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Abstract

Twistors Grassmannian formalism has made a breakthrough in N = 4 supersymmet-
ric gauge theories and the Yangian symmetry suggests that much more than mere technical
breakthrough is in question. Twistors seem to be tailor made for TGD but it seems that
the generalization of twistor structure to that for 8-D imbedding space H = M4 × CP2 is
necessary. M4 (and S4 as its Euclidian counterpart) and CP2 are indeed unique in the sense
that they are the only 4-D spaces allowing twistor space with Kähler structure.

The Cartesian product of twistor spaces P3 = SU(2, 2)/SU(2, 1) × U(1) and F3 defines
twistor space for the imbedding space H and one can ask whether this generalized twistor
structure could allow to understand both quantum TGD and classical TGD defined by the
extremals of Kähler action. In the following I summarize the background and develop a
proposal for how to construct extremals of Kähler action in terms of the generalized twistor
structure. One ends up with a scenario in which space-time surfaces are lifted to twistor
spaces by adding CP1 fiber so that the twistor spaces give an alternative representation for
generalized Feynman diagrams.

There is also a very closely analogy with superstring models. Twistor spaces replace Calabi-
Yau manifolds and the modification recipe for Calabi-Yau manifolds by removal of singularities
can be applied to remove self-intersections of twistor spaces and mirror symmetry emerges
naturally. The overall important implication is that the methods of algebraic geometry used
in super-string theories should apply in TGD framework.

The physical interpretation is totally different in TGD. The landscape is replaced with
twistor spaces of space-time surfaces having interpretation as generalized Feynman diagrams
and twistor spaces as sub-manifolds of P3 × F3 replace Witten’s twistor strings.

1 Introduction

Twistor Grassmannian formalism has made a breakthrough in N = 4 supersymmetric gauge
theories and the Yangian symmetry suggests that much more than mere technical breakthrough
is in question. Twistors seem to be tailor made for TGD but it seems that the generalization of
twistor structure to that for 8-D imbedding space H = M4 ×CP2 is necessary. M4 (and S4 as its
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2. Background and motivations 2

Euclidian counterpart) and CP2 are indeed unique in the sense that they are the only 4-D spaces
allowing twistor space with Kähler structure.

The Cartesian product of twistor spaces P3 = SU(2, 2)/SU(2, 1)×U(1) and F3 defines twistor
space for the imbedding space H and one can ask whether this generalized twistor structure could
allow to understand both quantum TGD [K10, K11, K13] and classical TGD [K9] defined by the
extremals of Kähler action.

In the following I summarize the background and develop a proposal for how to construct
extremals of Kähler action in terms of the generalized twistor structure. One ends up with a
scenario in which space-time surfaces are lifted to twistor spaces by adding CP1 fiber so that the
twistor spaces give an alternative representation for generalized Feynman diagrams having as lines
space-time surfaces with Euclidian signature of induced metric and having wormhole contacts as
basic building bricks.

There is also a very close analogy with superstring models. Twistor spaces replace Calabi-Yau
manifolds [?, A2] and the modification recipe for Calabi-Yau manifolds by removal of singularities
can be applied to remove self-intersections of twistor spaces and mirror symmetry [B6]emerges
naturally. The overall important implication is that the methods of algebraic geometry used in
super-string theories should apply in TGD framework.

The physical interpretation is totally different in TGD. Twistor space has space-time as base-
space rather than forming with it Cartesian factors of a 10-D space-time. The Calabi-Yau landscape
is replaced with the space of twistor spaces of space-time surfaces having interpretation as gener-
alized Feynman diagrams and twistor spaces as sub-manifolds of P3 × F3 replace Witten’s twistor
strings [B7]. The space of twistor spaces is the lift of the ”world of classical worlds” (WCW)
by adding the CP1 fiber to the space-time surfaces so that the analog of landscape has beautiful
geometrization.

2 Background and motivations

In the following some background plus basic facts and definitions related to twistor spaces are
summarized. Also reasons for why twistor are so relevant for TGD is considered at general level.

2.1 Basic facts

First some background.

