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THE CLASSICAL MAXWELL ELECTRODYNAMICS AND THE ELECTRON

INERTIA PROBLEM WITHIN THE FEYNMAN PROPER TIME PARADIGM

ANATOLIJ K. PRYKARPATSKI

Abstract. The Maxwell electromagnetic and the Lorentz type force equations are derived in
the framework of the R. Feynman proper time paradigm and the related vacuum field theory
approach. The electron inertia problem is analyzed within the Lagrangian and Hamiltonian
formalisms and the related pressure-energy compensation principle. The modified Abraham-
Lorentz damping radiation force is derived, the electromagnetic elctron mass origin is argued.

1. Introduction

The elementary point charged particle, like electron, mass problem was inspiring many physicists
[30] from the past as J. J. Thompson, G.G. Stokes, H.A. Lorentz, E. Mach, M. Abraham, P.A. M.
Dirac, G.A. Schott and others. Nonetheless, their studies have not given rise to a clear explanation
of this phenomenon that stimulated new researchers to tackle it from different approaches based
on new ideas stemming both from the classical Maxwell-Lorentz electromagnetic theory, as in
[11, 20, 21, 47, 18, 19, 24, 25, 31, 32, 38, 39, 41, 42, 43, 45, 54, 53, 55, 56, 59], and modern quantum
field theories of Yang-Mills and Higgs type, as in [3, 26, 27, 58] and others, whose recent and
extensive review is done in [57].

In the present work I will mostly concentrate on detail analysis and consequences of the Feynman
proper time paradigm [18, 19, 13, 14] subject to deriving the electromagnetic Maxwell equations
and the related Lorentz like force expression considered from the vacuum field theory approach,
developed in works [8, 49, 10, 6], and further, on its applications to the electromagnetic mass origin
problem. Our treatment of this and related problems, based on the least action principle within the
Feynman proper time paradigm [18], has allowed to construct the respectively modified Lorentz
type equation for a moving in space and radiating energy charged point particle. Our analysis
also elucidates, in particular, the computations of the self-interacting electron mass term in [38],
where there was proposed a not proper solution to the well known classical Abraham-Lorentz
[1, 35, 36, 37] and Dirac [12] electron electromagnetic ”4/3-electron mass” problem. As a result of
our scrutinized studying the classical electromagnetic mass problem we have stated that it can be
satisfactory solved within the classical H. Lorentz and M. Abraham reasonings augmented with the
additional electron stability condition, which was not taken before into account yet appeared to be
very important for balancing the related electromagnetic field and mechanical electron momenta.
The latter, following recent enough works [54, 41], devoted to analyzing the electron charged shell
model, can be realized within there suggested pressure-energy compensation principle, suitably
applied to the ambient electromagnetic energy fluctuations and the own electrostatic Coulomb
electron energy.

2. The Lorentz type force analysis within the Feynman proper time paradigm

As it was reported by F. Dyson [13], the original Feynman approach to derivation of the elec-
tromagnetic Maxwell equations was based on a priori general form of the classical Newton type
force, acting on a charged point particle moving in three-dimensional space R

3 endowed with the
canonical Poisson brackets on the phase variables, defined on the associated tangent space T (R3).
As a result of this approach there was derived only the first part of the Maxwell equations, as the
second part, owing to F. Dyson [13], is related with the charged matter nature, which appeared
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to be hidden. Trying to complete this Feynman approach to derivation of the electromagnetic
Maxwell equations more systematically we have observed [49] that the original Feynman’s calcula-

tions, based on the Poisson brackets analysis, were performed on the tangent space T (R3) which is,
subject to the problem posed, physically not proper, as the true Poisson brackets can be correctly

defined only on the coadjoint phase space T ∗(R
3
), as it follows from the classical Lagrangian equa-

tions and the related Legendre type transformation [2, 4, 23, 5] from T (R
3
) to T ∗(R

3
). Moreover,

within this observation, the corresponding dynamical Lorentz type equation for a charged point
particle should be written for the particle momentum, not for the particle velocity, whose value
is strongly defined only with respect to the proper relativistic reference frame, associated with
the charged point particle owing to the fact that the searched for Maxwell equations are Lorentz
invariant.

Thus, from the very beginning, we will reanalyze the structure of the Lorentz type force exerted
on a moving charged point particle with a charge ξ ∈ R by other point charged particle with a
charge ξf ∈ R, making use of the classical Lagrangian approach, and rederive the corresponding
electromagnetic Maxwell equations. The latter appears to be strongly related with the charged
point mass structure of the electromagnetic origin as it was suggested before by R. Feynman and
F. Dyson.

Consider a motion of a charged point particle ξ ∈ R (we will further identify a point charged
particle with its charge value) located at point r ∈ R

3 at time t ∈ R and which is under influence

of a smooth vector magnetic potential A ∈ T ∗(R
3
), measured with respect to a reference frame.

Taking into account the gauge structure of the magnetic potential, it is natural [2, 10, 23, 33, 52]
to consider the extended phase space M := R

3 × G with an abelian gauge group expG, where
G is the linear space R acting on R

3 by means of smooth vector fields on R
3 and next to define

the related fiber bundle π : M → R
3 with the structure group G. Having assumed that the gauge

group G action is naturally lifted on the cotangent space T ∗(M) equivariantly subject to the
natural G-invariant canonical symplectic structure

ω(2)(r, p; g, y) : = d pr∗α(1)(r, p; g, y) =< dp,∧dr > +(2.1)

+ < dy,∧g−1dg >G + < ydg−1,∧dg >G

for all (r, p; g, y) ∈ T ∗(M), where α(1)(r, p; g, y) :=< p, dr > + < y, g−1dg >G is the corresponding
Liouville form on M, one can define on the fibered manifold M a related connection differential
form

