A Proof of the ABC Conjecture

Zhang Tianshu
Zhanjiang city, Guangdong province, China
Email: chinazhangtianshu@126.com

Introduction: The ABC conjecture was proposed by Joseph Oesterle in 1988 and David Masser in 1985. The conjecture states that for any infinitesimal quantity $\varepsilon > 0$, there exists a constant $C_\varepsilon > 0$, such that for any three relatively prime integers a, b and c satisfying $a + b = c$, the inequality

$$\max (|a|, |b|, |c|) \leq C_\varepsilon \prod_{p|abc} p^{1+\varepsilon}$$

holds water, where p/abc indicates that the product is over prime p which divide the product abc. This is an unsolved problem hitherto although somebody published papers on the internet claiming proved it.

Abstract

We first get rid of three kinds from $A+B=C$ according to their respective odevity and $\text{gcf} (A, B, C) =1$. After that, expound relations between C and $\text{raf} (ABC)$ by the symmetric law of odd numbers. Finally we have proven $C \leq C_\varepsilon [\text{raf} (ABC)]^{1+\varepsilon}$ in which case $A+B=C$, where $\text{gcf} (A, B, C) =1$.

AMS subject classification: 11A99, 11D99, 00A05.

Keywords: ABC conjecture, $A+B=C$, $\text{gcf} (A, B, C) =1$, Symmetric law of odd numbers, Sequence of natural numbers, $C \leq C_\varepsilon [\text{raf} (ABC)]^{1+\varepsilon}$.
Values of A, B and C in set A+B=C

For positive integers A, B and C, let $\text{raf}(A, B, C)$ denote the product of all distinct prime factors of A, B and C, e.g. if $A = 11^2 \times 13$, $B = 3^3$ and $C = 2 \times 13 \times 61$, then $\text{raf}(A, B, C) = 2 \times 3 \times 11 \times 13 \times 61 = 52338$. In addition, let $\text{gcf}(A, B, C)$ denote greatest common factor of A, B and C.

The ABC conjecture states that given any real number $\varepsilon > 0$, there exists a constant $C_\varepsilon > 0$ such that for every triple of positive integers A, B and C satisfying $A+B=C$, and $\text{gcf}(A, B, C) = 1$, then we have $C \leq C_\varepsilon \left[\text{raf}(ABC) \right]^{1+\varepsilon}$.

Let us first get rid of three kinds from $A+B=C$ according to their respective oddity and $\text{gcf}(A, B, C) = 1$, as listed below.

1. If A, B and C all are positive odd numbers, then A+B is an even number, yet C is an odd number, evidently there is only $A+B \neq C$ according to an odd number \neq an even number.

2. If any two in A, B and C are positive even numbers, and another is a positive odd number, then when A+B is an even number, C is an odd number, yet when A+B is an odd number, C is an even number, so there is only $A+B \neq C$ according to an odd number \neq an even number.

3. If A, B and C all are positive even numbers, then they have at least a common prime factor 2, manifestly this and the given prerequisite of $\text{gcf}(A, B, C) = 1$ are inconsistent, so A, B and C can not be three positive even numbers together.

Therefore we can only continue to have a kind of $A+B=C$, namely A, B and
C are two positive odd numbers and one positive even number. So let following two equalities add together to replace $A+B=C$ in which case A, B and C are two positive odd numbers and one positive even number.

1. $A+B=2^X S$, where A, B and S are three relatively prime positive odd numbers, and X is a positive integer.

2. $A+2^Y V=C$, where A, V and C are three relatively prime positive odd numbers, and Y is a positive integer.

Consequently the proof for ABC conjecture, by now, it is exactly to prove the existence of following two inequalities.

(1). $2^X S \leq C_\varepsilon [\text{raf} (A, B, 2^X S)]^{1+\varepsilon}$ in which case $A+B=2^X S$, where A, B and S are three relatively prime positive odd numbers, and X is a positive integer.

