover, we have an example where
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a curvature becomes ±∞ under the definition given above ( an example: a
conical intersection ). Usually, a curvature given as a Hessian of Veff is finite,
though sometimes it will diverge in a case of conical intersection ( Jahn-Teller
type potential sometimes has a conical intersection of two potential surfaces
): Such a case is not fall into the class of Hermitian/Kähler geometry even
if we employ a complexification ( later, we will discuss complex geometry ).
A conical intersection of two potential energy surface can give an example
where the curvature of ground state is always positive. We do not consider a
possibility of conical intersection of two surfaces in NG-type theorems, thus,
a curvature is always finite. Then, we will introduce the following lemma.

Lemma: In any case of NG-type theorem, an effective potential under a
broken phase must have a point of inflection.

Then we argue that a ”topological nature” defined on a curvature is
drastically changed at the point of inflection. For example, a wine-bottle-
like potential of second-order phase transition has a point of inflection in
the region between the origin ( the point the order parameters vanish ) and
the stationary point, and it exists in the path of phase transition dynam-
ics. A case of first-order phase transition also be given by a potential with
inflection points. Usually, a Riemannian manifold with positive curvature
has only closed/periodic geodesics, and a chaotic behavior of dynamical sys-
tem is observed at the region of negative curvature. Those generic nature of
an effective potential of NG-type theorem ( globally, a curvature with local
definition can have both positive and negative values ) reflects in a mass spec-
trum of NG bosons via the Laplacian discussed above. It must be mentioned
that the choice of orientation of the surface of Veff is crucial to determine
whether a curvature is positive or negative in our prescription, and also to
give a definition of distance ( especially to consider a geodesic ) between two
points, for an appropriate setting for our NNG/GNG/ANG theorems. Since
the negative curvature part of Veff is not isolated, connects with the posi-
tive curvature part of it, it is subtle ( difficult, impossible ) to apply several
results of global Riemannian geometry to our NNG/GNG/ANG theorems.
One of the reason of this difficulty is coming from the fact that Veff con-
tains the amplitude mode of an order parameter |Φ|, which takes its value
as 0 ≤ Φ < +∞, thus the geometry of Veff ∈ FX is essentially non-compact.
Moreover, such an amplitude mode can couple with an NG mode inside a
path-integral evaluation of Veff , and thus one cannot treat the amplitude
mode separately from the beginning [117]. While, in a case of base space X,
to utilize the results on a global nature of a compact Riemannian manifold,
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one may use the fact that a compact Riemannian symmetric space is dual
with a noncompact Riemannian symmetric space, some geometric results of
X.

A closed geodesic in a Riemannian manifold closely relates with its cov-
ering group and the fundamental group. Closed geodesics and its number
are evaluated in a compact Riemannian manifold with a constant curvature
such as a sphere, while it will become more subtle issue if the base space is
different from a sphere, for example in an ellipsoid. In our cases of NG-type
theorems, such an attempt to examine geodesics is not very meaningful, espe-
cially in a Riemannian geometry defined over the surface space of Veff , since
the geometric structure of it is too complicated for this purpose. However, an
S1-circle as a set of stationary points in a wine-bottle-like potential of NNG
theorem is a geodesic. If we consider a nonlinear sigma model Lagrangian
L(x(t), ẋ(t)), which may have an absolutely continuous closed geodesic on its
target space, and if its classical dynamics is periodic in ”time” t ( here, one
can consider any type of a real parameter t, does not have to coincide with a
physical time variable ), then a closed geodesic γ may be obtained as the set
of critical points by a variational calculus of the following action functional:

F (γ) =
∫
γ
L(x, ẋ)dt, x : S1 →M, F (γ) < +∞. (12)

Usually, L is bilinear in terms of a bosonic field x such as L = 〈ẋ, ẋ〉, namely
a length squared, and thus L is defined in the form of an inner product: L
gives a Hilbert manifold HM . Then a geodesic is a locally shortest curve in
a family of curves, uniquely defined after giving two end points ( ”start” and
”goal” ) of the curves. The shortest curve is generated by an exponential
mapping. Needless to say, a geodesic is defined by the Levi-Civita connection
( a torsion-free flat connection, ∇g = 0, g; metric ),

∇ẋẋ = 0. (13)

Thus, an S1-circle as a set of stationary points in NNG or ANG cases gives
a geodesic: Namely, a set of stationary points given from a gap equation
∂Veff (x)

∂x
= 0 coincides with a closed geodesic as the solution of ∇ẋẋ = 0 starts

from a point of the S1 circle. This coincidence is lost if the degeneracy of
the ground state of Veff is completely lifted, as a case of our GNG theorem (
which contains an explicit symmetry breaking parameter ) of a broken U(1)
symmetry [116], and then the sigma-model description becomes not very
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meaningful. In a case of broken SU(2), Veff contains a flat direction in the
NG space, and the stationary point of the system does not become a point
but a two-dimensional plane, and thus its situation is more complicated [116].

It is well-known that this type of L given above always has a U(1) =
SO(2) map which is homotopical with the identity map. Since HM/SO(2)
is an orbifold, it is singular. Physically, such a closed geodesic corresponds
to a periodic motion of an order parameter in the target space: A motion of
spin vector x of SO(3) starts from the north pole of S2 and coming back to
the north pole along with a great circle is a typical example. Such a motion
is called ”prime” because it cannot be given by an iteration of another closed
geodesic, and it is called ”simple” since it has no self-intersection [133,145].
In the case of SO(3), such types of periodic geodesics exists densely over the
target space. This type of a ”motion” ( but not physical in general ) may be
found also in the effective potential Veff if it has a flat direction ( degeneracy
) in the NG manifold ( for example, a U(1) circle ): A symmetry breaking
of U(1) in the NNG case and the SU(2) kaon condensation model of the
ANG case give the examples of such a situation, since effective potentials of
both of them have the U(1) ”symmetry”. A gradient flow of such an effective
potential vanishes toward the direction along with an S1-circle ( tangent of S1

). While if the degeneracy is lifted in Veff , then the ”time”-dependent motion
becomes more complicated: Such a situation will be found in a GNG case.
As we will discuss later, the term of Berry phase in the low-energy effective
Lagrangian of an ANG case vanishes on any point of an S1-circle. Thus, we
can say the Lagrangian submanifold of the symplectic subspace defined by a
set of symplectic pairs in a diagonal symmetry breaking of ANG case gives a
closed geodesic of the target manifold of the breaking scheme. Such a geodesic
is always ”closed” due to the periodicity of Veff in the local coordinates of
a Lie group, forms a lattice group. Thus, a Hilbert orbifold is generically
found in the Lagrangian submanifold of ANG situations. Needless to say, a
periodic geodesic is not found/observed in a physical system ( for example,
a nonlinear sigma model ), at least at the classical level of the theory or
in the vicinity of the ground state of it. The ergodicity of a motion of a
representation point on a target manifold can also be considered.

It is a known fact that any Riemannian manifold (S2, g) has an infinite
number of geometrically distinguished closed geodesics, and CF (l) > al/ ln l
is satisfied, where CF (l) = ]{γ : prime closed geodesic with its length ≤ l}
is the so-called counting function, and a is a positive constant [62,63]. The

12



function l/ ln l is a well-known quantity in the prime number theorem. Of
course, our Veff is topologically different from S2, though a sigma model
description of low-energy excitations which is usually defined on a compact
space as its target will relate with such a geometric property of S2 ( Sn;
Riemannian symmetric spaces ).

2.3 Complex Geometry

A complex manifold, especially a Kähler geometry frequently appears to the
NG-type theorem due to the fact that a symmetry of a theory is expressed
by a Lie group. It is a known fact that a complex submanifold of a Kähler
manifold becomes Kähler by an induced metric. This fact becomes impor-
tant when both G and H are Kähler in a breaking scheme f : G → H.
Especially, an important theorem is the Kähler immersion/imbedding: A
complex analytic isometric imbedding of (M,J, g) into (M̃, J̃ , g̃). In that
case, M is a Kähler and minimal submanifold of M̃ . By using the GAGA
principle of Serre [135], a complex manifold can be studied as an algebraic
variety, namely any problem of complex manifold becomes an algebraic prob-
lem expressed by a meromorphic function. From those facts, we can consider
a mirror duality of a symplectic subspace and its Lagrangian subspace in an
NG manifold by algebro-geometric setting.

Another occasion we meet a complex geometry in our NG-type theorems
is a complexification of a Lie group, GR → GC [116]. Such a complexifi-
cation may relate with the following correspondences: The Harish-Chandra
correspondence between representations of GR and Harish-Chandra mod-
ules. Beilinson-Bernstein correspondence between Harish-Chandra modules
and (DX , KC)-modules [10]. The Riemann-Hilbert correspondence between
(DX , KC)-modules and KC-equivariant sheaves. The Matsuki correspon-
dence between GR-equivariant sheaves and KC-equivariant sheaves. Here,
GR is a connected real semisimple Lie group, KR is its maximal compact
subgroup, KC is the complexification of KR.

Later, we will examine symplectic geometry in our NG-type theorems,
especially in our ANG theorem. A symplectic structure is compatible with
an almost complex structure, and thus, we will find complex geometry simul-
taneously with symplectic geometry in the NG-type theorems.

Let us consider the Hessian matrix of Veff obtained as a second-order
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derivative of local coordinates of Lie group, discussed in the previous section.
After a complexification of the Lie group, one may obtain

∂2

∂zα∂z̄β
u, zα ∈ C, z̄β ∈ C. (14)

This form of the Hessian relates with a subharmonic function of complex anal-
ysis of several variables, appears in the problem of Einstein-Kähler manifolds
( the complex Monge-Ampere equation ). Note that the complexification is
physically natural ( at least not ”strange” ) when we consider a complex
mass ( order parameter ) of a theory [116]: For example, M = reiθ → z, so
forth. A complexification of a Lie group, which frequently utilized in repre-
sentation theory, gives an example for it. It is a known fact that a complex
manifold with a Kähler metric ĝ has the holonomy of a unitary group, and
has a C∞-class real function F ( namely, a Kähler potential ), which gives
the Kähler metric via gαβ̄ = ∂2

∂zα∂z̄β
F . In the case F = Veff ∈ R1, the most

important part of it is the critical point: ∂
∂θα

Veff = 0 ( ∀α ), and if the Hes-

sian H =
∂2Veff
∂θα∂θβ

is regular ( i.e, detH 6= 0 ), then the critical point is isolated

and non-degenerate. If F is complex ( sometimes Veff is complex ), then it
cannot be regarded as a Morse-Bott function from the context of variational
calculus, since the Morse-Bott function must be real: In modern framework
of Morse theory, a global characterization of base manifold is achieved by a
real valued function defined over the base manifold, it must admit a local
expression of usual quadratic form x2

1 + · · ·+ x2
j − x2

j+1 − · · · − x2
n, and thus

a complex-valued function is the outside of the scope of this modern frame-
work. This issue might also relate ( but, not the same! ) with the problem
of how to ”complexify” the Morse-Bott function, and it might derive mod-
ifications of notions of Morse polynomials and Poincare polynomials: Since
the Morse-Bott theory is a theory for de Rham cohomology, this issue might
relate with Dolbeault cohomology and Hodge decompositions in variational
calculi.