(2.2) σ(1)(r; g) := g−1 < ξA(r), dr > g + g−1dg,

with ξ ∈ G∗, (r, g) ∈ R
3 × G,< ·, · > being the scalar product in E

3. Its curvature 2-form
Σ(2) ∈ Λ2(R3)⊗ G equals, by definition,

(2.3) Σ(2)(r) := dσ(1)(r; g) + σ(1)(r; g) ∧ σ(1)(r; g) = ξ

3∑

i,j=1

Fij(r)dr
iΛdrj ,

where

(2.4) Fij(r) :=
∂Aj

∂ri
−

∂Ai

∂rj

for i, j = 1, 3 is the so-called electromagnetic field tensor with respect to the reference frame K(t; r).
As an element ξ ∈ G∗ is still not fixed, it is natural to apply the standard [2, 4, 5] invariant

Marsden-Weinstein-Meyer reduction to the orbit factor space P̃ξ := Pξ/Gξ subject to the related
momentum mapping l : T ∗(M) → G∗, constructed with respect to the suitably reduced canonical
Poisson bracket

{ri, rj} = 0 = {pi, pj},(2.5)

{pi, r
j} = δji ,

on T ∗(R
3
) for i, j = 1, 3, where, by definition, ξ ∈ G∗ is constant, Pξ := l−1(ξ) ⊂ T ∗(M) and

Gξ = {g ∈ G : Ad∗Gξ} is the isotropy group of the element ξ ∈ G∗. As a result of this Marsden-

Weinstein redaction one obtains that Gξ ≃ G, the factor-space P̃ξ ≃ T ∗(R
3
) and the Poisson
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brackets (2.5) on T ∗(R3) becomes on the reduced manifold P̃ξ as follows:

{ri, rj}ξ = 0, {pj, r
i}ξ = δij ,(2.6)

{pi, pj}ξ = ξFij(r)

for i, j = 1, 3, considered with respect to the reference frame K(t; r). It is now worth to observe
that the Poisson brackets (2.6) can be equivalently rewritten as

{ri, rj}ξ = 0 = {π̃p,i, π̃p,j},(2.7)

{π̃p,i, r
j} = δji

for i, j = 1, 3, if to define a vector of new momentum coordinates

(2.8) π̃p := p+ ξA(r)

at any point (r, p) of the cotangent space T ∗(R
3
).

Proceed now to a dynamical description of the interaction between two moving charged point
particles ξ and ξf , moving respectively, with the velocities u := dr/dt and uf := drf/df with
respect to the reference frame K(t; r). To the regret there is a fundamental problem how to write
down correctly a physically suitable action functional and to formulate the related least action
condition. Namely, there exist there evident possibilities:

(2.9) S(t)
p :=

∫ t2

t1

dtL(t)
p (r; dr/dt)

on a temporal interval [t1, t2] ⊂ R with respect to the laboratory reference frame K(t; r),

(2.10) S(t′)
p :=

∫ t′2

t′
1

dt′L(t′)
p (r; dr/dt′)

on a temporal interval [t′1, t
′
2] ⊂ R with respect to the moving reference frame K(t′; r − rf )

(2.11) S(τ)
p :=

∫ τ2

τ1

dtL(τ)
p (r; dr/dτ )

on a temporal interval [τ1, τ2] ⊂ R with respect to the proper time reference frame K(τ ; r − rf ),
naturally related with the moving charged point particle ξ.

It was first observed by A. Poincare and by H. Minkowski [44, 20, 21] that the temporal
differentials dt and dt′ are not closed differential one-forms, physically meaning that a particle
can traverse many different paths in space R

3 during any given proper time interval dτ , naturally
related with its motion. This fact was stressed [15, 16, 40, 44, 46] by A. Einstein, H. Minkowski
and A. Poincare, and later deeply analyzed by R. Feynman, who argued [18] that the dynamical
equation of a moving point charged particle is physical sensible only with respect to the proper time
reference frame of this particle. This Feynman’s proper time reference frame paradigm was recently
further elaborated and applied both to the electromagnetic Maxwell equations in [20, 21] and to
the Lorentz type equation for a moving charged point particle under external electromagnetic field
in [49, 10, 6, 48]. As it was there argued from a physical point of view, the least action principle
should be applied only to the expression (2.11) written with respect to the proper time reference
frame K(τ ; r− rf ), whose temporal parameter τ ∈ R is independent of an observer and is a closed
differential one-form. Owing to these properties this action functional is also mathematically
sensible, what on part reflects the A. Poincare and H. Minkowski observation that the infinitesimal
quadratic interval

(2.12) dτ2 = (dt′)2 − |dr − drf |
2,

relating to each other the reference frames K(t′; r−rf ) and K(τ ; r−rf ), can be invariantly used for
the four-dimensional relativistic geometry. As the most natural way to contend with this problem
is to consider, as first, the quasi-relativistic dynamics of the charged point particle ξ with respect
to the moving reference frame K(t′; r−rf ) subject to which the charged point particle ξf is at rest.

The latter makes it possible to write down a suitable up to O(1/c2) as the light velocity c → ∞

action functional (2.10), where the Lagrangian function L
(t′)
p (r; dr/dt′) is naturally chosen as

(2.13) L(t′)
p (r; dr/dt′) := m′(r) |dr/dt′ − drf/dt

′|
2
/2− ξϕ′(r).
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with m′(r) ∈ R+, being the charged particle ξ mass parameter and ϕ′(r), being the potential
function generated by the charged particle ξf at a point r ∈ R

3.
Since the standard temporal relationships between reference frames K(t; r) and K(t′; r − rf ) :

(2.14) dt′ = dt(1− |drf/dt
′|
2
)1/2,

as well as between the reference frames K(t′; r − rf ) and K(τ ; r − rf ) :

(2.15) dt = dt′(1 − |dr/dt′ − drf/dt
′|
2
)1/2,

give rise up to O(1/c2) as c → ∞, to dt′ ≃ dt and dτ ≃ dt′, respectively, it is easy to obtain that

the least action condition δS
(t′)
p = 0 is equivalent to the dynamical equation

(2.16) dπp/dt = ∇L(t′)
p (r; dr/dt) = ∇m(

1

2
|dr/dt− drf/dt|

2
)− ξ∇ϕ(r),

where we have defined the generalized momentum as

(2.17) πp :=
∂L

(t′)
p (r; dr/dt)

∂(dr/dt)
= m(dr/dt − drf/dt),

having dropped the dash signs and denoted by ”∇” the usual gradient operator in E
3. Having

equated the momentum expression (2.17) to that of (2.8) one obtains that

(2.18) m = −ξϕ(r),

since there holds the relationship

(2.19) ϕ(r)drf /dt = A(r).

