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Abstract: Just as Maxwell's magnetic equations gaemtirely from dd = 0 of exterior calculus
applied to a gauge potential A, so too does thersdédaw of thermodynamics emerge from
applying dd=0 to a scalar potential s. If we repeat this as dds = dU = 0, then when the Gauss
|/ Stokes theorem is used to obtain the integrahtdation of this equation, and after breaking a
time loop that appears in the integral equation,fime that U behaves precisely like the internal
energy state variable, and that the second lawhefmhodynamics for irreversible processes
naturally emerges.
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1. Introduction

Nowhere is the power of differential forms geomeain determine physical results in
spacetime more apparent than for the magnetic naaauuation of classical electrodynamics.

One postulates a gauge potential one-foAr A dX' with an energy-dimensioned vector,

defines from this a field strength two-fornF =dA=}9 A, dX dX, and applies the

fundamental resulid=0 of exterior calculus that the exterior derivatonf an exterior derivative
is zero, to obtaindF =ddA=0 which contains Gauss’ and Faraday’s classical |&ovs
magnetism. Then, one applies an open triple iateégrthe monopole equation three-forms, also

applies the Gauss / Stokes theorﬁ;mlH :anM H whereH is a generalizeg-form andoM is
the closed exterior boundary of @+l-dimensional manifold, and thereby obtains
jﬂdF :ﬁ) F :O(:J‘J‘J. O) which are the classical magnetic equations ingnateform. Good
reviews of the underlying exterior calculus andeténtial forms are provided, for example, in
[1] Chapter 4 and [2] Chapter IV.4.

The result thatid=0 does not, however, stop with its use to obthdA=0. It applies to
anyp-form of any rank. In this paper, we shall demaatstthat by starting with a dimensionless
scalar potentials which is a zero-form, defining a one fotth= ds, next obtaining the two-form

dU =dds=0, and finally integrating with Gauss / Stokes v_fﬁdU :q‘>U ZO(ZIIO), the

energy-dimensioned vectdt, in U =U dx* turns out to behave like the internal energy of a

thermodynamic system, and the resulting integnahfequations when studied in detail, turn out
to contain the laws of classical thermodynamics.

In a nutshell: just add=0 when applied to a one-form potential \i& = ddA=0 and
then integrated contains the classical Gauss angdefenlaws for magnetism, this samé=0

when applied to a zero-form potential \d& = dds=0 and then integrated contains the laws of
classical thermodynamics.

2. The Reversible Entropy Equation

As just introduced, the equation from which wel wibceed is the two form equation:
dU = dds=0 (2.1)
as well as its integral formulation
HdU :qSU =0 (2.2)
which uses Gauss / Stokes. Let us start by devejdqg.1).

First, we may expand the differential forms toragt the tensor equation:



9,U,-9,U,=0,0,5-9,0,5=0. (2.3)

We define the four components of the prospectiterimral energy vector dd‘ = (U ,u) , and of
course the spacetime gradient operatpr (6t,EI) with 0, =d/0t. We shall work throughout
in flat Minkowski spacetime with the metric tensd)ilag(nw) =(1,— 1- 17 ). used to raise and

lower indexes.

For the space components, with=1, v =2 we obtaindU,-0J,=097-097=0,
and once all three components are obtained, thdilyegeneralizes to:

Oxu=0x0r=0 (2.4)
The latterOxO7 =0 of course is the mathematical identity that thd ofi the gradient of a
scalar is zero. The latter contains the physioatent [1xu =0, which tells is that the curl of
the prospective internal energy three-vectds zero.

With £ =0, v=k=1,2,3we obtaindU, -0U,=00,7-0,07 =0, which becomes:

-0,u-0U ZEDT—DEZO. (2.5)
ot ot
The latter equation is simply the commutator idgnt[idt,D]r:O, which together with

Ox0Or =0 is the expansion afldr =0.