For example, a Lorentz violation in quantum field theory can be achieved
by (i) tachyonic mode, (ii) indefinite-metric Hilbert space with a complex
mass term [106], (iii) vector-type condensation. It is a known fact that
a presence of tachyonic mode causes an effective potential complex. The
usefulness and natural appearance of complex mass parameter for NG-type
theorems is noticed above. Our consideration of a complex effective potential
may be relevant for a spontaneous Lorentz violation with a tachyon.
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The Hessian H = ∂i∂jF breaks the non-degenerate condition detH 6= 0
at any point of a critical submanifold in the NNG/GNG/ANG cases and
a critical point of Veff of the NNG/GNG/ANG theorems is not isolated in
general: Very generically, a broken symmetry of U(N) or O(N) contains a Lie
group action g which gives Veff (gΦ) = Veff (Φ) or Veff (Ad(g)Φ) = Veff (Φ) (
Φ; a field ) even if g belongs to the space of a broken symmetry ( in NNG,
GNG, or ANG ), and it causes no energy difference in Veff . In other words,
such a Lie group action cannot give any effective variation in a variational
calculus, and usually one has to examine the global structure of Veff to
find a critical submanifold. An invariant function ( and, a class function
) which is important for representation theory ( for example, a character )
is a key for considering a Morse ( Morse-Bott ) theory from our context.
If F ( ∈ FX 3 Veff ) is real, and the Hessian of normal directions of a
critical submanifold is non-degenerate in the sense of Morse-Bott, then the
critical submanifold is called as a nondegenerate critical submanifold, and
F can be called as a Morse-Bott function. If F : M → R1 is a Morse-
Bott function on a compact manifold M , then the famous relation MB(t) =
P (t) + (1 + t)Q(t) holds, where MB(t) is a Morse-Bott polynomial, P (t) is
a Poincare polynomial, and Q(t) ≥ 0. The Morse-Bott polynomial is given
by indices of critical points, while the Poincare polynomial is defined by the
set of Betti numbers of M . In our case, a small ”tilting” of a wine-bottle-
type NNG potential to obtain the case of GNG potential gives a conversion
from a nondegenerate critical submanifold ( an S1-loop ) to a nondegenerate
critical point ( a variationally determined point of S1 ) in the sense of Morse-
Bott, while the global topological nature of the base space must be conserved
under the tilting. Later, we will find the fact that an S1-loop defined on the
hypersurface of Veff in the ANG case is a Lagrangian submanifold, gives a
nondegenerate critical submanifold. A Morse-Bott function defined over a
generalized flag manifold G/T = GC/B ( T ; the maximal torus of G, B; the
Borel subgroup of GC ) was examined by Bott [16]: Such a flag manifold is
frequently obtained in a diagonal breaking of our NG-type theorems. A torus
action ( namely, maximal torus of GC ) on the flag manifold was considered
in the work of Bott, and it was found that the decomposition of GC/B into
stable manifolds ( here, ”stable” is the notion of similar sense in dynamical
systems ) gives the Bruhat decomposition G =

⋃
ω∈W BωB ( W ; Weyl group,

B; Borel subgroup ). An effective potential Veff of the breaking scheme
G → T ( a diagonal breaking ) is defined on the flag manifold, and thus
Veff itself also acquires the Bruhat decomposition by a set of group actions,
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Veff (y) = Veff (Ad(G)x) or Veff (y) = Veff (Gx).

As we have stated many times, after the complexification of Veff , it devi-
ates from the naive notion of a Morse-Bott function: It acquires a symmetry
Veff (z, z̄) → Veff (z, z̄) + F(z) + G(z̄) modulo a Kähler metric. The Ricci
tensor is defined in a Kähler manifold by

Rij̄ = − ∂2

∂zi∂z̄j
ln detĝ. (15)

If Veff ( it belongs to a set of smooth sections of the bundle π : E → M
) has a non-vanishing imaginary part ( such as a chiral anomaly, a Chern-
Simons term generated by a fluctuation of mean fields, a radiative correction
which contains a tachyonic mode, a theory of complex mass parameter with
indefinite metric Hilbert space ) as a phase factor of a matrix, then which
destroys the Hermiticity of the Kähler metric and the Ricci tensor, and their
eigenvalues are complex in general: Therefore, we have found the possibility,
via a field-theoretical apparatus, to construct a complex geometry which has
a non-Hermitian metric with complex curvatures ( our notion may be called
as ”non-Hermitian complex geometry” coming from the fact that our ”Kähler
potential” Veff can become complex ). The theory of stratified Morse theory
of Goresky and MacPherson [50] also usually considers a C∞ real function f :
X → R with X a smooth algebraic variety and S a Whitney stratification of
X, and thus a naive application of it for our problem might be impossible. An
interesting fact for us is that a ”non-Hermitian” model admits a symplectic
structure ( for example, in the ANG case ) while it can have a non-Hermitian
metric. On the other hand, g(Jv, Jw) 6= g(v, w) and ω(v, w) 6= −ω(w, v)
where g is a metric on a tangent space, ω is a symplectic structure defined by
ω(v, w) = g(Jv, w), and J is an almost complex structure [105]. We recognize
that this case is simply coming from the fact that a symplectic structure in
our ANG theorem is found in an algebra given by a set of VEVs of Lie
algebra generators, independent from the metric g obtained from a Hessian
of Veff . For example, Veff ∝ cos(r) ( χ1 + iχ2 = reiφ ) is obtained in the
kaon condensation model which shows an ANG situation, where (χ1, χ2) form
the local coordinates of a symplectic pair [117]: In this case, the symplectic
structure is not obvious in Veff . The Hermiticity of a metric g(Jv, Jw) =
g(v, w) arises from a traditional Riemannian metric is lost if F ∈ C1 or
Veff ∈ C1, and the ”Kähler” metric defined by gαβ̄ = ∂2

∂zα∂z̄β
F under F ∈ C1

indicates we already have a deviation from Riemannian geometry. A Ricci
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tensor closely relates with the volume form:

Voln =
in

n!
(detĝ)dz1 ∧ dz̄1 ∧ · · · ∧ dzn ∧ dz̄n. (16)

Thus, our non-Hermitian case gives a complex volume form in general.

Usually, the first Chern class is given by the Ricci form, c1(M) = i
2π
Rij̄dz

i∧
dz̄j ( frequently used to define a Calabi-Yau manifold or an Einstein manifold
), then the notion of Chern class might also be enlarged in our non-Hermitian
complex geometry. A phase of path-integral weight ( i.e., a topological term
defined over a compact space ) of a Yang-Mills theory is separately handled
in the classical action S = 1

2e2

∫
M Ω∧∗Ω + iθ

2

∫ Ω
2π
∧ Ω

2π
( the four-dimensional

case ) [166]. Our approach given above unifies the ”pure-phase” part and
another part. When Veff is complex Veff : Cn ⊗C

n → C1 ( 2n; the dimen-
sion of NG space ) and has an imaginary part, Veff is chiral in the sense of

Veff ∈ C1 and Veff ∈ C
1
: Thus, our non-Hermitian complex geometry ob-

tained from an effective potential contains the notion of chirality. It should
not be confused that this fact does not imply the holomorphicity ∂z̄Veff = 0,
while it is possible that ∂zVeff = h1 6= 0, ∂z̄Veff = h2 6= 0 and h1 6= h∗2.

In the traditional framework of theory of Ricci flow [24,25,26,124,125,126,151],
which is of course defined locally, several functionals defined by integrals over
the whole part of a manifold will be considered for studying the global nature
of a geometry of the manifold. At first sight, an effective potential seems to
be defined over a non-compact non-closed space due to the existence of the
amplitude mode ( sigma mode σ in a Ginzburg-Landau model or a nonlinear
sigma model ) which is the variable essential to determine a stationary point
of the theory ( needless to say, here we indicates the sigma mode σ of the gap

equation
∂Veff
∂σ

= 0 with σ ∈ R1 ), and thus we might need a compactifica-
tion for considering a geometric problem ( this issue of a non-compact space
is still investigated in literature ). We can say this problem of the modern
framework of Ricci flow is a typical example of local-global relation ( as we
have observed in a problem of curvature of Riemannian geometry in previous
section ), where sometimes a global nature of a space cannot describe enough
in detail of a local structure of the space, since a global nature is obtained af-
ter reducing an information of the manifold ( hence we speculate that such a
modern framework of geometry contains an information entropy ). If we omit
the sigma mode ( amplitude of an order parameter ) and restrict ourselves on
the NG manifold X = G−H where G is the Lie group of the beginning and
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H as the remaining symmetry, then it is a priori determined that whether X
is a compact manifold or not. If X is compact, then the framework of Ricci
flow can be adopted to study a global nature of our problem. It should be
noteworthy to mention that an omission of a sigma ( amplitude ) mode of
an order parameter sometimes causes a serious short comings since a sigma
mode can couple with an NG mode via a radiative correction [117]. For an-
other approach, we consider a polydisc X =

∏
Dj where a disc is given as

a domain of a symplectic pair ( explicitly appears in the ANG case ) of a
diagonal breaking, and set a unit disc with its boundary ∂Dj = S1 ( S. K.
Donaldson considered such a polydisc in Ref. [31] ). Then one can consider
our non-Hermitian complex Monge-Ampere equation defined over the poly-
disc as a boundary value problem to settle a Ricci flow in our theory. Over
the domain where our complex Monge-Ampere equation is defined, we can
consider a cotangent bundle T ∗X with a complex symplectic structure. Then
a 1-form of T ∗X is expressed as ζidzi ( zi, ζj; the local coordinate system of
T ∗X ). By the decomposition zi = xi + iyi, ζi = θi + iηi, then we yield
the expression of the real part of the 1-form as Ω1 = θidxi − ηidyi. This
expression gives the Berry phase, a holonomy of the symplectic manifold we
consider in Ref. [119] of a paper of our ANG theorem.

Moreover, one can ( in principle ) evaluate quantum corrections of sev-
eral orders for Veff , and we know some examples give drastic changes of
global natures of effective potentials: One of such examples will be found
in the kaon condensation model of the ANG theorem [117]. In that case,
the tree level shows no dependence on a local coordinate system of a Lie
group, while the one loop correction for Veff acquires a periodicity. Thus,
a Riemannian or a Kähler metrics are modified under the quantum correc-
tion of a ”Kähler”-like potential. It is interesting for us if such a geometric
modification caused by a quantum correction gives a change in a topological
nature of the system ( our interest is somewhat similar with the so-called
quantum cohomology [44,64,128,134] ). A Kodaira-Spencer deformation in a
complex mass matrix gives a series of the deformation parameter t [80,54,55].
The tangent bundle of the deformation parameter space gives a cohomology
group. Thus, the expansion of a path integral of a theory by the complex
mass parameter gives an infinite-order series of deformation parameters and
cohomology groups. This implies that the path integral is a summation of
various geometric spaces/objects, and the deformation parameter may be
regarded as a variational parameter: A complex structure inside the path
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integral is variationally determined. A fixed point of Ricci flow is called as a
Ricci soliton. A Ricci curvature form gives a first Chern class, and thus the
curvature of a manifold, which is given from Veff in our case, is expressed
by a first Chern class. ( There are several works on classifications on re-
lations between Chern classes, Kähler metrics, Ricci curvatures, and scalar
curvatures in various types of manifolds. ) If Ric = λĝ, then the manifold is
Einstein-Kähler. From our context, an interesting subject is a possibility on
quantum modification of such an Einstein-Kähler metric such that

ĝ = ĝ(0) + h̄ĝ(1) + h̄2ĝ(2) + · · · . (17)

Then, for example, a dynamical equation of Ricci flow ∂
∂τ
ĝ = −2Ric also

acquires such a sequence of quantum corrections ( quantum Ricci flow ),
similar to the case of nonlinear sigma model [39].

Let us consider the case Veff = A cos(r), z = χ1 + iχ2 = reiφ, and
A ∈ R1. This type of effective potential, a real form, is found in an ANG
case [117]. It should be noteworthy to mention that this Veff does not depend
on the sigma mode, it is only written by the local coordinates of the NG
manifold X = G−H. By putting r =

√
zz̄, we obtain our Kähler potential

Veff = A cos(
√
zz̄), and the Kähler metric is evaluated as

gzz̄ = gz̄z = −A
4r

(
sin r − r cos r

)
. (18)

Namely, the metric shows the dependence only on the radial direction r, as
the result of Heisenberg uncertainty relation between χ1 and χ2 observed in
Ref. [117]. If the effective potential acquires an imaginary part such as

Veff = A cos(
√
zz̄) + iΓ(z, z̄), (19)

then the metric becomes

g̃zz̄ = gzz̄ + i
∂2

∂z∂z̄
Γ(z, z̄). (20)

In ordinary Kähler geometry, a Ricci curvature is a real closed (1,1)-form,
while it is complex in our case. A Ricci flow equation will be given by

∂

∂τ
g̃ = −2Ric(g̃), (21)
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or, the form of Kähler-Ricci flow,

∂

∂τ
g̃ = −2Ric(g̃) + g̃. (22)

We assume τ -dependences of the metric and Ricci tensor, might be obtained
from, for example, a renormalization-group prescription for Veff . Note that
these dynamical equations are defined locally, in the sense that we do not con-
sider a space of constant curvature defined globally over a manifold. Hamil-
ton showed in Ref. [52] that a Ricci flow equation has a unique solution for
a short time evolution of an arbitrary smooth metric of a closed manifold.
In various cases of quantum field theory, one has to consider a non-compact
non-closed manifold as a base space. It is known fact that if the starting
metric is Kähler, then a Ricci flow is always Kähler. In the case of com-
plex effective potential, it is possible that the imaginary part Γ vanishes or
becomes to give no result on the metric in a time evolution, and then the
metric restores the Kähler nature. On the contrary, the opposite case where
a time evolution of Kähler gives a non-Kähler is impossible.