The latter relationship is well known in the classical electromagnetic theory under the Lorentz
condition

(2.20) ∂ϕ(r)/∂t+ < ∇, A(r) >= 0

yet the expression (2.18) is very nontrivial and relates the mass of the charged point particle
ξ with the electric potential, generated by the charged point particle ξf . As it was argued in
articles [8, 49, 48], the mentioned above mass phenomenon is closely related with the classical
electromagnetic mass problem and reflects from a physical point view its deep relationship with
the matter.

Before proceeding to further analyzing the completely relativistic the charge ξ motion under
regard, we preliminarily substitute the mass expression (2.18) into the quasi-relativistic action
functional (2.10) with the Lagrangian (2.13). As a result we obtain two possible action functional
expressions, taking into account two main temporal parameters choices:

(2.21) S(t′)
p = −

∫ t′2

t′
1

ξϕ′(r)(1 +
1

2
|dr/dt′ − drf/dt

′|
2
)dt′

on an interval [t′1, t
′
2] ⊂ R, or

(2.22) S(τ)
p = −

∫ τ2

τ1

ξϕ′(r)(1 +
1

2
|dr/dτ − drf/dτ |

2
)dτ

on an [τ1, τ2] ⊂ R. It is easy to observe that the first expression (2.16) fails to satisfy upon trans-
forming it to the proper time relativistic representation form the suitable quasi-relativistic limit
for the Lagrangian function (2.13). In contrary to that above the direct relativistic generalization
of (2.22) follows:

S(τ)
p = −

∫ τ2

τ1

ξϕ′(r)(1 +
1

2
|dr/dτ − drf/dτ |

2
)dτ ≃(2.23)

≃ −

∫ τ2

τ1

ξϕ′(r)(1 + |dr/dτ − drf/dτ |
2
)1/2dτ =

= −

∫ τ2

τ1

ξϕ′(r)(1 −
1

2
|dr/dt′ − drf/dt

′|
2
)−1/2dτ = −

∫ t′2

t′
1

ξϕ′(r)dt′,

giving rise exactly to the correct, from physical point of view, relativistic action functional form
(2.10), suitably transformed before to the proper time reference frame representation (2.11) within
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the mentioned already Feynman proper time paradigm. Thus, we have stated that the true ac-
tion functional procedure consists in physically motivated choosing either the action functional
expression form (2.8) or that (2.10), its next transformation to the proper time action functional
representation form (2.11) within the Feynman paradigm, and applying to it the standard least
action principle.

Concerning the discussed above problem of description the motion of a charged point particle ξ
under the electromagnetic field generated by a moving in space other charged point particle ξf we
need to mention that we have chosen the quasi-relativistic functional expression (2.13) in the form
(2.10) with respect to the moving reference frame K(t′; r− rf ), because its form has from physical
point of view a natural and approved argumentation, taking into account that the charged point
particle ξf is then at rest.

Based now on the found above relativistic action functional expression

(2.24) S(τ)
p := −

∫ τ2

τ1

ξϕ′(r)(1 + |dr/dτ − drf/dτ |
2
)1/2dτ

written with respect to the proper reference from K(τ ; r − rf ), one finds the following evolution
equation:

(2.25) dπp/dτ = −ξ∇ϕ′(r)(1 + |dr/dτ − drf/dτ |
2
)1/2,

where the generalized momentum is given by the relationship (2.17):

(2.26) πp = m(dr/dt− drf/dt).

Making use of the relativistic transformation (2.14) and the next one (2.15), the equation (2.25)
easily transforms to

(2.27)
d

dt
(p+ ξA) = −∇ϕ(r)(1 − |uf |

2
),

where we took into account the definitions: (2.18) for the charged particle ξ mass, (2.19) for the

magnetic vector potential and ϕ(r) = ϕ′(r)/(1 − |uf |
2
)1/2 for the scalar electric potential with

respect to the laboratory reference frame K(t; r). The equation (2.27) can be further transformed,
using the elementary vector algebra, to the classical Lorentz type form:

(2.28) dp/dt = ξE + ξu×B − ξ∇ < u− uf , A >,

where

(2.29) E := −∂A/∂t−∇ϕ

is the related electric field and

(2.30) B := ∇×A

is the related magnetic field, exerted by the moving charged point particle ξf on the charged
point particle ξ with respect to the laboratory reference frame K(t; r). The Lorentz type force
equation (2.28) was before obtained in [49, 10], written with respect to the moving reference frame
K(t′; r − rf ), and recently reanalyzed in [6, 47], being derived in part from the classical Ampere’s
reasonings [50, 51] subject to constructing the magnetic force between two neutral conductors with
stationary currents.

Concerning the Lorentz type force equation (2.28) it is a natural problem to analyze its form
in the case of many external charged point particles ξj ∈ R, j ∈ Z+, moving with velocities
drj/dt, j ∈ Z+, with respect to the laboratory reference frame K(t; r). As in this case there is
no possibility to choose a common moving reference frame K(t′; r − rf ) with respect to which
all of the charged particles ξj , j ∈ Z+, would be in rest, none the less we are endowed with the
unique proper time parameter τ ∈ R, related to each charged point particle ξj , j ∈ Z+, via the
infinitesimal relativistic transformation expressions

(2.31) dt′j = dτ (1− |dr/dt′j − drf/dt
′
j |
2)−1/2

to the moving reference frames K(t′j ; r − rj), j ∈ Z+, fixing the τ -clock for all charged particles
under regard. Thus, making use of the same scheme as demonstrated above, we can now write
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down jointly with the superposition principle, the net Lorentz type force expression for the charged
point particle ξ as

(2.32) dp/dt = ξĒ + ξu× B̄ − ξ∇
∑

j∈Z+

< u− uj, Aj >,

where, by definition, we put

(2.33) Ē :=
∑

j∈Z+

Ej , B̄ =
∑

j∈Z+

Bj ,

and Aj ∈ T ∗(R3), j ∈ Z+, are magnetic vector potentials, generated by the set of distant charged
point particles ξj , j ∈ Z+. If to take into account that this system of external charges is in average
neutral, that is

∑
j∈Z+

ξj ≃ 0, and their spatial distribution is, in average, symmetric subject to

the charges signs and velocities, one obtains from (2.32) that

(2.34) dp/dt = ξ Ē + ξu× B̄,

coinciding exactly with the classical Lorentz type expression for the charged point particle ξ moving
under the influence of external electromagnetic field with respect to the laboratory reference frame
K(t; r).