Putting (2.4) and (2.5) together showing only’ gives us the pair of differential
equations which analogize via the differential faorl (B =0 and0,B + OXE =0, namely:

Oxu=0 2.6)
ou+0U =0 '
Now let’s turn to the integral equation (2.2).
Expanding the forms in (2.2)
[[%(0,u,-0,u,)dxdX =¢ U, dX =0. 2.7)

Separating space and time components and accodaotialj index permutations we obtain:



[[(80u, —0,U,) bk
+[[(91, o M) dxdx +[[(9,U,=0 ,U,) d¥ di+[[(9 ;U0 ,U) dR di. (2.8)
=PUd +pU, dX =0

The covariant (Iower-indexed)Uk:(U,—u), and of course the differential elements

anticommutedx”dX =—-dX dX. So separating the time integral from the spategral in the
top line and being careful with the signs, this rbaywritten as:

[(J(u+0u)@)a - [[(Oxu)ms=fud-fumd = (2.9)

Now, let us spend a moment on the tej;rtﬂdt , Which is something of an oddity because

it represents @&losed loop line integral over timef the prospective state variable for internal
energy. We of course know that the ability to élaa closed time loop is fictive in the natural
world, but so too is a reversible thermodynamiccpss. So let's follow this through: The

integral qSUdt says that we start with the prospective interm&rgyU at time t=0, then move
forward in time, but then eventually loop aroundlalome back ta=0. So whatever we do
between the first time 0 and the second time O vgllreversed, because we arrive right back at
time 0. So the integral”)f)Udt is, in many ways, the very definition of a revaesprocess.And
this, of course, is fictive, because time is orkperienced in one direction. This is the first
indication we have of some thermodynamic possiédit Shortly, we shall break this time loop
to establish Eddington’s “arrow of time,” but befowe do so, we will want to make a

connection to entrop$ while (2.9) still represents a reversible procéssiause in a reversible
process,TdS= 0 Q is an equality rather than an inequality, whérns the temperature) is the

heat, ando which operates on heat is an inexact differeiaich means that the heat upon
which it operates is not a thermodynamic statetfanc Once the process becomes irreversible,
then the entropy law becom@&8S= J Q, but this inequality should be naturally supplmdthe

spacetime geometry, not inserted by hand.
We start with the first law of thermodynamics whige shall write as

dU = 5Q-JW. (2.10)

The exact differential form for internal energy d&J :%(O#UV —aVU#)dx" dX which we can

compact using a commutator U =39,,U,dx'dX, while 6Q and dW are the inexact
differential forms for heat and work and therefare not state functions. We can write these in
expanded form a®Q=14,Q,dxX' dX and dW =34 W, dX dk. By putting a negative sign in

front of the work differential in (2.10) we are repenting systems which gain heat, but perform
work on (lose work energy to) the environment. Tfepresent the components of the



contravariant heat and work four-vectors we maylesn®” =(Q,q) and W* =(W,w). The

exact differential as already notedds =(9,,0). And we shall usey, =(&,,8) to represent the

components of the inexact differentials. So expamndlU = 5Q - W and using the foregoing,
we may write the first law in tensor format as:

oY, =9,Q; —9W, - (2.11)

The Ok components of the above, contrast (2.5), are

0, —0U,=0Q =9 Qy— (W, — O W) =-0 u-0 U=-0g -8 Q- Sw +3 W\, (2.12)

The 12 components of (2.11) ad¢J, -0 U, =90Q,-LQ,—d W+ W. and this generalizes to:
—Oxu=-0xq+dxw. (2.13)

We then use (2.12) and (2.13) in (2.9) to obtain:

[([(aa+3Q-qw-aw))dt - [[(5xq-&xw) @S =¢ Udt-Gud = C. (2.14)

Now that we have a reversible equation which dostag+06Q we turn to entropy. As
already noted after (2.9), whenever a processvexsile as is (2.14) because of the closed time
loop in qSUdt , the entropy is related to heat and temperatutbdgdifferential forms:

TdS=45C. (2.15)

Here, the entropys= S, dX is also a one-form with four-vector components thie shall write
as S =( Ss). From the above we extract the tensor expression:

10,8,=9,Q- (2.16)
The Ok relationship is then:

T(0,5-0,$9)=9,Q-9,Q=- [as+0 $=-59-3 ¢ (2.17)
while the 12 index equation (alS2 -0, S) =0, Q-0, G generalizes for all space indexes to:
-TOxs=-0x(. (2.18)

We then use (2.17) and (2.18) to replace all thz ime(2.14) with entropy, thus advancing to:



[([T((05+D0S)-aw-8W) ) ot - [[( TIxs-xw) @S = U ~urd = C (2.19)

Now that we have included the reversible entraggtionship in this reversible equation,
it is time to see what happens when we make theesipversible.