Let us consider a fluctuation of the metric ĝ(τ) = ĝ(0) + δĝ(τ) where, the
τ -dependence is found only in the fluctuating part δĝ(τ). Such a fluctuation
might be caused in a dynamics of the quantum field theoretical background
which might depend on the ”true” time t or on the spacetime coordinates.
Then,

ln detĝ(τ) = ln det(ĝ(0) + δĝ(τ))

= ln detĝ(0) + ln det(1 +
δĝ(τ)

ĝ(0)
)

= ln detĝ(0) + tr ln(1 +
δĝ(τ)

ĝ(0)
)

= ln detĝ(0) − tr
∞∑
n=1

(−δĝ(τ)

ĝ(0)
)n. (23)

Here, we assume ĝ(0) is invertible. Thus, after the linearization, our Ricci
flow equation becomes

∂

∂τ
δĝ(τ) =

∂2

∂zi∂z̄j
δĝ(τ)

ĝ(0)
. (24)

Namely, we obtain a complex diffusion equation for the fluctuating metric δĝ,
with the diffusion coefficient 1

ĝ(0)
. As a result, we consider a Brownian motion
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of the fluctuating metric defined over a complex domain. We emphasize
that a representation point of a physical system usually fluctuates in the
vicinity of stationary point, and the effective potential may contain such a
fluctuation. Now we acquire a connection with number theory and modular
forms since an elliptic theta function satisfies a real diffusion equation as a
special solution [33]. ( An important issue is when the fluctuating metric
becomes a theta function, a condition to give a theta function. It is also an
important problem to investigate its geometric implication in our complex
geometry. ) Moreover, since the diffusion equation is an example of parabolic
partial differential equation, it is suitable/possible for us to extend it to the
Fokker-Planck equation [131], a typical stochastic differential equation [121]:

∂

∂τ
δĝ = aij̄(z, z̄, τ)

∂2

∂zi∂z̄j
δĝ + bi(z, τ)

∂

∂zi
δĝ + b†i (z̄, τ)

∂

∂z̄i
δĝ

+c(z, z̄, τ)δĝ + f. (25)

Here, we do not assume the Hermiticity of the equation. We call it as a
”complex Fokker-Planck equation.” One may find another choice of such
an extension. Thus, now we meet a ”stochastic complex geometry.” Such
a situation is easily obtained via a quantum field theoretical model which
contains a stochastic external force ( for example, a sigma model with a
stochastic random force ). Hence, our Ricci flow equation will connect with
the fluctuation-dissipation theorem. ( Beside our context of this paper, these
extension of diffusion and Fokker-Planck equations to complex domains might
find an interesting application to the method of diffusion MRI ( magnetic
resonance imaging ). )

A Ricci flow study on three-dimensional Lie groups, such as the Heisen-
berg group H3 or SU(2), is found in Refs. [45,123]: They defined a Rieman-
nian metric via an inner product of local coordinates of a Lie group, and then
construct a flow equation. Needless to say, an NG mode is just a local coordi-
nate of a Lie group. While, a classification of three-dimensional Poisson-Lie
group is given in Ref. [7]. The work of Drinfeld considers symplectic/Poisson
homogeneous spaces [32]. In the next subsection, we discuss symplectic ge-
ometry in the NG-type theorems. It is interesting for us to study the relation
between our NG cases with their works, and also with theory of dynamical
systems.
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2.4 Symplectic Geometry

A diagonal breaking of a Lie group G in the ANG theorem gives nNG =
(dimG− rankG)/2 symplectic pairs [117], and ⊗nNGSp(1) naturally acts on
it: It may noteworthy to mention that the set of symplectic pairs does not
give a skew-symmetric bilinear form. The pairs are coming from VEVs (
more precisely, expectation values not restricted at a vacuum state ) of the
Lie algebra which is spontaneously broken, such as 〈[Qi, Qj]〉 = ifijk〈Qk〉,
and the VEVs of the right-hand side of these equations ( given by VEVs of
the Cartan subalgebra ) do not give the same value. In a Cartan decomposi-
tion g = h⊕ gα, where g = Lie(G) and h as the Cartan subalgebra, the Lie
algebra basis gα ( they form the set of broken generators ) are algebraically
equivalent with each other, though the equivalence is generally broken after
taking their VEVs ( naively, unclear ), and thus, their equivalence is also
broken in Veff which is a functional of those VEVs. Simultaneously, the
algebraic equivalence between the generators of Cartan subalgebra also be
broken by their VEVs, even though a moment map of G/T ( the base space
of the problem ) gives a symplectic manifold. The equivalence of symplectic
pairs are broken in general, even in the Lagrangian level ( see Eq.(9) or,
Ref. [117] ). ( Of course, it is possible that the equivalence of the broken
generators are restored at a special point of Veff , for example, over a sta-
tionary point which is a subspace of the NG space. ) Therefore, one can
consider a group action of Sp(nNG) on the space of set of symplectic pairs in
principle, though the symmetry of Sp(nNG) is broken, and thus not natural.
In a diagonal breaking of NG-type theorems G→ H where H is the Cartan
subgroup of G, the space of the group manifold is divided into two parts,
H and M = G − H ( the orthogonal subspace for H in G ). In the ANG
theorem, M has generically a symplectic structure, and a holonomy group is
defined on M : The holonomy group is a product of Sp(1). While, H consists
with a product of U(1). Thus, a characterization of the global nature of the
NG space in Veff of any diagonal breaking of our ANG theorem is given by
GG = GH ⊗ GM where GH =

∏rankG U(1) and GM =
∏(dimG−rankG)/2 Sp(1). It

should be noticed that GH = H, namely the remaining symmetry in any case
of diagonal breakings of the NG-type theorems, while GM is not the sym-
metry of the ground state of the NG-type theorems. Each factor of Sp(1)
defines a symplectic manifold, and a geometric invariant of it is examined by
the corresponding almost-Kähler manifold.

The double covering group of a symplectic group is called as a meta-
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plectic group, and its unitary representation is the Weil ( oscillator ) rep-
resentation. Thus, each symplectic pair of a diagonal breaking of our ANG
theorem acquires such a representation. Moreover, it is a known fact that the
Harish-Chandra module of a Weil representation [159] of metaplectic group
is isomorphic with a polynomial ring C[a1, ·, an], where aj and a†j are creation
and annihilation operators defined by a symplectic pair via its corresponding
Weyl algebra, respectively [6]. Hence, a system of diagonal breaking of our
ANG theorem consists with a finite number of harmonic oscillators. The
categorical equivalences between Harish-Chandra modules and D-modules (
Beilinson-Bernstein correspondence ), the Riemann-Hilbert correspondence,
the Matsuki correspondence, are also well-known in literature [71].

For example, in the kaon condensation model of SU(2), we obtain the
three-dimensional Heisenberg algebra 〈[S1, S2]〉 = i〈S3〉 [117]. The corre-
sponding Weyl algebra is [x,−i∂x] = i, [x, x] = [∂x, ∂x] = 0, and its Weil
representation is also well known. Needless to say, this Weyl algebra has an
SL(2,R) symmetry, such as(

a b
c d

)(
x
∂x

)
=

(
ax+ b∂x
cx+ d∂x

)
,

[ax+ b∂x, cx+ d∂x] = [x, ∂x] if ad− bc = 1 (26)

This symmety, SL(2,R), acts on the symplectic pair (S1, S2) as a canonical
transformation.

As we have stated above, in any type of diagonal breaking where only
the Cartan subalgebra acquires non-vanishing VEVs, it defines a set of two-
dimensional symplectic spaces, and they are explicitly realized in an ANG
case. Since a two-dimensional space with a specified orientation defines a
Riemann surface, the diagonal breaking implicitly gives a set of mappings
from each of symplectic spaces to the corresponding Riemann surfaces. (
This fact has a similarity with a topological sigma model with quantum
cohomology. ) An orientation of a Riemann surface in such a case is naturally
defined by an effective potential itself, namely by the direction in which
energy of the system increases. For example, a diagonal breaking of G =
SU(N) gives nsp = (dimG− rankG)/2 symplectic pairs and then we have a
polydisc consists with nsp discs, Dpoly =

∏nsp
j=1Dj. Then any point of Veff has

the map π : Dpoly → Veff . A Riemann surface is regarded as a curve, and
then we meet a problem of how many biholomorphically equivalent curves
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can exist over such a two-dimensional symplectic space. Since a line bundle
= a vector bundle of rank 1 = locally free sheave = an invertible sheave =
a curve = a Riemann surface, one can utilize an algebro-geometric method
of sheaves and schemes for our theory [54,55,96]. A physical quantity may
contain a part of the local coordinate system of a Lie group, and thus the
quantity is given over an NG manifold X = G−H. Such a quantity may be
expressed ( for example, linearly ) by a basis over X. Since X is decomposed
into a direct product of symplectic spaces in a case of diagonal breaking, then
the basis also be defined over the space of direct product. As we will see, the
nature of a basis on each symplectic space relates with the Gromov-Witten
invariant of the symplectic space.

Let us consider the result of kaon condensation model discussed in Ref. [117]
as a typical example of our ANG theorem. Each symplectic pair (χj, χj+1)
in our ANG theorem defines a two-dimensional torus T2, a genus 1 Riemann
surface, due to the uncertainty relation of the symplectic pair realized in the
effective potential Veff of the theory [117]:

χj + iχj+1 = rje
iφj , 0 ≤ j ≤ nNG, (27)

Veff ({χj}) = Veff (rj, φj) = Veff (rj + 2π, φj)

= Veff (rj, φ+ 2π) = Veff (rj + 2π, φ+ 2π). (28)

The periodicity in the rj-direction is coming from the uncertainty relation of
χj and χj+1 explicitly realized in Veff , and also relates with a holonomy (
Berry phase ) in the symplectic space (χj, χj+1) [119]. Thus, the total space
of the NG manifold defines a product of tori ⊗nNGl=1 T2

l , which is isomorphic
with a product of elliptic functions. Veff is also defined over the product of
tori, and behaves similar to an elliptic function. Since an elliptic function,
an elliptic integral, an elliptic curve ( y2 = x3 + ax + b, 4a3 + 27b2 6= 0, a
torus when it is defined over C ) and Veff relate with each other via their
doubly periodic nature, then the arithmetic of elliptic curve ( and a modular
form ) in number theory will be introduced in Veff of the ANG situation.
Thus, an elliptic modular group SL(2,Z) as a discrete subgroup of SL(2,R)
naturally acts on a Riemann surface of (χj, χj+1). A torus C/Γ is biholo-
morphically equivalent with an elliptic curve, and then one may consider
an elliptic cohomology [92] in our ANG theorem: In a diagonal breaking of
G = SU(N) in our ANG theorem, totally nNG = (dimG− rankG)/2 elliptic
curves are obtained, and it gives a Hilbert modular form. A theta function
deeply relates with elliptic functions, and it gives a representation of Heisen-
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berg group [67,72,86,130], a globalization of Heisenberg algebra [102]. Thus,
the double periodicity realized in Veff of the ANG theorem is the result of
a (quasi-)Heisenberg algebra. Thus, a symplectic pair of our ANG theo-
rem which obeys a Heisenberg algebra naturally acquires its globalization, a
Heisenberg group, via the double periodicity. As shown in the kaon conden-
sation model, the set of stationary points in Veff becomes an S1-loop, and
it a Lagrange submanifold ( we will discuss on it later ) may found in each
torus. While, an S1 can be embedded in an S2 as a closed geodesic of it.
Sometimes S2 is chosen as a target space of a nonlinear sigma model.