The obtained equation (2.34) can be physically naturally interpreted as the Lorentz type force,
exerted by a virtual net charge ξ at rest and located at the common charges system centrum with
respect to the laboratory reference frame K(t; r). The latter makes it possible to write down the
corresponding effective relativistic invariant action functional expression

(2.35) S̄(t)
p :=

∫ t2

t1

dt(mξ+ < Ā, dr/dt > −ξ ϕ̄)

on an interval [t1, t2] ⊂ R with respect to the laboratory reference frame K(t; r). Here we denoted
by mξ ∈ R a possible internal charged particle mass energy value and as before, ϕ̄ :=

∑
j∈Z+

ϕj ,

Ā :=
∑

j∈Z+
Aj , and took additionally into account the suitable relativistic electric potentials

transformations from the moving reference frames K(t′j ; r− rj), j ∈ Z+, to the laboratory reference

frame K(t; r) with respect to which the averaged set of charges ξ is assumed to be virtually at
rest:

(2.36) − ϕ′
jdt

′
j = ϕjdt+ < Aj , dr >

holding for all j ∈ Z+ and giving rise, upon summing over j ∈ Z+, to the expression

(2.37) −
∑

j∈Z+

ϕ′
jdt

′
j = − ϕ̄dt+ < Ā, dr >,

used for construction of the action functional (2.35). As the latter is already considered to be
written for the averaged set of charges ξ, whose virtual location is now assumed to be at rest, we
can apply to this action functional (2.35) the Feynman proper time paradigm and construct the
corresponding physically reasonable action functional

(2.38) S̄(τ)
p =

∫ τ2

τ1

dτ (−ξ ϕ̄+ ξ < Ā, dr/dτ >)(1 + |dr/dτ |
2
)1/2,

defined on an independent time interval [τ1, τ2] ⊂ R with respect to the proper time reference frame
K(t; r), whose time parameter τ ∈ R is infinitesimally related to the laboratory time parameter
t ∈ R as

(2.39) dτ = dt(1− |dr/dt|
2
)−1/2.

As a result of the least action principle applied to the functional (2.38) one easily obtains the
evolution equation

(2.40)
d

dt
(p+ ξĀ) = −ξ∇ ϕ̄+ ξ∇ < Ā, u >,

where, as before, the charged particle ξ momentum is defined classically as

(2.41) p := m dr/dt,

and its mass parameter is defined, respectively, as

(2.42) m := −ξ ϕ̄(r).
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As the four-vector potentials (ϕj , Aj) ∈ T ∗(M4), j ∈ Z+, where M4 := R× E
3 is the standard

Minkowski pseudo-Euclidean metric space, satisfy the Lorentz conditions

(2.43) ∂ϕj/∂t+ < ∇, Aj >= 0

for any j ∈ Z+, it is evident that the same condition

(2.44) ∂ ϕ̄/∂t+ < ∇, Ā >= 0

holds also for the averaged potentials ( ϕ̄, Ā) ∈ T ∗(M4). The further standard calculations, applied
to the expression (2.40), bring about exactly the same as (2.34) Lorentz force equation

(2.45) dp/dt = ξĒ + ξu× B̄,

thereby demonstrating the mathematical agreement between two physically different approaches
to its derivation, based on the classical averaging procedure and the superposition principle. In
particular, the presented above results are in part supported by reasonings from [7], where the
averaged nature of the related Maxwell equations was argued taking into account their quantum
electrodynamic quantization problems satisfactory solved only for the suitably averaged electro-
magnetic potentials.

3. The electromagnetic Maxwell and Lorentz force equations analysis

3.1. The Maxwell equations derivation. As a moving charged particle ξf generates the suit-
able electric field (2.29) and magnetic field (2.30) via their electromagnetic potential (ϕ,A) ∈
T ∗(M4) with respect a laboratory reference frame K(t; r), we will supplement them naturally by
means of the external material equations, describing the relativistic charge conservation law:

(3.1) ∂ρ/∂t+ < ∇, J >= 0

where (ρ, J) ∈ T ∗(M4) is a related four-vector for the charge and current distribution in the space
R

3. Moreover on can augment the equation (3.1) with the experimentally well established the
Gauss law

(3.2) < ∇, E >= ρ

and to calculate the quantity ∆ϕ :=< ∇,∇ϕ > from the expression (2.29):

(3.3) ∆ϕ = −
∂

∂t
< ∇, A > − < ∇, E > .

Having taken into account the relativistic Lorentz condition (2.20) and the expression (3.2) one
easily derives that the wave equation

(3.4) ∂2ϕ/∂t2 −∆ϕ = ρ

holds with respect to the laboratory reference frame K(t; r).If to apply the operation rotor-”∇×”
to the expression (2.29) we obtain, owing to the expression (2.30) that

(3.5) ∇× E + ∂B/∂t = 0,

giving rise, together with (3.2), to the first pair of the classical Maxwell equations. To obtain,
respectively, the second pair of the Maxwell equations, it is first, necessary to apply the rot-
operation ”∇× ” to the expression (2.30):

(3.6) ∇×B = ∂E/∂t+ (∂2A/∂t2 −∆A)

and, second, apply to the wave equation (3.4) the first derivative −∂/∂t :

(3.7)

− ∂2

∂t2 (
∂ϕ
∂t )+ < ∇,∇∂ϕ

∂t >= ∂2

∂t2 < ∇, A > −

− < ∇,∇ < ∇, A >>=< ∇, ∂2A
∂t2 −∇× (∇×A)−∆A >=

=< ∇, ∂2A
∂t2 −∆A >=< ∇, J > .