3. The Irreversible Entropy Equation

As we observed at (2.9), the integtﬁlUdt which still appears in (2.19) informs us that

this equation is for a fictive reversible processhis is why we able to properly utilize the
reversible entropy relationshipdS=9J C of (2.15) in (2.19). Now let us break this tinzop,

and establish an arrow of time. Specifically, et now replace@)Udt - I;Udt with an

irreversibletime integral. What can we say aba@ﬂdt and I;Udt in relation to 0 and to one

another? IfU represents internal energy, then given that eesrgre always represented as
positive or zeroU (t) >0 at all timest. However, incﬁUdt we are starting at a given tinre0,

moving somewhere else in time, and then fictiveljuming to the same tinte0 at which we
started. So the time loop integrq‘BUdt :J'OOUdt = 0, irrespective of the energy. On the other

hand, if the definite time at the upper bound i[ﬁ;Udt Is greater than or equal to zero, i.e., if

t=0, then so tooJ;Udt = 0. Therefore:
[ludt=fud =0 (3.1)
. > ) )

So if we now substitut@Udt - I;Udt with t>0 into (2.19), then the term on the right

will become greater than or equal to 0, and towapthis, we need tsimultaneouslyeplace the
final =0 with a=0. Doing so, we obtain:

[([(T(05+D08)-aw-aw)@i)dt- [[(TOxs-8xw)@S= [ Ud-fud > C. (3.2)

Now, we have an expression which expressly inclahopy terms, and by breaking the
time loop and into an arrow of time, we have somgressions involving these entropy terms
being=>0. So we need to see if the second law relatiids= 6 Q and / ordS= 0 are included
in (3.2) in some clear form. First, as is don¢hé stage of developing for Maxwell’s integral
from differential forms, let us multiply throughl aif (3.2) by d/ dt, thus:

df([(T(6.5+09)-qw-3w) ml)—%H(Tst—éxw) ms:%j;um—ggSu @ >0. (3.3)



In what is now(d / dt) J';Udt we have an offsettingtt / dt =1. And we may also applyl_[ =1
to both this and the first term. So we then have:

d d
[(T(0s+OS)-aqw-3awW)ml —aﬂ(mxs—axw) [@S=U —Etg'm @ 0. (3.4)

Now let’s look at the terms to the left of the absign. On the right we have an integral
ﬂ (TD ><s—6><w) [dS over anopensurface. The open surface is bounded by a closg] yet
the line integral[ (T (9,s+09 ~dw -5 W on the left is also taken over apenpath. So

this does not match up. What do we do? The satuatisn is encountered in Maxwell’s
equations. For example, Gauss’ Law for magnettjﬁ_fn‘B [dS=0 is defined over a closed

surface. But if one actually develops Faraday'sv ldrom the differential forms
_U dF = # F =0, the equation one first arrives atc_fEE @l =-(d /dt)# B[ES containing the
sameq;ﬁB [dS. But the boundaries are mismatched. So to nthtrn up we convert the closed

surface to an open surface, and thereby ob@EﬁﬂI :—(d /dt)”BmS which is Faraday’s

law. Then, the path of the closed line integral ba identified with the boundary of the open
two-dimensional surface through which the magnigtid is flowing. The same exercise occurs
when developing Ampere’s law. So in (3.4), we né&ednatch up the perimeter of the open

boundary inH(TD xs=8xw)dS with a closed loop irf(T (0,s+09-ow-8WMd . Here,

we need to turn the open line integral into a aogee integral. Making this boundary change,
(3.4) now becomes:

$(T(9,5+08) - qw -5 W)l —%H(TDXS-&W) [@S=u —%cﬁu @ 0. (3.5)

Because there are now closed loop integralsath sidesof the above equality following
the change in (3.5), we need to see if any ternghihmutually cancel. At this point, let us
backtrack a bit. Writing (2.12) asow -dW =-9q-6Q+d,u+0U, we replace the work

terms in the loop integral and ugg=0a/adt to obtain:
¢ T(9,s+05)-3q-8Q+ Lu+OU ml—iﬂ(mxs—sxw)ms:u —ﬂgSuml >0. (3.6)
‘ ‘ ot dt dt

Surely enough, the time-dependeqc,t(alat)u @l term now on the left of the equality is the

same as the ten(d / dt)gﬁu [dl on the right of the equality. But because ofitfeqjuality >0,
we need to be careful how we work with this eqlenak.