The fact that a symplectic pair always appears in a diagonal breaking
in any case of NNG, GNG, and ANG theorems has already been mentioned
in Ref. [119]. In a diagonal breaking of ANG case, the total NG space is
decomposed into a set of symplectic pairs, each of them is oriented and two
dimensional, namely a Riemann surface. A Riemann surface is Kähler and
Einstein, and the symplectic structure gives a Kähler form. A low-energy
effective Lagrangian of our ANG theorem contains a Berry-phase ( holonomy
) term given by a symplectic pair [119,127,157]. Since any complex p-form
has a Hodge decomposition:

Hp(X)C =
⊕
r+s=p

Hr,s(X), (29)

the 1-form of the Berry phase ( gives a holonomy of Sp(1) ) acquires the
decomposition Ω1 = H1,0 ⊕ H0,1, while the Berry curvature is a 2-form
Ω2 = H2,0 ⊕ H1,1 ⊕ H0,2. It is noteworthy to mention that, for example
in simply connected irreducible 4-manifolds, the class of complex manifolds
is included in symplectic manifolds as its subset: {complex} ⊂ {symplectic}.
Those Hodge decompositions might give period maps/domains [33]. Since
z = χ1 + iχ2 = reiφ and the set of stationary points is contained in a circle√
zz̄ = r ∼ S1, it satisfies the condition of a Lagrangian submanifold, where

the symplectic structure vanishes. Thus, we can say the 1-form of Berry
phase and the 2-form of Berry curvature given by the symplectic structure
also vanish over an S1 loop. The massless NG mode will be found in the
direction of the S1 loop of Veff [117]. Therefore, the mass-generating term (
i.e., the Berry phase term ) of a Lagrangian of NG modes does not work for
the NG mode along with an S1-loop in a two-dimensional symplectic space,
and the NG mode becomes massless, while any vertical ( namely, orthogo-
nal, transversal, radial ) direction r of the S1-loop remains massive: This
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is the mechanism to generate a finite mass to an NG mode of a symplectic
pair in the ANG theorem. An interesting fact is that this mechanism deeply
relates with both the Morse-Bott variational calculus and the uncertainty
relation of a (quasi-)Heisenberg algebra generated by a diagonal breaking
scheme of ANG theorem: The Heisenberg uncertainty relation between two
NG coordinates as a symplectic pair realizes in a Morse-Bott-type varia-
tional problem. The mechanism we have found here will be re-expressed by
theory of symplectic homogeneous spaces [2,19,28,142]. For example, an S1

loop is regarded as a classical solution, and a quantum fluctuation given as
NG modes exists along with ( in the vicinity of ) the Lagrange submanifold
S1 according to the (quasi-)Heisenberg uncertainty relation of NG modes.
The direction of quantum fluctuation is found in the direction vertical to
the Lagrangian submanifold, and then it coincides with the normal direc-
tion of Morse-Bott nondegenerate critical submanifold. Such a variationally
determined Lagrangian submanifold is embedded into a torus T2, and thus
it belongs to a family of lines of y = ax + b defined over T2 where a ∈ Q:
The S1-curves do not give a foliation of T2. Since the symplectic structure∑
j dχj ∧ dχj+1 vanishes at the Lagrange submanifold, the Liouville theorem

is automatically satisfied [4].

An S1-loop defined in a two-dimensional subspace of an NG sector in
our ANG theorem ( for example, χ2

1/a
2 + χ2

2/b
2 = 1, a, b ∈ R ) can sat-

isfy the condition of Lagrangian submanifold. It is noteworthy to mention
that not only a closed loop S1 but parabolic and hyperbolic curves can also
give Lagrangian submanifold in our case ( usually they are not considered in
topological quantum field theory ). Sometimes we find those S1-loops cross
with the circle

√
zz̄ = r ( namely, χ2

1 + χ2
2 = r2 ) of Veff , give intersection

points: Such intersection points may be studied by the framework of the La-
grangian intersection Floer homology [41,42,43], while the physically relevant
Lagrangian submanifold among them is uniquely determined for a Veff , from
an Euler-Lagrange variational calculus. As we have mentioned above, any
S1 loop defined over Veff has its natural orientation coming from Veff itself:
Thus, one can consider an orientation preserving functor f : Veff → S1. The
effective potential on S1-loops may belong to a sheaf O ( a sheaf of germs of
continuous regular functions, a structural sheaf of S1 ). We can always find
a point of an S1-loop of the circle where ∂φVeff = 0 is satisfied ( in the NNG,
GNG, and ANG cases ), and thus it gives a harmonic map4φVeff = 0, which
can be rewritten by a Maurer-Cartan form [152]. The holonomy group Sp(1)
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of symplectic manifold may have its counterpart in the mirror pair of Kähler
manifold. The subject we consider here may relate with some notions of
topological quantum field theory [5,162,163], such as the Jones polynomial,
Frobenius algebras, so forth.

In our cases, especially in an ANG cases, a symplectic manifold is realized
in a vacuum state of a theory via its effective potential. Thus, symplectic
topology [48] and holonomy [138], Morse theory [17] in a symplectic ( ho-
mogeneous ) space, Floer homology [64,128,134], homological mirror sym-
metry [42,82], Hodge theory and Kähler geometry [33], deformation theory
of complex structures [80], homogeneous dynamics [74,95,129], and some
notions of Poisson geometry [161] ( also, Poisson homogeneous spaces [32]
) may be related with each other in our theory [116,117,118,119]. Here,
we will discuss some of them. In our context, their mathematical struc-
tures should be derived from a unified viewpoint of theory of geometry of
symplectic homogeneous spaces ( which can be viewed as a phase space of
classical particle ). We give the definition of a symplectic homogeneous
space [2,19,28,142]: Let G be a semisimple connected Lie group, and let
H be a connected closed subgroup of G, let O be a G-invariant symplec-
tic form. A symplectic homogeneous space is given by the triple (G,H,O).
After choosing Z from an element of a Cartan subalgebra of Lie(G), then
such a G-invariant symplectic form O is constructed by the Killing form
OZ(G) = −tr〈Z, [X, Y ]〉 = −tr(Z ∧X ∧ Y ) ( X, Y, Z ∈ Lie(G) ) for a fixed
Z. Then, a symplectic homogeneous space (G,CG(Z), OZ(G)) is obtained as
a coset G/CG(Z), where CG(Z) = {g ∈ G|Ad(g)Z = Z} is an adjoint orbit.
( Such an adjoint orbit becomes an elliptic orbit if G is compact. ) Since we
consider G as a compact Lie group, the Clifford-Klein form Γ\G/CG(Z) with
a uniform lattice Γ may be found, due to the known theorem [78,79]. Thus,
we can say a diagonal breaking of a Lie group in our NG-type theorems (
for example, SU(2)→ U(1), SU(3)→ U(1)×U(1), ..., in NNG/GNG/ANG
cases ) generally defines an associated symplectic homogeneous space: In a
diagonal breaking, Z belongs to the space of symmetric generators. Since
a diagonal breaking of G of the ANG theorem gives nNG symplectic sub-
manifolds ( nNG Riemann surfaces ) in the NG boson space, and as we have
stated that they give a Hilbert modular form can be defined over the NG
boson space, then the arithmetic of Hilbert modular form will enter into the
symplectic homogeneous space given above.

The classically main theorems of symplecic geometry were given by (i)
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Darboux ( local triviality ), (ii) Moser ( deformation is unobstructed ), and
(iii) Gromov ( incompressible ). It is a well-known fact that the Gromov-
Witten invariant is the invariant of a symplectic structure [42], depends only
on the symplectic structure (M,ω), namely, it is invariant under a contin-
uous deformation of the symplectic structure ω. The homological mirror
symmetry [42,82] states that there is an equivalence between the category
of Lagrangian submanifold of a symplectic manifold and the category of co-
herent sheaves of the corresponding complex manifold ( the mirror dual ).
Moreover, Seidel and Thomas discussed Braid group actions on derived cat-
egories of coherent sheaves [139], related with a context of mirror symmetry.
Needless to say, a Braid group deeply relates with a Chern-Simons theory.

Fukaya discussed [41,42,43] that the torus M = (R2/Z2, dx∧dy) as a sym-
plectic space has its mirror counterpart (M †, Jτ ) = C/(Z ⊕ τZ). This type
of mirror duality naturally holds also in a higher-dimensional torus. These
situations is just the case in a diagonal breaking of our ANG theorem, where
(xj, yj) as NG bosonic coordinates of a set of symplectic pairs obtained after
taking VEVs of the Lie algebra generators form a product of tori ⊗T2

j . The
discussion of Fukaya on the homological mirror symmetry contains the Floer
homology of Lagrange submanifolds ( maximal totally isotropic subspace of
a symplectic space ) as its key, and a Lagrange submanifold is determined
by a variational calculus in our case ( explicitly demonstrated in an SU(2)
kaon condensation model [117] ). Thus, one can say a topological property (
mirror duality ) of a total manifold is subtracted by its submanifold, a nature
of submanifold ( ”local” in some sense ) reflects that of the total ( global )
manifold: This case is somewhat similar with the spirit of Morse theory.

The following combination of the Berry phase term ( given in the last
paragraph of Subsection 2.1 ) and the symplectic structure of the SU(2)
symmetry breaking in the ANG cases gives a Chern-Simons theory, which
can live only in a three-dimensional space, defined over the ”parameter space”
XANG = (t, χ1, χ2):

Ω1 3 χ2∂0χ1 − χ1∂0χ2 → Aµε
µνρ∂νAρ → A ∧ dA, (30)

Ω2 3 OZ(G) = −tr〈Z, [X, Y ]〉χ3χ1χ2

→ εµνρAµAνAρ → A ∧ A ∧ A, (31)

SCS =
1

4π

∫
XANG

tr
(
A ∧ dA+

2

3
A ∧ A ∧ A

)
, (32)
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Z(k) =
∫
DA exp

[
ikSCS

]
. (33)

A = g−1dg of Cartan geometry may give us a familiar expression of this
theory in the community of physics, defined on a G-bundle E → XANG.
By the Euler-Lagrange equation, A is found as a flat connection. Here,
SCS is gauge invariant modulo 2πZ. The classical Chern-Simons invariant
is an obstruction of conformal immersion of three-dimensional manifold into
a Euclidean manifold, while the quantum Chern-Simons invariant Witten
considered gives a topological invariant of the base manifold since the gauge
field was already integrated out. One can assume the two-dimensional space
(χ1, χ2) as a torus T2 in the case of ANG theorem. Thus, this model describes
a ”time evolution” of a gauge field defined over a torus as the base space.
By an appropriate restriction from the Chern-Simons model ( isotropic ) to
our ANG case ( anisotropic ), the first term of the integrant of a symplectic
structure vanishes on the Lagrange submanifold χ1 + iχ2 = reiφ, and the
second term gives a winding number at a fixed r. Therefore, we find that a
topological field theory is naturally defined on a symplectic submanifold of
the NG boson space. Since a diagonal breaking of G of the ANG case gives
the number of symplectic pairs over a vacuum of the theory as

nNG = (dimG− rankG)/2 = dim(X = G−H)− rank
∂2Veff
∂Xi∂Xj

, (34)

we will yield nNG-replicated Chern-Simons theories in the diagonal breaking.
Each of those Chern-Simons theory must be defined over a three-dimensional
base space given by a ”time” and a symplectic pair, because a Chern-Simons
form can live only in a three-dimensional manifold. Since a symplectic pair
gives a (quasi-)Heisenberg algebra via its VEV ( the Cartan subalgebra is
fixed ), the corresponding Chern-Simons theory implicitly contains a VEV of
Cartan subalgebra as a parameter. Moreover, the Berry-phase term ( gives
a holonomy group ) of the NG boson Lagrangian in an SU(2) model of the
ANG theorem is the result of realization of three-dimensional Heisenberg al-
gebra, and thus the Chern-Simons theory we have constructed is a result of
the Heisenberg algebra. The stationary point of a Chern-Simons action is
given by the flat connection F = d2

A = dA + A ∧ A = 0 ∈ Ω2
h(P ) ⊗ Lie(G)

( h; horizontal components, P ; principal G-bundle, ), which will be deter-
mined by the Berry phase term in our case. The condition of a flat connection
implies that the connection is locally ”constant” ( including the case the con-
nection vanishes, namely, zero ). Actually, the Berry phase term of the NG
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boson Lagrangian vanishes at any point of an S1-loop as the set of stationary
points of Veff ( this results a massless NG boson along with the S1 loop ),
the stationary condition of the Chern-Simons functional coincides with the
S1-loop of the ANG case. This fact indicates the consistency of the descrip-
tion of topological nature of the S1-loop ( the set of vacua of the ANG case
) by the Chern-Simons theory. Our Chern-Simons theory has a correspon-
dence with quantum fluctuations of the parameter space in the vicinity of a
set of stationary points, an S1-loop. As we have mentioned, such quantum
fluctuations are given in the normal direction of the nondegenerate critical
submanifold ( i.e., S1 ) of Veff in the sense of Morse-Bott. In fact, a diag-
onal breaking of SU(N) in the ANG case causes anisotropies, inequivalence
between the Cartan subalgebra and others. Thus, such an anisotropy gives
an inequivalence of quantum fluctuations. For example, in the SU(2) kaon
condensation model, we take χ1 + iχ2 = reiφ, and the quantum fluctuations
are given as (δr, δφ). Our Chern-Simons model is defined to be isotropic in
any direction of the NG boson space, thus it is made so as to neglect those
anisotropy. Note that the Chern-Simons theory breaks parity, which is now
defined in the parameter space ( i.e., the NG coordinates (χj, χj+1) ).