The result (3.7) strictly entails the relationship

(3.8) ∂2A/∂t2 −∆A = J,

if to take into account that both the vector potential A ∈ E
3 and the vector of current J ∈ E are

determined up to a rot-vector expression ∇ × S for some smooth vector-function S : M4 → E
3.
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Having inserted the relationship (3.8) into (3.6), we obtain jointly with (3.5) the second pair of
the Maxwell equations:

(3.9) ∇×B = ∂E/∂t+ J, ∇× E = ∂B/∂t.

It is important that the system of equations (3.9) can be represented by means of the least action

principle δS
(t)
f−p = 0, where the action functional

(3.10) S
(t)
f−p :=

∫ t2

t1

dtL
(t)
f−p

is defined on an interval [t1, t2] ⊂ R by the Lagrangian function

(3.11) L
(t)
f−p =

∫

R3

d3r(
|E|2 − |B|2

2
+ < J,A > −ρϕ)

with respect to the laboratory reference frame K(t; r). From (3.11) we derive that the generalized
field momentum

(3.12) πf := ∂L
(t)
f−p/∂(∂A/∂t) = −E

and the related its evolution is given as

(3.13) ∂πf/∂t := δL
(t)
f−p/δA = J −∇×B,

being equivalent to the first Maxwell equation of (3.9). As the Maxwell equations allow the least
action representation, the latter entails [2, 4, 10, 48] their dual Hamiltonian formulation with the
Hamiltonian function

(3.14) Hf−p :=

∫

R3

d3r < πf , ∂A/∂t > −L
(t)
f−p =

∫

R3

d3r(
|E|2 + |B|2

2
− < J,A >),

satisfying the invariant condition

(3.15) dHf−p/dt = 0

for all t ∈ R.
It is worthy to note here that the Maxwell equations were derived above under the important

condition imposed on the charged system: the charged system (ρ, J) ∈ T (M4) exerts no influence
on the ambient electromagnetic field potentials (ϕ,A) ∈ T ∗(M4). As it is not the case owing to
the existence the damping radiation reaction, acting on accelerated charged particles, one can try
to describe this self-interacting influence by means of the modified least action principle, making
use of the Lagrangian expression (3.11) in the case of a separate charged particle ξ. Following the
well known approach from [34] this Lagrangian can be rewritten (in the Gauss units) as

(3.16)

L
(t)
f−p =

∫
R3 d

3r(< −∇ϕ− 1
c∂A/∂t,−∇ϕ− 1

c∂A/∂t > − < ∇× (∇×A), A >)+

+
∫
R3 d

3r(1c < J,A > −ρϕ)− < k(t), dr/dt >=

=
∫
R3 d

3r(12 < −∇ϕ,E > − 1
2c < ∂A/∂t, E > − 1

2 < A,∇×B > +

+ 1
c < J,A > −ρϕ)+ < k(t), dr/dt >=

,

=
∫
R3 d

3r(12ϕ < ∇, E > + 1
2c < A, ∂E/∂t > − 1

2c < A, J + ∂E/∂t > + 1
c < J,A > −ρϕ)−

− 1
2c

d
dt

∫
R3 d

3r < A,E > − 1
2 limr→∞

∫
S2r

< ϕE+ < A×B, dS2
r > − < k(t), dr/dt > =

= 1
2

∫
R3 d

3r(1c < J,A > −ρϕ)− 1
2c

d
dt

∫
R3 d

3r < A,E > −

− 1
2 limr→∞

∫
S2r

< ϕE+ < A×B, dS2
r > − < k(t), dr/dt > −,

where we have introduced still not determined both an internal charged particle stability energy
impact mξc

2 and a radiation damping force k(t) ∈ E
3, as well as we denoted by S

2
r a two-

dimensional sphere of radius r → ∞. Having additionally assumed that the radiated charged
particle energy at infinity is negligible, the Lagrangian function (3.16) becomes equivalent to

(3.17) L
(t)
f−p = 1

2

∫
R3 d

3r(1c < J,A > −ρϕ)− < k(t), dr/dt >,
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which we now need to calculate taking into account that the electromagnetic potentials (ϕ,A) ∈
T ∗(M4) are retarded and given as 1/c → 0 in the following Lienard-Wiechert form:

ϕ =

∫

R3

d3r′
ρ(t′, r′)

|r − r′|

∣∣∣∣
t′=t−|r−r′|/c

= lim
ε↓0

∫

R3

d3r′
ρ(t− ε, r′)

|r − r′|
+

+
1

2c2

∫

R3

d3r′|r − r′|∂2ρ(t, r′)/∂t2 +
1

6c3

∫

R3

d3r′|r − r′|2∂ρ(t, r′)/∂t+O(1/c4),

A =
1

c

∫

R3

d3r′
J(t′, r′)

|r − r′|

∣∣∣∣
t′=t−|r−r′|/c

= lim
ε↓0

1

c

∫

R3

d3r′
J(t− ε, r′)

|r − r′|
−(3.18)

−
1

c2

∫

R3

d3r′∂J(t, r′)/∂t+
1

2c3

∫

R3

d3r′|r − r′|∂2J(t, r′)/∂t2 +O(1/c4).