(2). $C \leq C_\varepsilon [\text{raf} (A, 2^Y V, C)]^{1+\varepsilon}$ in which case $A+2^Y V =C$, where A, V and C are three relatively prime positive odd numbers, and Y is a positive integer.

Circumstances Relating to the Proof

Let us divide all positive odd numbers into two kinds of A and B, namely the form of A is $1+4n$, and the form of B is $3+4n$, where n is a positive integer or 0. From small to large odd numbers of A and of B are arranged as follows.

A: 1, 5, 9, 13, 17, 21, 25, 29, 33, 37, 41, 45, 49, 53, 57, 61, 65, 69…$1+4n$ …

B: 3, 7, 11, 15, 19, 23, 27, 31, 35, 39, 43, 47, 51, 55, 59, 63, 67…$3+4n$ …

We list also from small to great natural numbers, well then you would discover that Permutations of seriate natural numbers show up a certain law.
Thus it can be seen, leave from any given even number >2, there are finitely many cycles of (B, A) leftwards until (B=3, A=1), and there are infinitely many cycles of (A, B) rightwards.

Evidently even numbers contain prime factor 2, yet others are odd numbers in the sequence of natural numbers above-listed.

After each of odd numbers in the sequence of natural numbers is replaced by self-belongingness, the sequence of natural numbers is changed into the following forms.

A, 2¹×11, B, 2³×3, A, 2¹×13, B, 2²×7, A, 2¹×15, B, 2⁵, A, 2¹×17, B, 2²×9, A
2¹×19, B, 2³×5, A, 2¹×21, B, 2²×11, A, 2¹×23, B, 2⁴×3, A, 2¹×25, B, 2²×13, A
2¹×27, B, 2³×7, A, 2¹×29, B, 2²×15, A, 2¹×31, B, 2⁶, A, 2¹×33, B, 2²×17, A
2¹×35, B, 2³×9, A, 2¹×37, B, 2²×19, A, 2¹×39, B, 2⁴×5, A, 2¹×41, B, 2²×21, A
2¹×43, B, 2³×11, A, 2¹×45, B, 2²×23, A, 2¹×47, B, 2⁵×3, A, 2¹×49, B, 2²×25,
A, 2¹×51, B …→

1, 2¹, 3, 2², 5, 2¹×3, 7, 2³, 9, 2¹×5, 11, 2²×3, 13, 2¹×7, 15, 2⁴, 17, 2¹×9, 19,
2²×5, 2¹×11, 23, 2³×3, 25, 2¹×13, 27, 2²×7, 29, 2¹×15, 31, 2⁵, 33, 2¹×17,
35, 2²×9, 37, 2¹×19, 39, 2³×5, 41, 2¹×21, 43, 2²×11, 45, 2¹×23, 47, 2⁴×3, 49,
2¹×25, 51, 2²×13, 53, 2¹×27, 55, 2³×7, 57, 2¹×29, 59, 2²×15, 61, 2¹×31, 63,
2⁶, 65, 2¹×33, 67, 2²×17, 69, 2¹×35, 71, 2³×9, 73, 2¹×37, 75, 2²×19, 77,
2¹×39, 79, 2⁴×5, 81, 2¹×41, 83, 2²×21, 85, 2¹×43, 87, 2³×11, 89, 2¹×45, 91,
2²×23, 93, 2¹×47, 95, 2⁵×3, 97, 2¹×49, 99, 2²×25, 101, 2¹×51, 103 …→
If we regard an even number on the sequence of natural numbers as a symmetric center of odd numbers, then two odd numbers of every bilateral symmetry are A and B always, and a sum of bilateral symmetric A and B is surely the double of the even number. For example, odd numbers 23(B) and 25(A), 21(A) and 27(B), 19(B) and 29(A) etc are bilateral symmetries whereby even number $2^3 \times 3$ to act as the center of the symmetry, and there are $23+25=2^4 \times 3$, $21+27=2^4 \times 3$, $19+29=2^4 \times 3$ etc. For another example, odd numbers 49(A) and 51(B), 47(B) and 53(A), 45(A) and 55(B) etc are bilateral symmetries whereby even number 2×25 to act as the center of the symmetry, and there are $49+51=2^2 \times 25$, $21+27=2^2 \times 25$, $19+29=2^2 \times 25$ etc. Again give an example, 63(B) and 65(A), 61(A) and 67(B), 59(B) and 69(A) etc are bilateral symmetries whereby even number 2^6 to act as the center of the symmetry, and there are $63+65=2^7$, $61+67=2^7$, $59+69=2^7$ etc. Overall, if A and B are two bilateral symmetric odd numbers whereby 2^S to act as the center of the symmetry, then there is $A+B=2^{S+1}$. The number of A plus B on the left of 2^S is exactly the number of pairs of bilateral symmetric A and B. If we regard any finite-great even number 2^S as a symmetric center, then there are merely finitely more pairs of bilateral symmetric A and B, namely the number of pairs of A and B which express 2^{S+1} as the sum is finite. That is to say, the number of pairs of bilateral symmetric A and B for symmetric center 2^S is 2^{S-1}, where $S \geq 1$.
whereby $2^X S$ to act as the center of the symmetry, then $A+B=2^{X+1} S$. By now, let A plus $2^{X+1} S$ makes $A+2^{X+1} S$, then B and A+2$^{X+1} S$ are still bilateral symmetry whereby $2^{X+1} S$ to act as the center of the symmetry, and