Witten showed that Chern-Simons gauge theory gives the Jones poly-
nomial, links and knot theory, braid groups ( thus, quantum groups also )
by an estimation of a path-integral quantum expectation value of Wilson
lines [164]. Hence, the three-dimensional Heisenberg algebra and class field
theory [158,97] is bridged via the Chern-Simons model in our theory. The
Chern-Simons theory also has a close relation with rational conformal field
theory ( which also has a deep connection with number theory ) and an affine
Lie algebra, and also a Hecke algebra. In literature, it was shown that the
partition function of Chern-Simons theory Zk =

∫
DA(exp(iSCS))k ( k ∈ Z

) takes its value in the cyclotomic field ( an algebraic number field ) [85].
From the Kronecker-Weber theorem ( any Abelian extension of Q is a cy-
clotomic extension ), the Chern-Simons partition function relates with class
field theory. After the complexification of SU(2) gauge group into SL(2,C),
we yield a complex Chern-Simons theory [168]. From the viewpoint of sym-
plectic homogeneous space, probably, an equivariant Cherm-Simons theory
defined over G/H or GC/HC ( for example, symplectic homogeneous space
) can be constructed. There are criteria for a double coset Γ\G/H to be a
compact Hausdorff quotient by a discrete subgroup Γ of G ( existence prob-
lem of a uniform lattice ) [78,79]. It is desirable that Γ acts on G/H proper (

30



compact ) discontinuously and freely: In that case, Γ\G/H has a Hausdorff
quotient topology. Such criteria are crucial for us to consider a gauge group.

As we have mentioned many times, a diagonal breaking scheme of ANG
gives a set of symplectic manifolds, constructed by the local coordinates of
broken generators of a Lie group. In this case, a set of stationary points
gives sometimes S1 in a two-dimensional surface, as we have found in a kaon
condensation model in Ref. [117], since the effective potential is obtained in
the form Veff ∼ cos(

√
zz̄) ( z = χ1 + iχ2, (χ1, χ2); the local coordinates

of SU(2) ) which was also discussed in the previous section on complex
geometry. Thus, the S1-loop gives an example of a Lagrangian submanifold of
a symplectic manifold, and we can define a Fukaya category. For example, the
NG space which are given as a direct product of two-dimensional symplectic
spaces has a well-defined Lagrangian subspace in the ANG theorem since
the dimension of its massless NG boson space is nNG = (dimG− rankG)/2,
just the half of the number of broken generators. It is explicitly realized
in a theory if the set of stationary point of Veff acquires the dimension
nNG. Note that such an S1 in which a set of stationary points ( vacua )
of NG-type theorem lies is similar to a brane of string theory. Namely, a
Ginzburg-Landau-type wine-bottle potential corresponds to a world sheet of
a closed string. Hence, we can introduce several concepts/notions of string
theory ( such as the A-model, B-model, ... ) in our theory. A morphism
between two S1 loops ( for example, caused by a generic variation of the
model ) determines a Floer morphism Hom(L1, L2) = FC(L1, L2). Such
a morphism is generated by an action of SL(2,R) to a two-dimensional
symplectic subspace of the NG manifold. More generally, a diagonal breaking
scheme gives the NG space as a symplectic manifold, a symplectic Floer
homology arises associated with a symplectomorphism of the NG space. Due
to the conjecture of Kontsevich on the homological mirror symmetry ( a
derived Morita equivalence ), such a Fukaya category may be equivalent
with the derived category of coherent sheaves over an algebraic ( complex )
manifold. It was proved by Fukaya, Polischuk-Zaslow that the homological
mirror symmetry is correct in a two-dimensional torus T2; dz ∧ dz̄. Since
a symplectic submanifold is embedded into a (quasi-)Heisenberg algebra in
an ANG case [117], one can say such a mirror duality exists in a (quasi-
)Heisenberg algebra and a Heisenberg group. Furthermore, a symplectic
structure is generically found in a nonlinear sigma model Lagrangian in the
ANG case ( as a Berry phase ), the symplectic Floer homology should be
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considered combined with the symplectic holonomy of the NG space.

Let M be a manifold, and let us consider a loop space l : S1 → M . A
loop is parametrized such as (s, t) → l(s, t) ( 0 ≤ s < 2π, −∞ < t < +∞
). Then we yield a map l(s, t) : S1 ×R → M . By (t, s) → et+is, the space
S1 ×R ∼ C\{0} acquires a complex structure. This is just the traditional
preparation for a construction of a string theory. Thus, the gap equation
∂zVeff = 0 ( z = χ1 + iχ2 = reiφ ) naturally obtains a string-theoretical ( in
a broad sense ) interpretation [162,163] when Veff is expanded by a complex
mass parameter. Since ∂zVeff = 0 gives a constant function, we need a source
term for this equation, ∂zVeff = f, to generate a dynamics of Veff (t, s) over
the set of stationary points ( S1 loop ). Veff must satisfy the single-value
condition Veff (φ + 2π) = Veff (φ). An NG mode wavefunction can live on a
loop l.

A Donaldson invariant is evaluated as a scattering amplitude of three La-
grangian submanifold ( pseudoholomorphic curves ) in a topological quantum
field theory: Namely, a scattering between two closed strings. Thus, these
strings do not ”cross” with each other. Such an amplitude gives a so-called
pants diagram, which ends at three S1 loops ( Lagrangian submanifolds ). It
is an interesting fact for us that we can obtain a geometric object topolog-
ically the same with a pants diagram, by cutting a Veff of wine-bottle-type
at three non-crossed non-contact loops ( biholomorphically the same with a
unit disc with two punctuates ). Thus, a Veff expanded by a complex mass
parameter may admit a string-theoretical description.

Now, we summarize some mathematical definitions to approach the Gromov-
Witten invariant and homological mirror symmetry in our NG-type theo-
rems. Let (M,ω) be a symplectic manifold, where a 2-form ω is a symplectic
structure ω =

∑
dxj ∧ dyj, dω = 0, and ωn 6= 0 ( 2n = dimM ). The

2-form ω belongs to the class of symplectic structures, [ω] ∈ H2
deRham(X) '

H2(X,R). A complex coordinate is given by zj = xj + iyj. An almost
complex structure J consistent with the symplectic structure of (M,ω) sat-
isfies, (i) J : TM → TM , (ii) J1 = −1, (iii) ω(X, JX) ≥ 0 ( the ”taming”
condition, where ω(X, JX) = 0 is only satisfied in the case X = 0 ), (iv)
ω(JX, JY ) = ω(X, Y ) ( compatibility of ω and J ). For example, M is a
Riemann surface. With implementing some conditions with this definition,
one obtains the so-called special Kähler manifold which is used for study-
ing a harmonic mapping. ( Harmonic forms and a harmonic mapping of a
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compact Kähler manifold gives a Hodge decomposition and a variation of
Hodge structure for its mirror dual, a symplectic manifold. ) Now, we can
introduce a Gromov-Witten invariant for a symplectic manifold acquired in a
diagonal breaking of NNG, GNG, ANG cases. The following is the definition
of it given by Fukaya [42]. Let Σ be a Riemann surface, and its complex
structure given as jΣ : TΣ → TΣ. A map φ : Σ → M is pseudoholomor-
phic if dpφ : TpΣ → Tφ(p)M ( p; a point ) satisfies dpφ(jΣV ) = J(dpφ(V )).
Let g,m(≥ 0) be integers, β ∈ H2(M,Z), and 2g + m ≥ 3, β 6= 0. Let
Σ be a Riemann surface with its genus g, let p = (p1, · · · , pm) a set of m-
distinguished and ordered ( i.e., their numbering is performed ) points of Σ,
and let φ : Σ → M be a pseudoholomorphic map with φ∗([Σ]) = β. Let
ψ : Σ→ Σ̃ be a biholomorphic map between Riemann surfaces. An isomor-
phism between (Σ,p, φ) and (Σ̃, p̃, φ̃) is defined by ψ(pj) = p̃j, φ̃ ◦ ψ = φ.
The total set of the isomorphism is denoted byMg,m(M,ω, J, β). The virtual
fundamental class of it is called as a Gromov-Witten invariant. The Gromov-
Witten potential can also be defined formally in our case. Simultaneously,
the theory of Seiberg-Witten invariant can be introduced to symplectic man-
ifolds, and used to find a deep relation between Seiberg-Witten invariant and
pseudoholomorphic curves [94]. The nice feature of the definition of Fukaya
for us ( namely, for a usage of it for our problems in the NNG, GNG, and ANG
theorems ) is that the Gromov-Witten invariant is determined only by the
symplectic manifold (M,ω), does not depend on the almost complex struc-
ture J , and it is invariant under a continuous deformation of ω. Since the set
of stationary points will be found as a Lagrangian subspace of the symplectic
manifold, one may consider a homological mirror symmetry, an isomorphic
pair between the category of Lagrangian submanifolds ( the Fukaya category
) and the category of complex manifolds as their counterparts [82].

A set of stationary points will be found in a circle S1 defined over Veff , and
such a circle is a periodic orbit in the sense of theory of dynamical systems.
Then, theory of dynamical systems may also join with those subjects via
our NNG, GNG, and ANG theorems. For example, our insight is that a
dynamical zeta [132], a Selberg zeta, and the Riemann zeta function might be
related with each other in our NG-type theorems. Note that a Selberg trace
formula bridges between the dynamical zeta function and the Riemann zeta
function, while Frenkel and Ngo implemented the Langlands correspondence
to the trace formula of Selberg type by a very generic manner [36]. Thus,
we found three dualities, the Pontrjagin-Tannaka-Klein duality, the mirror

33



duality, and the Langlands duality in our theory. Fukaya also discussed
a Galois group Ẑ = lim← Z/NZ ' ∏

l:prime Zl, which acts on a Novikov
ring ( defined over Q ) appeared in a quantum cohomology. A Lagrange
submanifold has a Novikov ring ( defined over R ) as the coefficient ring of
the Floer homology. We think, via the well-known isomorphism Ẑ → GFp ,
1 → Frp ( Frp: a geometric Frobenius, an inverse image of the absolute
Galois group GFp = Gal(Fp/Fp) ), one can find a Galois representation,
can consider Galois cohomology theory [59] in those geometric objects. The
notion of rational Lagrange submanifold L, where π1(L)→ U(1) gives a finite
group [41], is also realized in our ANG theorem [117,118,119]. The symplectic
structure ω defines a so-called U(1) prequantum bundle E and its connection
∇, (E,∇)→M where M is a manifold. The rational Lagrange submanifold
L is defined that the image of a monodromy representation π1(L)→ U(1) of
the restriction of (E,∇) to L gives a finite group [41].