The best approach is to now separate (3.6) irgotw inequalities with the time-
derivative outside each integral, and then to tedllais matching term in each, thus:

6



qS%u @l = ~(T (9,5+0S) - g -8Q+ 0 U) +%”(TD><S-6><W)E:IS

U=—a¢uldl
ait
Then, we may once again recombine these two ingigsahs such:
d d
U 2&4)” @l = ~(T(9,s+0S)~dq-3Q+ 0V ) +aﬂ(mxs—5xw) dS. (3.8)

Then, we us&@ (ats+ O S) =0,q+0 C from (2.17) to backtrack and further cancel terthss:
U zigﬁumﬂz—g}mu (ol +Eﬂ(mxs—5xw)ms. (3.9)
dt dt

Next, the term containin(ﬂ(TD xs—GXW)EjS above originated in and is equal to the

term J'J.(Dxu)ms in (2.9). But in (2.4) we found that by mathernati identity,
Oxu=0x0r=0. So this term

%”(Tst—éxw)WS:%II(DXU)mS:”(Tst—éxw)EtB:II(Dxu)EtB: 0 (3.10)

is always zero by1x[7 =0, in all places at all times. We could have zertiesl out back at
(2.9), but kept this in place so that we would bkedo obtain these entropy and work identities
and properly match up all the integral boundari€a returning the remainind, to inside the

line integral, this further simplifies (3.9) to:
Uz antu el > —<j'> OU @ . (3.11)

Finally, we forward track again. From (2.12) weaynseparate the time-dependent
relationshipd,u = 9,9 - ow from the space-dependefnflU =-8Q+8W to rewrite the above:

U >¢(qa-aw)m = §(-8Q+3W) ! (3.12)

And from (2.17) we may also separate the time-dépend,q =Td,s from the space dependent
0Q =TOS and return the entropy terms back into (3.12)sthu

U>@(To,s-dw) @l > $(-TOS+3 W el (3.13)



It will be seen that all of these terms were ordjynin (3.5) before we backtracked and
then returned. Indeed, with the exceptionlbfwhich still remains, all these terms were in

qS(T (0,s+0S)-dw-8W)[d |, and everything else has dropped out while inptfueess the
irreversible inequality has been resituated. Theva is a precise restatement of the original
reversible”dU :qSU =0 of (2.2) following full development and canceltati of terms, and

after replacing the time loop integral with an arrof time integral viagSUdt - j;Ud . If one

were to revert the inequalities in the above bac&dualities, then this would be completely the
same as”du = <j§U =0, and (3.13) would then describe a fictive revdesgrocess.

4. The Second Law of Thermodynamics

At this point, let us focus on the latter ineqtyaln (3.13), and move everything to the
left side, thus:

$(Tos+TOS-qw -8 W)l 20. (4.2)

Also, let's return spacetime indexes so we can @xaroovariant behaviors in spacetime and
using diag(77,, ) = (1~ 1~ 1~ ) to make sure the signs are correct. This yields:

$(-T0,S + 10, $+, W=, Wi =¢( , $-J, Wtk =¢( IS, -4, W;)0d“=20.(4.2)

Now let's compact this into the differential oneffo equation. This is a bit different
from a usual differential form, because there i® dmose (uncontracted) time index. The
expressiond,,S, is a time component (and really, the time bivectof a second rank

antisymmetric tensor. Similarly fog, W,;, except this contains an inexact differential. In
general, if we only contract one index of such aste S, =-§,, then §, = §, dX and

therefore§, = §,, dX is the time component of a four-vector of diffefenforms. So with that,
(4.2) compacts fully to:

$(Tds -owW)=0. (4.3)

When the inexact work differentia, =0, this reduces to:

ngs) >0. (4.4)

And this is thesecond law of thermodynamics for an irreversiblegeiss At no point along the
way did we have to put this inequality into thisiation by hand. This inequality was a natural
result of developing the differential form equatiaiy =dds=0 (2.1) in the integral form



HdU :qSU =0 of (2.2) and converting the resulting reversibiaet loop that emerged to an

arrow of time,SBUdt - I;Udt. Were we to turnJ':)Udt back tocﬁUdt, everything would again
become reversible, and (4.4) would become the/éaﬁ d§ =0.

5. Conclusion

Just as Maxwell's classical magnetic equationsrgenentirely fromdd=0 of exterior
calculus applied to a gauge potentfal so too does classical thermodynamics emerge from
applyingdd=0 to a scalar potentia If we represent this adds= dU=0, thenU behaves
precisely as the internal energy state variabld,aiter breaking a time loop that appears in the

integral equation”dU :qSU =0 to make the this equation irreversible, we obthm second

law of thermodynamics in the formﬁ d§ =0, which governs the entropy state varial§ge for
an irreversible system.
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