$$B+(A+2^{X+1} S) = (A+B)+2^{X+1} S = 2^{X+1} S+2^{X+1} S = 2^{X+2} S.$$

If substitute B for A, let B plus $2^{X+1} S$ makes B+$2^{X+1} S$, then A and B+$2^{X+1} S$ are too bilateral symmetry whereby $2^{X+1} S$ to act as the center of the symmetry, and $A+ (B+2^{X+1} S) = 2^{X+2} S$.

Provided both let A plus $2^{X+1} S$ makes A+$2^{X+1} S$, and let B plus $2^{X+1} S$ makes B+$2^{X+1} S$, then A+$2^{X+1} S$ and B+$2^{X+1} S$ are likewise bilateral symmetry whereby $3 \times 2^X S$ to act as the center of the symmetry, and $(A+2^{X+1} S)+ (B+2^{X+1} S) = 3 \times 2^{X+1} S$.

Since there are merely A and B at two odd places of each and every bilateral symmetry on two sides of an even number as the center of the symmetry, then aforementioned $B+(A+2^{X+1} S)=2^{X+2} S$ and $A+(B+2^{X+1} S)=2^{X+2} S$ are exactly $A+B=2^{X+2} S$ respectively, and write $(A+2^{X+1} S)+(B+2^{X+1} S)=3 \times 2^{X+1} S$ down $A+B=3 \times 2^{X+1} S = 2^{X+1} S_t$, where S_t is an odd number ≥ 3.

Do it like this, not only equalities like as $A+B=2^{X+1} S$ are proven to continue the existence, one by one, but also they are getting more and more along with which X is getting greater and greater, up to exist infinitely more equalities like as $A+B=2^{X+1} S$ when X expresses every natural number.

In other words, added to a positive even number on two sides of $A+B=2^X S$, then we get still such an equality like as $A+B=2^X S$.

Whereas no matter how great a concrete even number $2^X S$ as the center of the symmetry, there are merely finitely more pairs of A and B which express $2^{X+1} S$ as the sum.

If X is defined as a concrete positive integer, then there are only a part of $A+B=2^X S$ to satisfy $\gcd (A, B, 2^X S) = 1$. For example, when $2^X S = 18$, there are merely $1+17=18$, $5+13=18$ and $7+11=18$ to satisfy $\gcd (A, B, 2^X S) = 1$, yet $3+15=18$ and $9+9=18$ suit not because they have common prime factor 3.