Here the current density J(t, r) = ρ(t, r)dr(t)/dt for all t ∈ R and r ∈ Ω(ξ) := supp ρ(t; r) ⊂ R
3,

being the compact support of the charged particle density distribution, and the limit as ε →
+0 takes into account that the potentials (3.18) are both retarded and singular at the charged
particle ξ center, moving in space with the velocity u ∈ T (R3) subject to the laboratory reference
frame K(t; r). As a result of simple enough calculations like in [29] and the suitable regularization
procedure one obtains up to O(1/c4) that the electric potential integral, entering (3.17), equals:

(3.19)

limε↓0

∫
R3 d

3rρ(t, r)
∫
R3 d

3r′ ρ(t−ε,r′)
|r−r′| =

=
∫
R3 d

3rρ(t, r)
∫
R3 d

3r′ ρ(t,r
′)

|r′−r| − limε↓0

∫
R3 d

3rρ(t, r)
∫
R3 d

3r′ ε∂ρ(t,r
′)/∂t

|r−r′| =

=
∫
R3 d

3rρ(t, r)
∫
R3 d

3r′ ρ(t,r
′)

|r−r′| + limε↓0

∫
R3 d

3rρ(t, r)
∫
R3 d

3r′ ε<∇′,J(t;r′)>
|r′−r| =

∫
R3 d

3rρ(t, r)
∫
R3 d

3r′ ρ(t,r
′)

|r−r′|

− limε↓0

∫
R3 d

3rρ(t, r)
∫
R3 d

3r′ < εu
|r′−r| ,

r′−r
|r−r′|2 > ρ(t; r′) := 2Ees +mξ|u|

2,

where we denoted the averaged as ε ↓ 0 limiting integral expression

(3.20) lim
ε↓0

∫

R3

d3rρ(t, r)

∫

R3

d3r′ <
εu

|r′ − r|
,

r′ − r

|r − r′|2
> ρ(t; r′) := mξ|u|

2,

strongly depending on the internal electron structure, ensuring its stability. The same regulariza-
tion scheme applied to the expression limε↓0

∫
R3 d

3r′∂J(t− ε, r′)/∂t does not change its value.
Thus, making use of the expressions (3.18), (3.19) the Lagranfian function (3.17) brings about

(3.21) L
(t)
f−p =

Ees

6c2
|dr/dt|2− < k(t), dr/dt > −Ees(1 − |u|2/c2)−mξ|u|

2/2,

where we have denoted by

(3.22) Ees :=
1

2

∫

R3

d3r

∫

R3

d3r′
ρ(t, r′)ρ(t, r′)

|r − r′|

the own charged particle ξ electrostatic energy.
To obtain the corresponding evolution equation for our charged particle ξ we need, within the

Feynman proper time paradigm, to transform the Lagrangi an function (3.21) to that with respect
to charged particle proper time reference frame K(τ ; r) :

L
(τ)
f−p = (mes/6)|ṙ|

2(1 + |ṙ|2/c2)−1/2 −mesc
2(1 + |ṙ|2/c2)−1/2 −(3.23)

− < k(t), ṙ > −mξ|ṙ|
2/2(1 + |ṙ|2/c2)−1/2,

where, for brevity, we have denoted by ṙ := dr/dτ the charged particle ξ velocity with respect to
the proper reference frame K(τ ; r) and by mes := Ees/c

2 the its so called electrostatic mass.
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Thus, the generalized charged particle ξ momentum up to O(1/c4) equals

(3.24)

πp := ∂L
(τ)
f−p/∂r =

1
3

mesṙ
(1+|ṙ|2/c2)1/2

− mes|ṙ|
2ṙ

6c2(1+|ṙ|2/c2)3/2
+ mesṙ

(1+|ṙ|2/c2)1/2
−

−k(t)−
mξ ṙ

(1+|ṙ|2/c2)1/2
+

mξ|ṙ|
2ṙ

2(1+|ṙ|2/c2)1/2
≃ 1

3mesu(1− |u|2/c2)1/2+

+mesu(1− |u|2/c2)1/2 − k(t)−mξu ≃ (−mξ +
4
3 mes)u − k(t),

where we denoted, as before, by u := dr/dt the charged particle ξ velocity with respect to the
laboratory reference frame K(t; r). The generalized momentum (3.24) satisfies with respect to the
proper reference frame K(τ ; r) the evolution equation

(3.25) dπp/dτ := ∂L
(τ)
f−p/∂r = 0,

being equivalent with respect to the laboratory reference frame K(t; r) to the Lorentz type
equation

(3.26)
d

dt
(−mξu+

4

3
mesu) = −dk(t)/dt.

The evolution equation (3.25) allows the corresponding canonical Hamiltonian formulation on the
phase space T ∗(R3) with the Hamiltonian function

(3.27)

Hf−p :=< πp, r > −L
(τ)
f−p ≃< 1

3
mesṙ

(1+|ṙ|2/c2)1/2
+ mesṙ

(1+|ṙ|2/c2)1/2
−

−k(t)−
mξ ṙ

(1+|ṙ|2/c2)1/2
, ṙ > −(mes/6)|ṙ|

2(1 + |ṙ|2/c2)−1/2+

+mesc
2(1 + |ṙ|2/c2)−1/2+ < k(t), ṙ > +(mξ/2)|ṙ|

2(1 + |ṙ|2/c2)−1/2 =

= 1
3mes|ṙ|

2(1 + |ṙ|2/c2)−1/2 + mes|ṙ|
2(1 + |ṙ|2/c2)−1/2− < k(t), ṙ > −

−mξ|ṙ|
2(1 + |ṙ|2/c2)−1/2 − (mes/6)|ṙ|

2(1 + |ṙ|2/c2)−1/2+

+mesc
2(1 + |ṙ|2/c2)−1/2+ < k(t), ṙ > +(mξ/2)|ṙ|

2(1 + |ṙ|2/c2)−1/2

≃ [
(−mξ+mes/3)|πp+k(t)|2

2(−mξ+4mes/3)2
+mesc

2](1−
|πp+k(t)|2

(−mξ+4mes/3)2c2
)−1/2 ,

satisfying for all τ and t ∈ R the conservation conditions

(3.28)
d

dτ
Hf−p = 0 =

d

dt
Hf−p .

To determine the damping radiation force k(t) ∈ E
3, we can make use of the Lorentz type force

expression (2.28) in the proper case u = uf ∈ T (R3) and obtain, similarly to [29], up to O(1/c4)
accuracy, the resulting Abraham-Lorentz force as

(3.29)
d

dt
(−mξu+

4

3
mesu) =

2ξ2

3c3
d2u/dt2.