1. The twistors originally introduced by Penrose (1967) have made breakthrough during last
decade. First came the twistor string theory of Edward Witten [B7] proposed twistor string
theory and the work of Nima-Arkani Hamed and collaborators [B1] led to a revolution in
the understanding of the scattering amplitudes of scattering amplitudes of gauge theories
[B3, ?, B2]. Twistors do not only provide an extremely effective calculational method giving
even hopes about explicit formulas for the scattering amplitudes of N = 4 supersymmetric
gauge theories but also lead to an identification of a new symmetry: Yangian symmetry
[?, B5, B4], which can be seen as multilocal generalization of local symmetries.

This approach, if suitably generalized, is tailor-made also for the needs of TGD. This is why I
got seriously interested on whether and how the twistor approach in empty Minkowski space
M4 could generalize to the case of H = M4 × CP2. The twistor space associated with H
should be just the cartesian product of those associated with its Cartesian factors. Can one
assign a twistor space with CP2?

2. First a general result [A1] deserves to be mentioned: any oriented manifold X with Riemann
metric allows 6-dimensional twistor space Z as an almost complex space. If this structure is
integrable, Z becomes a complex manifold, whose geometry describes the conformal geometry
of X. In general relativity framework the problem is that field equations do not imply
conformal geometry and twistor Grassmann approach certainly requires conformal structure.

3. One can consider also a stronger condition: what if the twistor space allows also Kähler
structure? The twistor space of empty Minkowski space M4 (and its Euclidian counterpart
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S4 is the Minkowskian variant of P3 = SU(2, 2)/SU(2, 1)× U(1) of 3-D complex projective
space CP3 = SU(4)/SU(3)× U(1) and indeed allows Kähler structure.

Rather remarkably, there are no other space-times with Minkowski signature allowing twistor
space with Kähler structure. Does this mean that the empty Minkowski space of special
relativity is much more than a limit at which space-time is empty?

This also means a problem for GRT. Twistor space with Kähler structure seems to be needed
but general relativity does not allow it. Besides twistor problem GRT also has energy prob-
lem: matter makes space-time curved and the conservation laws and even the definition of
energy and momentum are lost since the underlying symmetries giving rise to the conservation
laws through Noether’s theorem are lost. GRT has therefore two bad mathematical problems
which might explain why the quantization of GRT fails. This would not be surprising since
quantum theory is to high extent representation theory for symmetries and symmetries are
lost. Twistors would extend these symmetries to Yangian symmetry but GRT does not allow
them.

4. What about twistor structure in CP2? CP2 allows complex structure (Weyl tensor is self-
dual), Kähler structure plus accompanying symplectic structure, and also quaternion struc-
ture. One of the really big personal surprises of the last years has been that CP2 twistor space
indeed allows Kähler structure meaning the existence of antisymmetric tensor representing
imaginary unit whose tensor square is the negative of metric in turn representing real unit.

The article by Nigel Hitchin, a famous mathematical physicist, describes a detailed argument
identifying S4 and CP2 as the only compact Riemann manifolds allowing Kählerian twistor
space [A1]. Hitchin sent his discovery for publication 1979. An amusing co-incidence is that
I discovered CP2 just this year after having worked with S2 and found that it does not really
allow to understand standard model quantum numbers and gauge fields. It is difficult to
avoid thinking that maybe synchrony indeed a real phenomenon as TGD inspired theory of
consciousness predicts to be possible but its creator cannot quite believe. Brains at different
side of globe discover simultaneously something closely related to what some conscious self
at the higher level of hierarchy using us as instruments of thinking just as we use nerve cells
is intensely pondering.

Although 4-sphere S4 allows twistor space with Kähler structure, it does not allow Kähler
structure and cannot serve as candidate for S in H = M4 × S. As a matter of fact, S4 can
be seen as a Wick rotation of M4 and indeed its twistor space is CP3.