If add or subtract a positive odd number on two sides of $A+B=2^X S$, then we get another equality like as $A+2^Y V=C$. That is to say, equalities like as $A+2^Y V=C$ can come from $A+B=2^{X+1} S$ so as add or subtract a positive odd number on two sides of $A+B=2^{X+1} S$.

Therefore, on the one hand, equalities like as $A+2^Y V=C$ are getting more and more along with which equalities like as $A+B=2^{X+1} S$ are getting more and more, up to infinite more equalities like as $A+2^Y V=C$ exist along with which infinite more equalities like as $A+B=2^{X+1} S$ appear.

Certainly we can likewise transform $A+2^Y V=C$ into $A+B=2^X S$ so as add or subtract a positive odd number on the two sides of $A+2^Y V=C$.

On the other hand, if C is only defined as a concrete positive odd number, then there is merely finitely more pairs of A and $2^Y V$ which express C as the sum. But also, there is probably a part of $A+2^Y V=C$ to satisfy $\gcd (A, 2^Y V, C) = 1$. For example, when $C=25$, there are merely $1+24=25$, $3+22=25$, $7+18=25$, $9+16=25$, $11+14=25$ and $13+12=25$ to satisfy $\gcd (A, 2^Y V, C) = 1$, yet
5+20=25 and 15+10=25 suit not because they have common prime factor 5.

After factorizations of A, B, S, V and C in A+B=2^{X+1}S plus A+2^YV=C, if part prime factors have greater exponents, then there are both 2^{X+1}S ≥ raf (A, B, 2^{X+1}S) in which case A+B=2^{X+1}S satisfying gcf (A, B, 2^{X+1}S) =1, and C ≥ raf (A, 2^YV, C) in which case A+2^YV=C satisfying gcf (A, 2^YV, C) =1. For examples, 2^7 > raf (3, 5^3, 2^7) for 3+5^3=2^7; and 3^{10} > raf (5^6, 2^5×23×59, 3^{10}) for 5^6+2^5×23×59=3^{10}.

On the contrary, there are both 2^{X+1}S ≤ raf (A, B, 2^{X+1}S) in which case A+B=2^{X+1}S satisfying gcf (A, B, 2^{X+1}S) =1, and C ≤ raf (A, 2^YV, C) in which case A+2^YV=C satisfying gcf (A, 2^YV, C) =1. For examples, 2^2×7 < raf (13, 3×5, 2^2×7) for 13+3×5=2^2×7; and 3^4 < raf (11×7, 2^2, 3^4) for 11×7+2^2 = 3^4.

Since either A or B in A+B=2^{X+1}S plus an even number is still an odd number, and 2^{X+1}S plus the even number is still an even number, thereby we can use equality A+B=2^{X+1}S to express every equality which plus an even number on two sides of A+B=2^{X+1}S makes.

Consequently, there are infinitely more 2^{X+1}S ≥ raf (A, B, 2^{X+1}S) plus 2^{X+1}S ≤ raf (A, B, 2^{X+1}S) in which case A+B=2^{X+1}S.

Likewise, either 2^YV plus an even number is still an even number, or A plus an even number is still an odd number, and C plus the even number is still an odd number, so we can use equality A+2^YV=C to express every equality which plus an even number on two sides of A+2^YV=C makes.

Consequently, there are infinitely more C ≥ raf (A, 2^YV, C) plus C ≤ raf (A,
in which case \(A + 2^Y V = C \).

But, if let \(2^{X+1} S \geq \text{raf} (A, B, 2^{X+1} S) \) and \(2^{X+1} S \leq \text{raf} (A, B, 2^{X+1} S) \) separate, and let \(C \geq \text{raf} (A, 2^Y V, C) \) and \(C \leq \text{raf} (A, 2^Y V, C) \) separate, then for inequalities like as each kind of them, we conclude not out whether they are still infinitely more.