Hausel and Thaddeus discussed the relation between homological mir-
ror symmetry, Hitchin Higgs bundles, non-Abelian Hodge theory, and the
Langlands duality [56,57]. ( Hence, the works of Simpson on non-Abelian
Hodge theory [141] also be introduced in our theory. ) The Langlands du-
ality [103,167] is a key of the Langlands correspondence, namely, theory of
Galois representations in the noncommutative class field theory [34]: Any
compact Lie group G has its dual G∨: For example, SU(N) has its Lang-
lands dual PSU(N) = SU(N)/(ZN)×. It is noteworthy to mention on the
following extension

1→ (Z/NZ)× → SU(N)→ PSU(N)→ 1, (35)

(Z/NZ)× ' Gal(Q(ζN)/Q). (36)

This type of group extension is obtained in a diagonal breaking of SU(N) in
our GNG theorem [116]. ( It should be mentioned that it is not easy for us to
incorporate such a discrete symmetry in a nonlinear sigma model approach,
as it was stated in the paper of general theory of ANG theorem [117] ). Thus,
a diagonal breaking of SU(N) in our GNG theorem naturally contains its
Langlands dual group PSU(N). A diagonal breaking is defined that the
Cartan subalgebra remains unbroken while other Lie algebra generators are
all broken. Thus, it is defined by a root system of the Lie algebra which is
explicitly determined by the Cartan decomposition. While, the Langlands
correspondence indicates that the root lattice of G becomes the coroot lat-
tice of G∨, vice versa. Therefore, the root lattice of broken generators of
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a diagonal breaking of G of our NG-type theorems is the coroot lattice of
G∨ which may certainly realizes ( is expressed ) in the path integral and
effective potential of our theory. Especially, it is a well-known fact that the
coroot system is given by the element of Cartan subalgebras in a semisimple
Lie algebra. Hence, the role of Cartan subalgbera in a diagonal breaking
provides a key for us to understand/find the Langlands dual group in our
theory. In a diagonal breaking, usually we choose the VEVs of order pa-
rameters ( namely, Higgs fields ) toward the directions of elements of Cartan
subalgbera to make a Lie bracket between any order parameter and Cartan
subalgebra commutative. Let us introduce a Cartan decomposition of a Lie
algebra g = h + e + f . For example, in our ANG theorem, a set of VEVs
〈[e, f ]〉 contains information of the root system, and thus the deviation from
the skew-symmetric bilinear structure ( as stated in the beginning of this sec-
tion ) reflects the structure of root system, which should realize in the global
structure of Veff of our ANG theorem. There is a study on zeta functions
of root systems as generalizations of the Witten zeta function [81,165,171].
The so-called Witten zeta function, which was studied in partition functions
( the volume of a moduli space ) of two-dimensional quantum Yang-Mills
theory and three-dimensional Chern-Simons theory [165], is regarded that it
deeply relates with the Riemann hypothesis of the ordinary Riemann zeta
function ζ ( one of candidates which provide the way toward the proof of
the Riemann hypothesis ). For example, ζ(k) = Q × πk holds at some spe-
cial values. The definition of Witten zeta function given by Zagier is that
ζW,Lie(G)(s) =

∑
φ(dimφ)−s ( s ∈ C ) where φ runs over all finite-dimensional

irreducible representations of Lie(G) which may explicitly evaluated via the
Weyl dimension formula, and it satisfies ζW,Lie(G)(s) ∈ Q×πrs ( r; the number
of positive roots of Lie(G), s = 2, 4, 6, · · · ) [171].

From the discussion of Frenkel given in his paper on a mirror symmetry
and the Langlands duality [35] ( see also, Ref. [37] ) ( he discusses on the
works of Kapustin and Witten [70], also of Nadler and Zaslow [104] ), we
consider the categorical correspondences between a symplectic subspace of
NG manifold, its homological mirror pair, and a Langlands correspondence
can be introduced in our theory. The Langlands correspondence may be
understood as a phenomenon of mirror symmetry, a categorical equivalence
between symplectic and complex geometry [70]. In the Langlands correspon-
dence, the modularity theorem, theory of modular forms and Galois repre-
sentations play the crucial roles. The modularity theorem states that there is
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a correspondence between an automorphic representation and a Galois rep-
resentation, formulated by a correspondence between a modular form and
an L-function ( zeta function ) defined over an algebraic variety. It was also
shown that a three-dimensional quantum gravity gives a modular form explic-
itly as its partition function [93]: The paper also discusses on the Lee-Yang
zeroes, they relate with the Riemann zeta function. Probably, the way to-
ward the solution of the Riemann hypothesis might be found in the relations
of discussions of those subjects. ( A summary of several relations between
physics and the Riemann hypothesis is found in [137]. ) A famous approach
toward the Riemann hypothesis is provided by the Bost-Connes model [18],
which shows a close relation between ( commutative ) class field theory and
the Riemann hypothesis. We argue that those several approaches toward the
Riemann hypothesis, class field theory and the Langlands correspondence, are
contained in our framework of the NG-type theorems ( NNG/GNG/ANG )
from our several observations presented here: Thus, our framework gives a
unified viewpoint of those approaches. Usually in representation theory of Lie
groups, it handles a finite-dimensional ( especially, unitary ) representation.
From those contexts, it is interesting to investigate a mirror duality between
an infinite-dimensional symplectic space, an infinite number of Lagrangian
submanifolds contained in it ( quantum field theory is an example of it ),
and an infinite-dimensional complex geometry. Such an infinite-dimensional
mirror duality might give us an infinite number of Langlands pairs, and
then they give a superposition of an infinite number of L-functions via the
( possibly, generalized ) modularity theorem, and it might corresponds to
the Riemann zeta function. Thus, via the Hilbert-Poliya approach of a de-
terminantal representation of the Riemann zeta function ( it closely relates
with the Selberg zeta function and the dynamical zeta function ) which will
be expressed by a path-integral of quantum fields ( an infinite-dimensional
symplectic/Poisson space and its quantization ) with an appropriate measure
modulo a moduli space, and an infinite-dimensional mirror duality might be
found in the path integration. The unitary inequivalence in quantum field
theory might have a crucial role in the mechanism of phenomena of the Rie-
mann hypothesis defined over a Gaussian plane, which is clearly realized in
a non-perturbative symmetry breaking dynamics, which can bridge between
an infinite-dimensional geometry and an infinite-dimensional algebra ( sev-
eral important problems of modern mathematics, such as quantum gravity,
noncommutative class field theory, and the Riemann hypothesis ). One of
the keys toward the Riemann hypothesis might be found in an application of
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method of conformal filed theory in two-dimensional spacetime to quantum
field theory in four-dimensional spacetime. One of candidates for universal
framework on these issues might be provided from the notion of Poisson-Lie
groupoids [144], especially its algebro-geometric extension. Since an affine
Lie algebra [38] as an infinite-dimensional Lie algebra can be interpreted
as a non-Abelian version of a Heisenberg algebra [68,69], several notions (
theta functions, modular invariance, Hecke operators, ... ) may also en-
ter into a generalization of our NG-type theorems, and the close relation
with number theory may become more obvious. The character of such a
Heisenberg algebra is a modular function [68]. There is an attempt to an
algebro-geometric approach to the Weil representation of Heisenberg alge-
bra in literature [51]. There is also a study on representation theory of the
infinite-dimensional Heisenberg group [65]. A non-Abelian version of the
infinite-dimensional Heisenberg group might be needed for our purpose. The
relation between the Weyl algebra and D-modules is investigated in Ref. [6].
Beilinson studied on the Heisenberg algebra in the context of the Langlands
correspondence [9]. To consider an infinite-dimensional problem, one may
have to introduce an infinite-dimensional flag variety, D-modules and per-
verse sheaves over an infinite-dimensional space. Kashiwara introduced an
infinite-dimensional flag manifold as a completion of infinite-order sequence
of finite-dimensional flag manifolds [66]. In our ANG theorem, a set of sta-
tionary points gives a Lagrangian subspace of a symplectic space. It is known
fact that they have a Witt basis. After introducing an appropriately defined
quadratic form, a Witt group and a Witt ring may be introduced to our
theory. Since a crystalline cohomology is defined by a Witt ring [12,15], this
cohomology might be useful for studying our ANG theorem. Those consid-
erations presented here will be summarized into the following scheme:

Riemann ζ → quantum field theory → infinite-dimensional Heisenberg
algebra → Weyl algebra, deformation theory, D-modules, → modular
forms, Weil representation, arithmetic of quadratic forms ( local, global ) →
several cohomology theories,
quantum field theory → infinite-dimensional Lie groups →
infinite-dimensional mirror duality ( dualities ) → infinite-dimensional
Langlands → L-functions and modular forms → infinite-dimensional
algebraic variety.

It is known fact that any symplectic manifold admits a symplectic con-
nection [13], and thus we can define symplectic connection and curvature,
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and its Yang-Mills-type functional in our ANG theorem. An interesting is-
sue is how we can define a topological term in the symplectic Yang-Mills
theory. Another interesting issue is to construct theory for all of the math-
ematical objects discussed above by theory of Riemann-Finsler geometry (
and symplectic-Finsler geometry ), since a variational calculus plays a crucial
role in our NG-type theorems. From our context, a conformal invariance of
path integral of 4D gauge field action ( Witten ), quadratic forms, Siegel
modular forms, and arithmetic are interesting [169]. Witten discussed that
a path integral of 4D gauge theory gives a Siegel theta series, and it has a
modular invariance [166]. The gauge field action contains both the Yang-
Mills part |F+|2 + |F−|2 and the topological part |F+|2 − |F−|2. Witten
discussed the Langlands duals in such type of gauge field actions. Thus, the
Langlands dual ( electromagnetic duality ) may deeply relate with the phase
of a matrix.

As we have stated many times in this paper, a diagonal breaking of our
ANG theorem gives a sympletic pair (χj, χj+1), which is a special case of a
Poisson structure π ∈ Γ(∧2TM) of bilinear forms of bivector fields of T ∗M ,
and π satisfies the relation [π, π] = 0 of the Schouten-Nijenhuis bracket.
This bracket has an important role for considering a cohomology group of
a Poisson manifold and its deformation quantization [8,22,23,83,84,101,115].
Drinfeld theorem states that a Poisson-Lie group has a natural bialgebra
structure [32]. He discussed a Poisson structure ξ of a Poisson homogeneous
space which is given by ξ(x) ∈ ∧2(TxM) = ∧2(g/hx), where, M is a homo-
geneous G-space, g = Lie(G), and hx is the Lie algebra of a stabilizer H
at x ∈ M . He also considered on a Lagrangian subspace of ξ, and shows
a bijective correspondence between pairs (H, ξ) ( ξ; a Poisson structure on
G/H ) and Lagrangian subalgebras. In our case, especially in a diagonal
breaking of our ANG theorem, such a Poisson structure and Lagrangian sub-
algebra can be defined in a set of symplectic pairs [117,118,119]. We think
−〈Z, [X, Y ]〉XY ∼ X ∧ Y in the construction of a symplectic homogeneous
space discussed above has the bivector structure. The author discussed a
deformation quantization of Poisson ( symplectic ) spaces of our ANG the-
orem [118]. It is an important issue that how such a bialgebra plays a role
in a mirror symmetry, and also in a Hodge decomposition and deformation
theory, especially in a mirror symmetry of a symplectic homogeneous space
from our context of this paper. Since Kontsevich discussed the mirror du-
ality by using some algebras used in deformation quantization of a Poisson
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manifold ( differential graded algebra, Hochschild cohomology, A∞-algebra,
... ) [21,82,83,84], while Kontsevich also proved that any symplectic ( more
generally, Poisson ) manifold admits a unique deformation quantization [83],
a bialgbera structure will enter into a deformation quantization of symplec-
tic space. This case is important for us to consider a Heisenberg algebra
( and Weyl algebra ) given from a symplectic pair in a diagonal breaking
of our ANG theorem. Those several notions and concepts of deformation
quantization in a symplectic space should be explained by the words of com-
plex manifolds. Since the Langlands correspondence may be understood as
a mirror duality, the bialgebra structure might find its counter part in the
Langlands dual pair. Moreover, we might find a ”quantization” over the
Langlands correspondence. This might indicate the quantized modularity
theorem, quantum theory of numbers, and noncommutative quantum class
field theory.