In TGD framework a slightly different interpretation suggests itself. The Cartesian products
of the intersections of future and past light-cones - causal diamonds (CDs) - with CP2 -
play a key role in zero energy ontology (ZEO) [K1]. Sectors of ”world of classical worlds”
(WCW) [K8, K3] correspond to 4-surfaces inside CD × CP2 defining a the region about
which conscious observer can gain conscious information: state function reductions - quantum
measurements - take place at its light-like boundaries in accordance with holography. To be
more precise, wave functions in the moduli space of CDs are involved and in state function
reductions come as sequences taking place at a given fixed boundary. This kind of sequence
is identifiable as self and give rise to the experience about flow of time. When one replaces
Minkowski metric with Euclidian metric, the light-like boundaries of CD are contracted to
a point and one obtains topology of 4-sphere S4.

5. Another really big personal surprise was that there are no other compact 4-manifolds with
Euclidian signature of metric allowing twistor space with Kähler structure! The imbedding
space H = M4×CP2 is not only physically unique since it predicts the quantum number spec-
trum and classical gauge potentials consistent with standard model but also mathematically
unique!

After this I dared to predict that TGD will be the theory next to GRT since TGD generalizes
string model by bringing in 4-D space-time. The reasons are many-fold: TGD is the only
known solution to the two big problems of GRT: energy problem and twistor problem. TGD
is consistent with standard model physics and leads to a revolution concerning the identifi-
cation of space-time at microscopic level: at macroscopic level it leads to GRT but explains
some of its anomalies for which there is empirical evidence (for instance, the observation
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that neutrinos arrived from SN1987A at two different speeds different from light velocity [?]
has natural explanation in terms of many-sheeted space-time). TGD avoids the landscape
problem of M-theory and anthropic non-sense. I could continue the list but I think that this
is enough.

6. The twistor space of CP2 is 3-complex dimensional flag manifold F3 = SU(3)/U(1) × U(1)
having interpretation as the space for the choices of quantization axes for the color hyper-
charge and isospin. This choice is made in quantum measurement of these quantum numbers
and a means localization to single point in F3. The localization in F3 could be higher level
measurement leading to the choice of quantizations for the measurement of color quantum
numbers.

F3 is symmetric space meaning that besides being a coset space with SU(3) invariant metric
it also has involutions acting as a reflection at geodesics through a point remaining fixed
under the involution. As a symmetric space with Fubini-Study metric F3 is positive constant
curvature space having thus positive constant sectional curvatures. This implies Einstein
space property. This also conforms with the fact that F3 is CP1 bundle over CP2 as base
space (for more details see http://www.cirget.uqam.ca/~apostolo/papers/AGAG1.pdf).

7. Analogous interpretation could make sense for M4 twistors represented as points of P3.
Twistor corresponds to a light-like line going through some point of M4 being labelled by 4
position coordinates and 2 direction angles: what higher level quantum measurement could
involve a choice of light-like line going through a point of M4? Could the associated spatial
direction specify spin quantization axes? Could the associated time direction specify preferred
rest frame? Does the choice of position mean localization in the measurement of position? Do
momentum twistors relate to the localization in momentum space? These questions remain
fascinating open questions and I hope that they will lead to a considerable progress in the
understanding of quantum TGD.

8. It must be added that the twistor space of CP2 popped up much earlier in a rather unexpected
context [K7]: I did not of course realize that it was twistor space. Topologist Barbara
Shipman [A3] has proposed a model for the honeybee dance leading to the emergence of
F3. The model led her to propose that quarks and gluons might have something to do with
biology. Because of her position and specialization the proposal was forgiven and forgotten
by community. TGD however suggests both dark matter hierarchies and p-adic hierarchies
of physics [K5, K14]. For dark hierarchies the masses of particles would be the standard ones
but the Compton scales would be scaled up by heff/h = n [K14]. Below the Compton scale
one would have effectively massless gauge boson: this could mean free quarks and massless
gluons even in cell length scales. For p-adic hierarchy mass scales would be scaled up or
down from their standard values depending on the value of the p-adic prime.