However, what deserve to be affirmed is that there are \(2^{X+1} S \geq \text{raf} (A, B, 2^{X+1} S) \) and \(2^{X+1} S \leq \text{raf} (A, B, 2^{X+1} S) \) in which case \(A + B = 2^{X+1} S \) satisfying \(\text{gcf} (A, B, 2^{X+1} S) = 1 \), and there are \(C \geq \text{raf} (A, 2^Y V, C) \) and \(C \leq \text{raf} (A, 2^Y V, C) \) in which case \(A + 2^Y V = C \) satisfying \(\text{gcf} (A, 2^Y V, C) = 1 \), according to the preceding illustration with examples.

\[\text{Proving } C \leq C_\varepsilon [\text{raf} (A, B, C)]^{1+\varepsilon} \]

Hereinbefore, we have deduced that both there are \(2^{X+1} S \leq \text{raf} (A, B, 2^{X+1} S) \) and \(2^{X+1} S \geq \text{raf} (A, B, 2^{X+1} S) \) in which case \(A + B = 2^X S \) satisfying \(\text{gcf} (A, B, 2^{X+1} S) = 1 \), and there are \(C \leq \text{raf} (A, 2^Y V, C) \) and \(C \geq \text{raf} (A, 2^Y V, C) \) in which case \(A + 2^Y V = C \) satisfying \(\text{gcf} (A, 2^Y V, C) = 1 \), whether each kind of them is infinitely more, or is finitely more.

First let us expound a set of identical substitution as the follows. If an even number on the right side of each of above-mentioned four inequalities added to a smaller non-negative real number such as \(R \geq 0 \), then the result is both equivalent to multiply the even number by another very small real number, and equivalent to increase a tiny real number such as \(\varepsilon \geq 0 \) to the exponent of
the even number, i.e. form a new exponent \(1+\varepsilon\), but when \(R=0\), the multiplied real number is 1, yet \(\varepsilon = 0\). Actually, aforementioned three ways of doing, all are in order to increase an identical even number into a value and the same.

Such being the case the identical substitution between each other, then we set about proving aforesaid four inequalities, one by one, thereafter.

(1). For inequality \(2^{x+1}S \leq \text{raf}(A, B, 2^{x+1}S)\), \(2^{x+1}S\) divided by \(\text{raf}(A, B, 2^{x+1}S)\) is equal to \(2^{x}S_{1}^{-1}~S_{n}^{-m-1}/A_{\text{raf}}B_{\text{raf}}\) as a true fraction, where \(S_{1}~S_{n}\) express all distinct prime factors of \(S\); \(t-1~m-1\) are respectively exponents of prime factors \(S_{1}~S_{n}\) orderly; \(A_{\text{raf}}\) expresses the product of all distinct prime factors of \(A\); and \(B_{\text{raf}}\) expresses the product of all distinct prime factors of \(B\).

After that, even number \(\text{raf}(A, B, 2^{x+1}S)\) added to a smaller non-negative real number such as \(R \geq 0\) to turn the even number itself into \([\text{raf}(A, B, 2^{x+1}S)]^{1+\varepsilon}\).

Undoubtedly there is \(2^{x+1}S \leq [\text{raf}(A, B, 2^{x+1}S)]^{1+\varepsilon}\) successively.

By now, multiply \([\text{raf}(A, B, 2^{x+1}S)]^{1+\varepsilon}\) by \(2^{x}S_{1}^{-1}~S_{n}^{-m-1}/A_{\text{raf}}B_{\text{raf}}\), then it has still \(2^{x+1}S \leq 2^{x}S_{1}^{-1}~S_{n}^{-m-1}/A_{\text{raf}}B_{\text{raf}}[\text{raf}(A, B, 2^{x+1}S)]^{1+\varepsilon}\).

Also let \(C_{\varepsilon} = 2^{x}S_{1}^{-1}~S_{n}^{-m-1}/A_{\text{raf}}B_{\text{raf}}\), we get \(2^{x+1}S \leq C_{\varepsilon} [\text{raf}(A, B, 2^{x+1}S)]^{1+\varepsilon}\).