It should be mentioned that, various statements on mirror dualities and
the Langlands correspondences are given in the framework of N = 4 super-
symmetric Yang-Mills theory [70], while we consider some similar phenomena
of them by our NG-type theorems in four dimensional spacetime. Probably,
as a Morse function in Morse theory to investigate a topological nature of
base manifold, those quantum field theoretical models might be interpreted
as ”Morse functions”, could be used for some topological nature of the base
spaces. Hence we speculate that those ( geometric, number-theoretical, ...
) mathematical subjects ( mirror, Langlands, ... ) may deeply relate with
some topological natures of our world ( but here, we do not restrict the
meaning of our world as a spacetime or the physical Universe! ). Hence,
it may be desirable to find relations ( or, a classification ) between math-
ematical structures of several quantum field theories as ”Morse functions”,
where they give similar ( the same ) mathematical nature of the common base
space ( Euclidian/Lorentzian spacetimes, a group manifold, ... ). It might
give us a new criterion and a perspective on a possible quantum field theory.
We have discussed that the relation between the root system of G and the
coroot system of G∨ should appear in a diagonal breaking of NG-type theo-
rems. On the other hand, our nature sometimes shows successive symmetry
breakings. Thus, one can consider the case where G and its Langlands dual
G∨ are the result of symmetry after a spontaneous symmetry breaking took
place. Hence, we should consider a hierarchy of Langlands correspondences
in quantum field theory.
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Before closing this section, we will discuss a helical spin ordering and
its symplectic structure in the ANG theorem as a physical example. It is a
well-known fact that a helical ordering of an SU(2) Heisenberg model takes
place in the two-dimensional space (X1, X2) where X3 is the direction of
magnetization. Thus, a helical ordering provides a nice field to observe a
role of physics of broken generators of the NG theorem. This situation is
easily generalized in our ANG case, namely, a helical ordering can be found
in any symplectic pair of the quasi-Heisenberg algebra of a diagonal breaking
of SU(N), and the number of helical orderings ( counting both of right/left
helicities ) is maximally dimG − rankG where G = SU(N). We can apply
this result to another type of Lie group/algebra, SO(4) ' SU(2)× SU(2) (
Lie(SO(4))=Lie(SU(2))⊕Lie(SU(2)) ), and which can give a double helical
ordering. The case Lie(SO(4))=Lie(SU(2))⊗Lie(SU(2)) which frequently
used in a spin-orbital model of orbital ordering in condensed matter [73] is
an interesting subject for the application of our ANG theorem.

3 The Phase of a Matrix

Needless to say, an NG boson is a phase degree of freedom of a matrix.
There are several examples relate with mathematics coming from a phase of
matrix in theoretical physics. The strong-CP phase ( axion ) [27], the U(1)A-
problem, instanton, the Fujikawa method of anomaly, ’t Hooft interaction,
color confinement, gauge fixing and the FP ghosts are all related with the
phase of a matrix, defined by ln detM . Not all of them are included in
( related with ) the NG-type theorems, though here we will discuss some
mathematical aspects of them.

Let M be a matrix, and let g ∈ G be an element of Lie group. Let us
consider an adjoint action M̃ = Ad(g)M ( we denote Ad(g)M = g−1Mg,
Ad(g−1)M = gMg−1 ). The group element g will have several Lie group (
Lie algebra ) decompositions, and they result several definition of a phase
of M . Then, the phase of M is also decomposed according to the Lie group
decomposition.

Let O be a Hermitian operator. A matrix representation of O in an
indefinite-metric vector ( Hilbert ) space does not give a Hermitian matrix
in general [106]. Then, a non-vanishing phase of will be obtained. As we
have mentioned in the previous section, a quantum field theoretical model
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with complex mass parameter defined over an indefinite-metric Hilbert space
makes its effective potential complex.

A logarithm of determinant ( or, also a Pfaffian ) of a matrix ln detM
subtracts the U(1) phase of M . A determinant ( Pfaffian ) gives a section of
a determinant ( Pfaffian ) line bundle. Such a phase can, for example, exist
on an S1-loop as the set of stationary points of Veff in our ANG theorem:
A phase as a function is distributed along with the Lagrange submanifold.
The definition of the real and imaginary parts of detM are given as follows:

< ln detM =
1

2
ln detM †M, (37)

= ln detM =
1

2i
ln det(M/M †). (38)

For example, the logarithm of the ’t Hooft matrix [149],

TD = κD
[
eiθDdetψ̄P+ψ + e−iθDdetψ̄P+ψ

]
, P± =

1

2
(1± γ5) (39)

( it is known that this type of ’t Hooft matrix is derived from a Nambu−Jona-
Lasinio ( NJL ) four-fermion interaction model [75] ) or, more generally,

TD = κD
[
eiθDdetψ̄P+Φψ + e−iθDdetψ̄P−Φψ

]
, (40)

( Φ: a matrix bosonic field ) give phases: It sbtracts and fixes a U(1)-phase
of the matrix of U(Nf )R×U(Nf )L symmetry. Namely, the fixing of phase of
the ’t Hooft matrix is mathematically equivalent with the fixing of the phase
of the Dirac mass term,

mψ̄RψL +m∗ψ̄LψR. (41)

Needless to say, an explicit symmetry breaking fixes a phase, and a GNG case
considers a quantum fluctuation in the vicinity of the fixed phase [116]. The ’t
Hooft matrix can fix the U(1)A phase under the manner of explicit symmetry
breaking. Such type of fixings of mass matrices can also be considered for
Majorana mass terms:

TR = κR
[
eiθRdetψTCP+ψ + e−iθRdetψ̄P+Cψ̄

T
]
, (42)

TL = κL
[
eiθLdetψTCP−ψ + e−iθLdetψ̄P−Cψ̄

T
]
. (43)
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Due to the redundancy, we need the condition θD + θR + θL = const. to fix
U(1)A and U(1)V . One can consider a field-theoretical model such as the
NJL model with those matrices Tj ( j = D,R,L ). For example,

κBtr(mΦ + Φ†m†
)

(44)

can fix the phase of Φ. A typical example is found in the following La-
grangian:

Lch =
f 2

4
tr(∂νU

†∂νU)− 1

2
Σtr(eiθ/NfMU † + e−iθ/NfUM †)

−1

2
χ(ln detU)2, (45)

Σ = −〈ψ̄ψ〉/Nf , (46)

χ = mΣ/Nf . (47)

For example, the Yukawa interaction term,

gY (ψ̄P+Φ†ψ + ψ̄P−Φψ), Φ = eiθΦ′, (48)

fixes the ”phase” of the Yukawa coupling constant. For example, a quark-
axion model is given by the following Lagrangian:

L =
f 2

2
∂νθ∂

νθ − 1

4g2
(Ga

µν)
2 + ψ̄iγνDν

+c1ψ̄γ
νγ5ψ · ∂νθ −m(eic2θψ̄P+ψ + e−ic2θψ̄P−ψ)

+c3
θ

32π2
Ga
µνG̃

a
µν . (49)

From the form of derivative coupling term, θ must be a pseudo-scalar for the
parity invariance of the theory. ( Sometimes we meet an axion coupling of
the form ψ̄γµ(a + bγ5)ψ · ∂φ in literature. The axion field φ which has this
type of coupling might be assumed as a mixing, or a linear combination of
scalar and pseudo-scalar components. ) The mass term of quarks fixes the
U(1)-symmetry of the θ direction. This type of model belongs to a class of
explicit symmetry breakings ( here, a U(1)-symmetry ).

In the case of color confinement, the following terms will be the objects
of main consideration [87]:

LGF = B∂νAν +
α

2
B2, (50)

LFB = ic̄∂νDνc. (51)
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Namely, the gauge fixing part and the Fadeev-Popov ghost part, respectively.
B is the Nakanishi B-field. An interesting fact of LGF is that it has a
similarity with a model of topological quantum field theory [162,163]. The
physics of confinement is mainly coming from these parts of Lagrangian of
non-Abelian gauge symmetry. Needless to say, LGF fixes the phase of gauge
degree of freedom, while LFB absorbs the fixed phase, via

ln(detMF/detMB) ∼ ln |MF/MB|eiφ. (52)

( MF and MB are fermion and boson matrices, respectively. ) Namely, a
subtraction of the relative phase between MB and MF . This BRST prescrip-
tion introduces a Lagrange multiplier ( i.e., a constraint ) to lift a degeneracy
in the Poisson structure of the phase space which exists in the classical La-
grangian: This results a restriction of a path integration in the gauge degree
of freedom, and thus the BRST prescription restricts a phase degree of free-
dom of a matrix. The gauge invariance/dependence of the theory will be
found in the effective action ( Veff depends on a gauge parameter ), or the
propagator of the theory. Therefore, if we can control the particle statistics
of fermions/bosons, then the relation between numerator and denominator
also may be changed, and we could achieve another way of gauge fixing and
confinement.

The choice of ’t Hooft monopole of SU(2) is frequently given by [150](
eiϕ 0
0 e−iϕ

)
. (53)

This form is a special choice of a matrix of three-dimensional linear space.
The phase ϕ play the crucial role in the monopole physics. Of course, it
depends on the representation of the Lie group SU(2), especially σ3 of the
Pauli matrices of Lie(SU(2)). Then the fixing of the form of monopole deter-
mines a symplectic vector space given by the direction of (σ1, σ2): It defines
a symplectic homogeneous space, and a Gromov-Witten invariant ( and also,
its mirror counterpart ) will be given for the symplectic structure. The sym-
plectic structure defined by a Killing form B = 〈Z, [X, Y ]〉 of Lie algebra (
X, Y, Z ∈Lie(G) ) depends on the choice of Z but it is uniquely determined
after the choice.

It is a well-established fact that a chiral transform ψ → eiαγ5ψ and ψ̄ →
ψ̄eiαγ5 ( α ∈ R1 ) gives∫

DψDψ̄DAν exp
[∫

ψ̄(iγνDν −m)ψd4x+ SMaxwell

]
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→
∫
DψDψ̄DAν exp

[ ∫
d4x

(
ψ̄(iγνDν −m)ψ

+α(x)[∂µ(ψ̄γµγ5ψ)− 2imψ̄γ5ψ]

−2iα(x)
e2

32π2
eµνρσFµνFρσ

)
+ SMaxwell

]
, (54)

in the case of QED [40]. Namely, it contains the famous chiral anomaly term
in the Lagrangian, arising as an infinite-dimensional Jacobian of the trans-
formation of the integration variables of ψ and ψ̄. Thus, the chiral anomaly
arises from a ”volume element” of the quantized fields, gives a volume form.
By using the classical solution ( for example, instanton ), one yields the
following expression ( by the Laidlaw-DeWitt-Schulman theorem ):

Z ∼
∑
ν

∫
Dµνeiνθ+SE , −∞ < ν < +∞, ν ∈ Z, (55)

where, ν is a winding number of the fundamental group estimated by an
instanton solution of a compact manifold ( ν corresponds to the index of
the Dirac operator γνDν by using the method of heat kernel, and a Mellin
transform of a heat kernel gives the Riemann zeta function [89] ), and SE is
a Euclidian action. In general, a winding number is evaluated by a self-dual
part R+ of a curvature 2-form, which is defined ( subtracted from R ) by the
Hodge *-operator in a case of 4-dimensional spacetime, ( or an anti-self dual
part R− ) of a curvature 2-form R = R+⊕R− ∈ P×AdLie(G) ( P ; a principal
bundle, G; a structure group ) via a Chern class. A Donaldson invariant
closely relates with a counting of instanton. Under the chiral transform of
the Dirac fields defined above, the integration measure is transformed as
Dµν → Dµνe−2iνα, we get

Zθ ∼
∑
ν

∫
Dµνeiνθ+SE →

∑
ν

∫
Dµνeiν(θ−2α)+S′

E . (56)

Namely, in the phase factor eiνθ which is apparently not self-adjoint, ν ∈ N
is defined by a configuration of gauge field which is called a winding number,
while θ ∈ R1 gives the angle of chiral transform. In other words, under
a chiral transform, the integration measure of the fermion sector acquires
a scaling proportional to the winding number which is determined by the
gauge sector. Note that a measure ( length ) is changed ( scaled ). As we
have mentioned, the chiral anomaly is caused from the ”volume element”
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defined by a Jacobian in the sense of the Fujikawa method, and it might
be interpreted rigorously by geometric measure theory in mathematics [1].
In other words, the configuration and winding number of gauge fields, and
also the number of zero modes of the Dirac operator ( corresponds to the
condition of ”flat”, ”constant”, ”integrable” ), determines the volume element
of a geometric measure. Let us turn our attention to the NG-type theorems.
In a case of GNG theorem of chiral symmetry breaking, θ takes its value
in a stationary point, and then the main contribution of integrant to the
path integral is coming from the stationary point: In a case of broken chiral
symmetry in our GNG theorem, θ corresponds to the coordinate of explicitly
broken chiral symmetry of a theory, and θ will takes a VEV obtained from
the corresponding stationary point of the theory. Even though the phase
factor eiνθ is not self-adjoint, it does not directly imply that the theory is not
Hermitian, since the theory is given by the total sum of ν. An important
aspect is that, even though the gauge field can have its value over a non-
Abelian group, the phase factor eiνθ is essentially Abelian. We can say this
situation more generally. Let M be a base space which is a topological space,
and let Ψ(x) and A(x) ( x ∈M ) be a quantum field and a connection, and
they obey certain types of algebras. Then, a ( complex ) scaling of integration
measure DΨ → λDΨ is determined by a characteristic class evaluated by a
curvature 2-form derived from A(x). Since this general statement is given
logically, we consider it is the case in several types of manifolds/varieties (
complex manifolds, algebraic varieties, arithmetic varieties, ... ). A path
integral is decomposed as a sum indexed by winding numbers, the phase
factor exp(iNΘ) may satisfy both the Goldbach conjecture ( any positive
even number ne ≥ 6 is a sum of two prime numbers, any positive odd number
no ≥ 9 is a sum of three prime numbers ) and the statement of Fermat ( any
natural number is at most given by a sum of m polygonal numbers of order
m ).