2.2 Basic definitions related to twistor spaces

One can find from web several articles explaining the basic notions related to twistor spaces and
Calabi-Yau manifolds. At the first look the notions of twistor as it appears in the writings of
physicists and mathematicians don’t seem to have much common with each other and it requires
effort to build the bridge between these views. The bridge comes from the association of points of
Minkowski space with the spheres of twistor space: this clearly corresponds to a bundle projection
from the fiber to the base space, now Minkowski space. The connection of the mathematician’s
formulation with spinors remains still somewhat unclear to me although one can understand CP1

as projective space associated with spinors with 2 complex components. Minkowski signature poses
additional challenges. In the following I try my best to summarize the mathematician’s view, which
is very natural in classical TGD.

There are many variants of the notion of twistor depending on whether how powerful assump-
tions one is willing to make. The weakest definition of twistor space is as CP1 bundle of almost
complex structures in the tangent spaces of an orientable 4-manifold. Complex structure at given
point means selection of antisymmetric form J whose natural action on vector rotates a vector
in the plane defined by it by π/2 and thus represents the action of imaginary unit. One must
perform this kind of choice also in normal plane and the direct sum of the two choices defines the
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full J . If one choses J to be self-dual or anti-self-dual (eigenstate of Hodge star operation), one
can fix J uniquely. Orientability makes possible the Hodge start operation involving 4-dimensional
permutation tensor.

The condition i1 = −1 is translated to the condition that the tensor square of J equals to
J2 = −g. The possible choices of J span sphere S2 defining the fiber of the twistor spaces. This is
not quite the complex sphere CP1, which can be thought of as a projective space of spinors with
two complex components. Complexification must be performed in both the tangent space of X4

and of S2. Note that in the standard approach to twistors the entire 6-D space is projective space
P3 associated with the C8 having interpretation in terms of spinors with 4 complex components.

One can introduce almost complex structure also to the twistor space itself by extending the
almost complex structure in the 6-D tangent space obtained by a preferred choices of J by iden-
tifiying it as a point of S2 and acting in other points of S2 identified as antisymmetric tensors.
If these points are interpreted as imaginary quaternion units, the action is commutator action
divided by 2. The existence of quaternion structure of space-time surfaces in the sense as I have
proposed in TGD framework might be closely related to the twistor structure.

Twistor structure as bundle of almost complex structures having itself almost complex structure
is characterized by a hermitian Kähler form ω defining the almost complex structure of the twistor
space. Three basic objects are involved: the hermitian form h, metric g and Kähler form ω
satisfying h = g + iω, g(X,Y ) = ω(X, JY ).

In the base space the metric of twistor space is the metric of the base space and in the tangent
space of fibre the natural metric in the space of antisymmetric tensors induced by the metric of the
base space. Hence the properties of the twistor structure depend on the metric of the base space.

The relationship to the spinors requires clarification. For 2-spinors one has natural Lorentz
invariant antisymmetric bilinear form and this seems to be the counterpart for J?

One can consider various additional conditions on the definition of twistor space.

1. Kähler form ω is not closed in general. If it is, it defines symplectic structure and Kähler
structure. S4 and CP2 are the only compact spaces allowing twistor space with Kähler
structure.

2. Almost complex structure is not integrable in general. In the general case integrability
requires that each point of space belongs to an open set in which vector fields of type (1,0)
or (0,1) having basis ∂/∂zk and ∂/∂zk expressible as linear combinations of real vector fields
with complex coefficients commute to vector fields of same type. This is non-trivial conditions
since the leading names for the vector field for the partial derivatives does not yet guarantee
these conditions.

This necessary condition is also enough for integrability as Newlander and Nirenberg have
demonstrated. An explicit formulation for the integrability is as the vanishing of Nijenhuis
tensor associated with the antisymmetric form J (see (http://insti.physics.sunysb.edu/
conf/simonsworkII/talks/LeBrun.pdf and http://en.wikipedia.org/wiki/Almost_complex_

manifold#Integrable_almost_complex_structures). Nijenhuis tensor characterizes Ni-
jenhuis bracket generalizing ordinary Lie bracket of vector fields (for detailed formula see
http://en.wikipedia.org/wiki/FrlicherNijenhuis_bracket).