Manifestly when \(R=0\), it has \(\varepsilon = 0\), and \(2^{x+1}S = C_{\varepsilon} [\text{raf}(A, B, 2^{x+1}S)]^{1+\varepsilon}\).

(2). For inequality \(C \leq \text{raf}(A, 2^{y}V, C)\), \(C\) divided by \(\text{raf}(A, 2^{y}V, C)\) is equal to \(C_{1}^{-1}~C_{e}^{-\varepsilon}/2A_{\text{raf}}V_{\text{raf}}\) as a true fraction, where \(C_{1}~C_{e}\) express all distinct prime
factors of C; \(j-1 \sim f-1\) are respectively exponents of prime factors \(C_1 \sim C_e\) orderly;
\(A_{raf}\) expresses the product of all distinct prime factors of A; and \(V_{raf}\) expresses the product of all distinct prime factors of V.

After that, even number \(raf (A, 2^Y V, C)\) added to a smaller non-negative real number such as \(R \geq 0\) to turn the even number itself into \([raf (A, 2^Y V, C)]^{1+\varepsilon}\).

Undoubtedly there is \(C \leq [raf (A, 2^Y V, C)]^{1+\varepsilon}\) successively.

By now, multiply \([raf (A, 2^Y V, C)]^{1+\varepsilon}\) by \(C_1^{j-1} \sim C_e^{f-1}/2A_{raf}V_{raf}\), then it has still \(C \leq C_1^{j-1} \sim C_e^{f-1}/2A_{raf}V_{raf} [raf (A, 2^Y V, C)]^{1+\varepsilon}\).

Also let \(C_\varepsilon = C_1^{j-1} \sim C_e^{f-1}/2A_{raf}V_{raf}\), we get \(C \leq C_\varepsilon [raf (A, 2^Y V, C)]^{1+\varepsilon}\).

Manifestly when \(R=0\), it has \(\varepsilon = 0\), and \(C = C_\varepsilon [raf (A, 2^Y V, C)]^{1+\varepsilon}\).

(3). For inequality \(2^{X+1} S \geq raf (A, B, 2^{X+1} S)\), \(2^{X+1} S\) divided by \(raf (A, B, 2^{X+1} S)\) is equal to \(2^X S_1^{t-1} \sim S_n^{m-1}/A_{raf}B_{raf}\) as a false fraction, where \(S_1 \sim S_n\) express all distinct prime factors of S; \(t-1 \sim m-1\) are respectively exponents of prime factors \(S_1 \sim S_n\) orderly; \(A_{raf}\) expresses the product of all distinct prime factors of A; and \(B_{raf}\) expresses the product of all distinct prime factors of B.

Evidently \(2^X S_1^{t-1} \sim S_n^{m-1}/A_{raf}B_{raf}\) as the false fraction is greater than 1.

Then, even number \(raf (A, B, 2^{X+1} S)\) added to a smaller non-negative real number such as \(R \geq 0\) to turn the even number itself into \([raf (A, B, 2^{X+1} S)]^{1+\varepsilon}\).

After that, multiply \([raf (A, B, 2^{X+1} S)]^{1+\varepsilon}\) by \(2^X S_1^{t-1} \sim S_n^{m-1}/A_{raf}B_{raf}\), then it has \(2^{X+1} S \leq 2^X S_1^{t-1} \sim S_n^{m-1}/A_{raf}B_{raf} [raf (A, B, 2^{X+1} S)]^{1+\varepsilon}\).

Let \(C_\varepsilon = 2^X S_1^{t-1} \sim S_n^{m-1}/A_{raf}B_{raf}\), we get \(2^{X+1} S \leq C_\varepsilon [raf (A, B, 2^{X+1} S)]^{1+\varepsilon}\).
Manifestly when \(R = 0 \), it has \(\varepsilon = 0 \), and \(2^{X+1}S = C_\varepsilon [\text{raf (A, B, } 2^{X+1}S)]^{1+\varepsilon} \).