In summary, from our observation given above, we find that our GNG
theorem contains two types of winding numbers ν and n, where ν is com-
ing from a configuration of gauge sector, evaluated by instanton calculus,
characteristic class, and the index theorem of Dirac operator ( for example,
the Fujikawa method of anomaly ), while n is given by a chiral transform of
fermion field.
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4 Renormalization Groups and Algebraic Ge-

ometry

The method of renormalization groups is an important technique to evaluate
a physical quantity accurately [11,172]. Since an effective potential or a
mass parameter should be estimated under a renormalization-group ( RG
) invariant manner, the method deeply relates with our NG-type theorems.
In other words, several geometric aspects we have found should not only
qualitatively, but also quantitatively valid, must be inert from a choice of
RG prescription.

The axiom/condition of RG procedure may be summarized as (i) any
physical observable is invariant under a scaling ( but it is not always true
), (ii) the unitarity of the system is conserved. An RG flow can be put on
a manifold for our examination of it. Then, it is desirable to extend the
notion of attractor ( equilibrium, fixed point ) to include not only geometric
but also some types of Milnor attractors. An RG equation is a dynamical
system, and it takes generically in the following form:

dH

dt
= F (H, t), (57)

( H: a Hamiltonian ). After a linearization of the right-hand side, we find
a Jacobian, and its eigenvalues λj define whether it is relevant ( λj > 1 )
or irrelevant ( λj < 1 ), similar to the definition of Lyapunov exponent of
hyperbolic dynamics. Due to a hyperbolicity, a chaotic behavior of an RG
flow is possible, though such a solution may regard as a pathological one.
The Gaussian fixed point corresponds to the Gaussian model ( depends on
the number of dimensions of spacetime, it sometimes becomes an attractor
of Milnor type ), which is based on the realization of central limiting theorem
in a quantum field theoretical model.

The prescription of RG consists with a scaling,

F (bα1x1, b
α2x2, · · · , bαnxn) = bγf(x1, x2, · · · , xn). (58)

It is a well-known fact that a partial differential equation,(
n∑
j=1

xj
∂

∂xj

)
u = ku, (59)
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has its characteristic curves such as

xj(t) = etxj(0), u(t) = ektu(0), ∀j ∈ (1, · · · , n), (60)

and the solution satisfies the following scaling law:

u(λx1, · · · , λxn) = λku(x1, · · · , xn). (61)

A scalling law is determined by a long-distance asymptotic behavior of a
correlation function. A fractal dimension D is defined by f(x/b) = af(x)
with bD = a. For example, a magnetization of Ising model is invariant
under a scaling. Let us consider a dynamical generation of Dirac mass in a
Nambu−Joba-Lasinio model with an explicit symmetry breaking parameter
( even though it is non-renormalizable, we use it as a simplest example for
what we consider here ) [116]. The massive Dirac operator we consider is
given by iγνDν −M̃ with M̃ = |M(0)|+MdynP+ +M†

dynP−, whereM(0) is
an explicit chiral symmetry breaking parameter, whileMdyn is a dynamically
generated mass and P± are the chiral projectors. A scaling of mass function
in our GNG case under a complex gauge transformation [116] is given by

M̃ = |M̃|ei<θ−=θ, θ ∈ C, (62)

namely, a complexification of a Lie group action on the mass function con-
tains a ”pure” scalling factor ( a dilatation ) e−=θ ( the Callan-Symanzik
equation shows a response of a system under a scaling of mass parameter ).
Thus, a complex chiral/gauge transformation gives a chiral/gauge transfor-
mation and a scaling simultaneously, which means an enlargement of gauge
transformation space: This fact may suggest us the meaning and implica-
tion of a field theoretical model with a complex gauge. While, this type
of a chiral transformation gives also a chiral anomaly in a theory: Hence,
such a complex chiral ( gauge ) transformation gives a chiral anomaly and a
scaling simultaneously, where the anomaly term is scaling invariant/free. If
we absorb the phase eiθ ( θ ∈ C1 ) of the mass function Mdyn in M̃ by a
fermion field redefinition, then the effect of redefinition reflects in the bare
mass parameter |M(0)|. Such a transformation generically contains a scaling
effect on the mass parameters, and it may observe the ”perturbation” |M(0)|
to the corresponding massless theory. In fact, a Wilsonian block-spin trans-
form in momentum space φ′(k) = L−θφ(p) ( k = Lp ) is a special case of a
complex gauge transform. A Wilsonian block-spin transform seems to have
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the assumption that we have a ”uniform” Euclidean space, and a discrete
lattice is put perfectly uniformly in the space ( a uniform lattice ), and one
can define the same phase ( or the phase rotation ) of a variable of any point
of the lattice. ( Thus, very abstractly, one might consider a ”block-spin” pre-
scription suitable for a lattice of Γ of a Riemannian space G, namely G/Γ,
generated by a Lie group action of a homogeneous space in which an RG-
type equation or a field theoretical model are defined. This viewpoint may
enlarge the application of RG methods, for example, geometry of numbers,
number theory. ) More generally, a scaling of RG defines an affine transform
z → αz + β ( z: a field ), and it gives F (z) → F (αz + β) = αmF (z) ( a
special case of conformal group SL(2,C) ), and an RG invariance defines
a projective hyperplane. Since the classical massless QED gives a scaling
invariance,∫

L(xν , ψ(x), Aµ(x))dx =
∫
L(e−αxν , e

3
2
αψ(x), eαAµ(x))dx, (63)

it defines a special case of conformal group defined over a projective space.
Needless to say, a mass parameter for the QED model breaks the scaling
invariance.

Obviously, the condition of a scaling invariance in an RG prescription
contains a projective space in which the point (x0, x1, x2) coincides with
(λx0, λx1, λx2) of a homogeneous coordinate system: The scaling of an RG
gives the special case of a projective space. The scaling relation of mass-
less QED given above gives a nice example of a projective space, and the
breakdown of conformal invariance of SL(2,C) is understood by a projective
geometry. More generally, one considers a linear transformation x0

x1

x2

→
 a00 a01 a02

a10 a11 a12

a20 a21 a22


 x0

x1

x2

 . (64)

Since we take a homogeneous coordinate system, A and ρA ( A = Mat(aij),
ρ ∈ R1 or ρ ∈ C1 ) give the same transform. For example, a zero of m-
th order polynomial F (x0, x1, x2) = F (λx0, λx1, λx2) = 0 defined over a
projective space satisfies

F (λx0, λx1, λx2) = λmF (x0, x1, x2), λ 6= 0, (65)

This condition is satisfied by an m-th order homogeneous curve, for example,

F (x0, x1, x2) =
∑

i0+i1+i2=m

ai0i1i2x
i0
0 x

i1
1 x

i2
2 . (66)
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Since a scaling of RG does not give such a simple scaling relation generally, a
scaling procedure of RG is understood that it contains a deviation from the
homogeneous curve in a quantum field theoretical model such that:

F̃ (x0, x1, x2) =
∑

i0+i1+i2=m

ai0i1i2x
i0
0 x

i1
1 x

i2
2

+
∑

i0+i1+i2=m±1

bi0i1i2x
i0
0 x

i1
1 x

i2
2

+
∑

i0+i1+i2=m±2

ci0i1i2x
i0
0 x

i1
1 x

i2
2 + · · · . (67)

It should be mentioned that the convergence property ( convergence radius )
of this expansion is not guaranteed, since the increasing rates of coefficients
{bi0i1i2}, {ci0i1i2}, ..., and the variables (x0, x1, x1) may depends on coupling
constants and cutoff in a quantum field theoretical model, may be determined
by a combinatorial calculation in a field theory, and which may sometimes
rapidly increase. Note that an m-th order polynomial f(x, y) = 0 defined
over an usual plane can always be transformed into a projective space by

F (x0, x1, x2) = xm0 f

(
x1

x0

,
x2

x0

)
. (68)

Since a set of projective curves and the images of their projective transfor-
mations defined over the three-dimensional space (x0, x1, x2) at x2 = 0 is
naturally regarded as a Riemann sphere, a projective curve ( and then, a
projective variety ) defines a homogeneous space.

In summary, we argue that (i) a scaling invariance of RG defines a pro-
jective variety CPn, (ii) the deviation form an ideal scaling low of RG cor-
responds to a deviation from the projective variety. In other words, we meet
a concept which enlarges the usual/ordinary notion of projective transform
of a homogeneous coordinate system, for understanding an RG prescription.
We can consider a weighted ( complex ) projective space WCPn:

(z1, · · · , zn+1) ' (λk1z1, · · · , λkn+1zn+1), λ ∈ C×, kl ∈ N (∀l). (69)

This definition of a weighted projective space is an orbifold, namely WCPn '
CPn/(Zk1 ×· · ·×Zkn+1). It is interesting for us that if a complex manifold (
Calabi-Yau, K3 surface, so on ) can be embedded ( or a foliation, imbedded
) into such a weighted projective space, then we might consider a mirror pair
of it in a scaling relation of RG: Namely, a role of symplectic manifold in RG
would be found.
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5 Summary and Perspective

In this paper, we have discussed on differential geometric nature of the NNG,
GNG, and ANG theorems. From the viewpoint of Riemannian geometry, the
Laplacian, the curvature, and the geodesics have been examined in detail.
After an analytic continuation of the Riemannian geometry of an effective
potential in the NG-type theorems, we have studied the complex geometry,
and the Ricci flow equation has been obtained. From several viewpoints,
symplectic geometry has been introduced in the NG-type theorems, and it
has been examined especially in the setting of problem of the ANG theo-
rem. The mirror duality, the Langlands correspondence, and some number
theoretical aspects have been discussed. In our consideration on Rieman-
nian and complex geometry, their methods/tools are not quite useful, while
we have found that several notions of symplectic geometry are more rele-
vant for describing the geometric nature of the NG-type theorems. Some
mathematics of phases of matrices in theoretical physics, and the algebraic
geometry in renormalization groups have also been discussed in our context
of the NG-type theorems.

We have mainly considered some generic mathematical structure of the
NG-type theorems in this paper. Needless to say, the reason why the NG-type
theorems is universal and powerful is that they can explain the physical na-
ture very well, by a simple methodology. The next step we should investigate
is how the mathematical structure we have revealed here realizes in the phys-
ical nature more concrete manner, not only theoretically but also experimen-
tally. In our results presented here, it seems the case that it is crucially im-
portant for us to reveal some infinite-dimensional groups/algebras/geometry
in our NG-type theorems to understand them more deeply. For this purpose
of our further investigations, we obtain an insight that several techniques,
notions, and concepts of conformal field theory might be useful for us.

( This paper was submitted to ArXiV at 2 Jun. 2014, and removed at 3
Feb. 2015. )
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