3. In the case of twistor spaces there is an alternative formulation for the integrability. Curvature
tensor maps in a natural manner 2-forms to 2-forms and one can decompose the Weyl tensor
W identified as the traceless part of the curvature tensor to self-dual and anti-self-dual parts
W+ and W−, whose actions are restricted to self-dual resp. antiself-dual forms (self-dual and
anti-self-dual parts correspond to eigenvalue + 1 and -1 under the action of Hodge ∗ operation:
for more details see http://www.math.ucla.edu/~greene/YauTwister(8-9).pdf). If W+

or W− vanishes - in other worlds W is self-dual or anti-self-dual - the assumption that J is
self-dual or anti-self-dual guarantees integrability. One says that the metric is anti-self-dual
(ASD). Note that the vanishing of Weyl tensor implies local conformal flatness (M4 and
sphere are obviously conformally flat). One might think that ASD condition guarantees that
the parallel translation leaves J invariant.

ASD property has a nice implication: the metric is balanced. In other words one has d(ω ∧
ω) = 2ω ∧ dω = 0.

http://insti.physics.sunysb.edu/conf/simonsworkII/talks/LeBrun.pdf 
http://insti.physics.sunysb.edu/conf/simonsworkII/talks/LeBrun.pdf 
http://en.wikipedia.org/wiki/Almost_complex_manifold# Integrable_almost_complex_structures
http://en.wikipedia.org/wiki/Almost_complex_manifold# Integrable_almost_complex_structures
http://en.wikipedia.org/wiki/Frölicher–Nijenhuis_bracket
http://www.math.ucla.edu/~greene/YauTwister(8-9).pdf
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4. If the existence of complex structure is taken as a part of definition of twistor structure, one
encounters difficulties in general relativity. The failure of spin structure to exist is similar
difficulty: for CP2 one must indeed generalize the spin structure by coupling Kähler gauge
potential to the spinors suitably so that one obtains gauge group of electroweak interactions.

5. One could also give up the global existence of complex structure and require symplectic
structure globally: this would give dω = 0. A general result is that hyperbolic 4-manifolds
allow symplectic structure and ASD manifolds allow complex structure and hence balanced
metric.

2.3 Why twistor spaces with Kähler structure?

I have not yet even tried to answer an obvious question. Why the fact that M4 and CP2 have
twistor spaces with Kähler structure could be so important that it could fix the entire physics?
Let us consider a less general question. Why they would be so important for the classical TGD -
exact part of quantum TGD - defined by the extremals of Kähler action [K2]?

1. Properly generalized conformal symmetries are crucial for the mathematical structure of
TGD [K3, K6, K12, K4]. Twistor spaces have almost complex structure and in these two
special cases also complex, Kähler, and symplectic structures (note that the integrability
of the almost complex structure to complex structure requires the self-duality of the Weyl
tensor of the 4-D manifold).

The Cartesian product CP3×F3 of the two twistor spaces with Kähler structure is expected
to be fundamental for TGD. The obvious wishful thought is that this space makes possible
the construction of the extremals of Kähler action in terms of holomorphic surfaces defining
6-D twistor sub-spaces of CP3 × F3 allowing to circumvent the technical problems due to
the signature of M4 encountered at the level of M4 × CP2. It would also make the the
magnificent machinery of the algebraic geometry so powerful in string theories a tool of
TGD. For years ago I considered the possibility that complex 3-manifolds of CP3 × CP3

could have the structure of S2 fiber space and have space-time surfaces as base space. I did
not realize that this spaces could be twistor spaces nor did I realize that CP2 allows twistor
space with Kähler structure so that CP3 × F3 is a more plausible choice.

2. Every 4-D orientable Riemann manifold allows a twistor space as 6-D bundle with CP1

as fiber and possessing almost complex structure. Metric and various gauge potentials are
obtained by inducing the corresponding bundle structures. Hence the natural guess is that
the twistor structure of space-time surface defined by the induced metric is obtained by
induction from that for CP3 × F3 by restricting its twistor structure to a 6-D (in real sense)
surface of CP3×F3 with a structure of twistor space having at least almost complex structure
with CP1 as a fiber. If so then one can indeed identify the base space as 4-D space-time
surface in M4 × SCP2 using bundle projections in the factors CP3 and F3.