Comparing the force expressions (3.26) and (3.29) one ensues up to O(1/c4) accuracy that

(3.30) k(t) =
2ξ2

3c3
du/dt,

which should be understood as a smooth function of the temporal parameter t ∈ R. Moreover,
looking at the equation (3.29) one can define the physical observable charged particle ξ mass
parameter as

(3.31) mphys := −mξ +
4

3
mes.

For the mass parameter mξ ∈ R in the expression (3.31) to be determined, we need to analyze
in details the charged particle ξ stability condition and try to understand its relationship to
the additional momentum production. Before proceeding to this analysis, we will review some
important results devoted to the stability problem of a charged particle like electron and try to
conceive a related additional momentum generation mechanism.
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Remark 3.1. Some years ago there was suggested in the work [38] a ”solution” to the mentioned
before ”4/3-electron mass” problem, expressed by the physical mass mass relationship (3.31) and
formulated more than one hundred years ago by H. Lorentz and M. Abraham. To the regret, the
above mentioned ”solution” appeared to be fake that one can easily observe from the main not
correct assumptions on which the work [38] has been based: the first one is about the particle-field
momentum conservation, taken in the form

(3.32)
d

dt
(p+ ξA) = 0,

and the second one is a speculation about the 1/2-coefficient imbedded into the calculation of the
Lorentz type self-interaction force

(3.33) F := −
1

2c

∫

R3

d3rρ(t; r)∂A(t; r)/∂t,

being not correctly argued by the reasoning that the expression (3.33) represents ”... the inter-
action of a given element of charge with all other parts, otherwise we count twice that reciprocal
action” (cited from [38], page 2710). This claim is fake as there was not taken into account the
important fact that the interaction in the integral (3.33) is, in reality, retarded and its impact into
it should be considered as that calculated for two virtually different charged particles, as it has
been done in the classical works of H. Lorentz and M. Abraham. Subject to the first assumption
(3.32) it is enough to recall that a vector of the field momentum ξA ∈ E

3 is not independent
and is, within the charged particle model considered, strongly related with the local flow of the
electromagnetic energy in the Lorentz constraint form:

(3.34) ∂(ξϕ)/∂t+ < ∇, cξA >= 0,

under which there hold the exploited in the work [38] Lienard-Wiechert potentials (3.17) for
calculation of the integral (3.33). Thus, the equation (3.32), following the classical Newton
second law, should be replaced by

(3.35)
d

dt′
(p+ ξA) = −∇(ξϕ′),

written with respect to the reference frame K(t′; r) subject to which the charged particle ξ is at
rest. Taking into account that with respect to the laboratory reference frame K(t; r) there hold
the relativistic relationships dt = dt′(1− |u|2/c2)1/2 and ϕ′ = ϕ(1− |u|2/c2)1/2, from (3.35) one
easily obtains that

(3.36)

d
dt(p+ ξA) = −ξ∇ϕ(1− |u|2/c2) =

= −ξ∇ϕ+ ξ
c∇ < u, uϕ/c >= −ξ∇ϕ+ ξ

c∇ < u,A > .

Here we made use of the well-known relationship A = uϕ/c for the vector potential generated by
this charged particle ξ moving in space with the velocity u ∈ T (R3) with respect to the laboratory
reference frame K(t; r). Based now on the equation (3.36) one can derive the final expression for
the evolution of the charged particle ξ momentum:

dp/dt = −ξ∇ϕ−
ξ

c
dA/dt+

ξ

c
∇ < u,A >=(3.37)

= −ξ∇ϕ−
ξ

c
∂A/∂t−

ξ

c
< u,∇ > A+

ξ

c
∇ < u,A >=

= ξE +
ξ

c
u× (∇×A) = ξE +

ξ

c
u×B,

that is exactly the well known Lorentz force expression, used in the works of H. Lorentz and M.
Abraham.

Recently enough there appeared other interesting works devoted to this ”4/3-electron mass”
problem, amongst which we would like to mention [54, 41], whose argumentations are close to
each other and based on the charged shell electron model, within which there is assumed a vir-
tual interaction of the electron with the ambient ”dark” radiation energy. The latter was clearly
demonstrated in [54], where a suitable compensation of the related singular electrostatic Coulomb
electron energy and the wide band vacuum electromagnetic radiation energy fluctuations deficit
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inside the electron shell is harmonically realized as the electron shell radius a → 0. Moreover, this
compensation happens exactly when the induced outward directed electrostatic Coulomb pressure
on the whole electron coincides, up to the sign, with that induced by the mentioned above vacuum
electromagnetic energy fluctuations outside the electron shell, since there was manifested their
absence inside the electron shell.

Really, the outward directed electrostatic spatial Coulomb pressure on the electron equals

(3.38) ηcoul := lim
a→0

ε0|E|2

2

∣∣∣∣
r=a

= lim
a→0

ξ2

32ε0π2a4
,

where E = ξr
4πε0|r|3

∈ E
3 is the electrostatic field at point r ∈ R subject to the electron center

at the point r = 0 ∈ R. The related inward directed vacuum electromagnetic fluctuations spatial
pressure equals

(3.39) ηvac := lim
Ω→∞

1

3

∫ Ω

0

dE(ω),

where dE(ω) is the electromagnetic energy fluctuations density for a frequency ω ∈ R, and Ω ∈ R

is the corresponding electromagnetic frequency cutoff. The integral (3.39) can be calculated if to
take into account the quantum statistical recipe [17, 28, 9] that

(3.40) dE(ω) := ~ω
d3p(ω)

h3
,

where the Plank constant h := 2π~ and the electromagnetic wave momentum p(ω) ∈ E
3 satisfies

the relativistic relationship

(3.41) |p(ω)| = ~ω/c.

Whence by substituting (3.41) into (3.40) one obtains

(3.42) dE(ω) =
~ω3

2π2c3
dω,

which entails, owing to (3.39), the following vacuum electromagnetic energy fluctuations spatial
pressure

(3.43) ηvac = lim
Ω→∞

~Ω4

24π2c3
.