(4). For inequality \(C \geq \text{raf (A, } 2^YV, C) \), \(C \) divided by \(\text{raf (A, } 2^YV, C) \) is equal to \(C_1^{j-1} \sim C_c^{f-1}/2A_{\text{raf}}V_{\text{raf}} \) as a false fraction, where \(C_1 \sim C_c \) express all distinct prime factors of \(C \); \(j-1 \sim f-1 \) are respectively exponents of prime factors \(C_1 \sim C_c \) orderly; \(A_{\text{raf}} \) expresses the product of all distinct prime factors of \(A \); and \(V_{\text{raf}} \) expresses the product of all distinct prime factors of \(V \).

Evidently \(C_1^{j-1} \sim C_c^{f-1}/2A_gV_q \) as the false fraction is greater than 1.

Then, even number \(\text{raf (A, } 2^YV, C) \) added to a smaller non-negative real number such as \(R \geq 0 \) to turn the even number itself into \([\text{raf (A, } 2^YV, C)]^{1+\varepsilon} \).

After that, multiply \([\text{raf (A, } 2^YV, C)]^{1+\varepsilon} \) by \(C_1^{j-1} \sim C_c^{f-1}/2A_{\text{raf}}V_{\text{raf}} \), then it has \(C \leq C_1^{j-1} \sim C_c^{f-1}/2A_{\text{raf}}V_{\text{raf}}[\text{raf (A, } 2^YV, C)]^{1+\varepsilon} \).

Let \(C_\varepsilon = C_1^{j-1} \sim C_c^{f-1}/2A_{\text{raf}}V_{\text{raf}} \), we get \(C \leq C_\varepsilon [\text{raf (A, } 2^YV, C)]^{1+\varepsilon} \).

Manifestly when \(R = 0 \), it has \(\varepsilon = 0 \), and \(C = C_\varepsilon [\text{raf (A, } 2^YV, C)]^{1+\varepsilon} \).

We have concluded \(C_\varepsilon = 2^XS_1^{t-1}S_n^{m-1}/A_{\text{raf}}B_{\text{raf}} \) and \(C_\varepsilon = C_1^{j-1} \sim C_c^{f-1}/2A_{\text{raf}}V_{\text{raf}} \) in preceding proofs, evidently each and every \(C_\varepsilon \) is a constant because it consists of known numbers.

Besides, for a smaller non-negative real number \(R \geq 0 \), actually, it is merely comparatively speaking, if \(\text{raf (A, B, } 2^{X+1}S) \) or \(\text{raf (A, } 2^YV, C) \) is very great a positive even number such as \(2 \times 11 \times 13 \times 99991 \times 99989 \times 99961 \times 99929 \times 99923 \times 87641 \times 72223 \times 8117 \times 12347 \), then even if \(R = 2015.11223 \sqrt{2} \), it is also a
smaller non-negative real number. Since raf \((A, B, 2^{X+1}S)\) or raf \((A, 2^YV, C)\) may be infinity, so \(R\) may tend to infinity.

Taken one with another, we have proven that there are both infinitely more \(2^{X+1}S \leq C_ε [raf (A, B, 2^{X+1}S)]^{1+ε}\) when \(X\) is each and every natural number, and infinitely more \(C \leq C_ε [raf (A, 2^YV, C)]^{1+ε}\) when \(C\) is each and every positive odd number \(\geq 1\).

But then, when \(X\) is a concrete natural number, even if the concrete natural number tends to infinity, there also are merely finitely more \(2^{X+1}S \leq C_ε [raf (A, B, 2^{X+1}S)]^{1+ε}\) in which case \(A+B=2^{X+1}S\).

When \(C\) is a concrete positive odd number, even if the concrete positive odd number tends to infinity, there also are merely finitely more \(C \leq C_ε [raf (A, 2^YV, C)]^{1+ε}\) in which case \(A+2^YV=C\).

To sum up, the proof is completed by now. Consequently the ABC conjecture does hold water.