For the charged electron shell model to be stable at rest it is necessary to equate the inward
(3.43) and outward (3.38) spatial pressures:

(3.44) lim
Ω→∞

~Ω4

24π2c3
= lim

a→0

ξ2

32ε0π2a4
,

giving rise to the balance electron shell radius ab → 0 limiting condition:

(3.45) ab = lim
Ω→∞

[
Ω−1

(
3ξ2c2

2~

)1/4
]
.

Simultaneously we can calculate the corresponding Coulomb and electromagnetic fluctuations
energy deficit inside the electron shell:

(3.46) ∆Wb :=
1

2

∫ ∞

ab

ε0|E|2d3r −

∫ ab

0

d3r

∫ Ω

0

dE(ω) =
ξ2

8πε0ab
−

~Ω4a3b
6πc3

= 0,

additionally ensuring the electron shell model stability.
Another important consequence from this pressure-energy compensation mechanism can be

rederived concerning the electron mass component mξ ∈ R, entering the momentum expression
(3.24) in the case of the electron movement. Namely, following the reasonings from [41], one can
observe that during the electton movement there arises an additional hidden velocity u ∈ T (R3)
directed not compensated electrostatic Coulomb surface self-pressure acting only on the front half

part of the electron shell and equal to

(3.47) ηsurf :=
|Eξ|

4πa2b

1

2
=

ξ2

32πε0a4b
,
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coinciding, evidently, with the already compensated outward directed electrostatic Coulomb spatial
pressure (3.38). As, evidently, during the electron motion in space its surface electric current energy
flow is not vanishing [41], one ensues that the electron momentum gains an additional mechanical
impact, which can be expressed as

(3.48) πξ := −ηsurf
4πa3b
3c2

u = −
1

3

ξ2

8πε0abc2
u = −

1

3
mesu,

where we took into account that within this electron shell model the corresponding electrostatic
electron mass equals its electrostatic energy

(3.49) mes =
ξ2

8πε0abc2
.

Thus, one can claim that, owing to the structural stability of the electron shell model, its
generalized self-interaction momentum πp ∈ T ∗(R3) gains during the movement with velocity
u = dr/dt ∈ T (R3) the additional backward directed hidden impact (3.48), which can be identified
with the momentum component

(3.50) πξ = −mξu,

entering the momentum expression (3.24). The latter, owing to (3.30), becomes then as

πp = (−mξ +
4

3
mes)u−

2ξ2

3c3
d2u/dt2 =(3.51)

= (−
1

3
mes +

4

3
mes)u −

2ξ2

3c3
d2u/dt2 =

= mesu−
2ξ2

3c3
d2u/dt2,

strongly supporting the electromagnetic origin of the electron mass for the first time conceived by
H. Lorentz and M. Abraham.

The result above makes it possible to reanalyze the calculation of the Lagrangian function
(3.21), based on the averaged limiting integral expression (3.20), taking into account the electron
shell model and its dynamical stability. Namely, the averaged limiting integral expression (3.20)
can be calculated within the accepted above dynamically stable electron shell model as follows:

(3.52)

limε↓0

∫
R3 d

3rρ(t; r)
∫
R3 d

3r′ < εu
|r′−r| ,

r′−r
|r−r′|2 > ρ(t; r′) ≃

≃ 1
2 limε↓0

1
3

∫
R3 d

3rρ(t; r)
∫
R3 d

3r′ < εu
|r′−r| ,

εu
ε2c2 > ρ(t; r′) =

= 2Ees

6c2 |u|2 = 1
3mes|u|

2 := mξ|u|
2,

where we took into account that, owing to the retarded electron self-interaction, only one half the
charged electron shell, separated by the distance |r′− r| = εc, generates an additional impact into
the Lagrangian function (3.21), as the second half is shadowed by the electron shell interior with
the absent electric field. Thus, having substituted the found above value mξ = 1

3mes into the
final electron physical mass expression (3.31), one ensues that

(3.53) mphys := −
1

3
mes +

4

3
mes = mes,

additionally supporting the Abraham-Lorentz suggestion about the electromagnetic electron mass
origin.

4. Conclusion.

In our work the electromagnetic mass origin problem there was reanalyzed in details within
the Feynman proper time paradigm and related vacuum field theory approach by means of the
fundamental least action principle and the Lagrangian and Hamiltonian formalisms. The resulting
electron inertia appeared to coincide in part, in the quasi-relativistic limit, with the momentum ex-
pression obtained more than one hundred years ago by M. Abraham and H. Lorentz [1, 35, 36, 37],
yet it proved to contain an additional hidden impact owing to the imposed electron stability
constraint, which was taken into account in the original action functional as some preliminarily
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undetermined constant component. As it was demonstrated in [54, 41], this stability constraint can
be successfully realized within the charged shell model of electron at rest, if to take into account the
existing ambient electromagnetic ”dark” energy fluctuations, whose inward directed spatial pres-
sure on the electron shell is compensated by the related outward directed electrostatic Coulomb
spatial pressure as the electron shell radius satisfies some limiting compatibility condition. The
latter also allows to compensate simultaneously the corresponding electromagnetic energy fluctu-
ations deficit inside the electron shell, thereby forbidding the external energy to flow into the
electron. In contrary to the lack of energy flow inside the electron shell, during the electron move-
ment the corresponding internal momentum flow is not vanishing owing to the nonvanishing hidden
electron momentum flow caused by the surface pressure flow and compensated by the suitably gen-
erated surface electric current flow. As it was shown, this backward directed hidden momentum
flow makes it possible to justify the corresponding self-interaction electron mass expression and to
state, within the electron shell model, the fully electromagnetic electron mass origin, as it has been
conceived by H. Lorentz and M. Abraham and strongly supported in his Lectures by R. Feynman.
This consequence is also independently supported by means of the least action approach, based
on the Feynman proper time pardigm and the suitably calculated regularized retarded electric
potential impact into the charged particle Lagrangian function.
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