3. There might be also a connection to the number theoretic vision about the extremals of Kähler
action. At space-time level however complexified quaternions and octonions could allow
alternative formulation. I have indeed proposed that space-time surfaces have associative of
co-associative meaning that the tangent space or normal space at a given point belongs to
quaternionic subspace of complexified octonions.

3 About the identification of 6-D twistor spaces as sub-
manifolds of CP3 × F3

How to identify the 6-D sub-manifolds with the structure of twistor space? Is this property all
that is needed? Can one find a simple solution to this condition? What is the relationship of
twistor spaces to the Calabi-Yau manifolds of suyper string models? In the following intuitive
considerations of a simple minded physicist. Mathematician could probably make much more
interesting comments.
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3.1 Conditions for twistor spaces as sub-manifolds

Consider the conditions that must be satisfied using local trivializations of the twistor spaces.
Before continuing let us introduce complex coordinates zi = xi + iyi resp. wi = ui + ivi for CP3

resp. F3.

1. 6 conditions are required and they must give rise by bundle projection to 4 conditions relating
the coordinates in the Cartesian product of the base spaces of the two bundles involved and
thus defining 4-D surface in the Cartesian product of compactified M4 and CP2.

2. One has Cartesian product of two fiber spaces with fiber CP1 giving fiber space with fiber
CP 1

1 × CP 2
1 . For the 6-D surface the fiber must be CP1. It seems that one must identify

the two spheres CP i
1. Since holomorphy is essential, holomorphic identification w1 = f(z1)

or z1 = f(w1) is the first guess. A stronger condition is that the function f is meromorphic
having thus only finite numbers of poles and zeros of finite order so that a given point of CP i

1

is covered by CP i+1
1 . Even stronger and very natural condition is that the identification is

bijection so that only Möbius transformations parametrized by SL(2,C) are possible.

3. Could the Möbius transformation f : CP 1
1 → CP 2

1 depend parametrically on the coordinates
z2, z3 so that one would have w1 = f1(z1, z2, z3), where the complex parameters a, b, c, d
(ad − bc = 1) of Möbius transformation depend on z2 and z3 holomorphically? Does this
mean the analog of local SL(2,C) gauge invariance posing additional conditions? Does this
mean that the twistor space as surface is determined up to SL(2,C) gauge transformation?

What conditions can one pose on the dependence of the parameters a, b, c, d of the Möbius
transformation on (z2, z3)? The spheres CP1 defined by the conditions w1 = f(z1, z2, z3)
and z1 = g(w1, w2, w3) must be identical. Inverting the first condition one obtains z1 =
f−1(w1, z2, z3). If one requires that his allows an expression as z1 = g(w1, w2, w3), one must
assume that z2 and z3 can be expressed as holomorphic functions of (w2, w3): zi = fi(wk),
i = 2, 3, k = 2, 3. Of course, non-holomorphic correspondence cannot be excluded.

4. Further conditions are obtained by demanding that the known extremals - at least non-
vacuum extremals - are allowed. The known extremals [K2] can be classified into CP2

type vacuum extremals with 1-D light-like curve as M4 projection, to vacuum extremals
with CP2 projection, which is Lagrangian sub-manifold and thus at most 2-dimensional, to
massless extremals with 2-D CP2 projection such that CP2 coordinates depend on arbitrary
manner on light-like coordinate defining local propagation direction and space-like coordinate
defining a local polarization direction, and to string like objects with string world sheet as
M4 projection (minimal surface) and 2-D complex sub-manifold of CP2 as CP2 projection, .
There are certainly also other extremals such as magnetic flux tubes resulting as deformations
of string like objects. Number theoretic vision relying on classical number fields suggest a
very general construction based on the notion of associativity of tangent space or co-tangent
space.

5. The conditions coming from these extremals reduce to 4 conditions expressible in the holo-
morphic case in terms of the base space coordinates (z2, z3) and (w2, w3) and in the more
general case in terms of the corresponding real coordinates. It seems that holomorphic ansatz
is not consistent with the existence of vacuum extremals, which however give vanishing contri-
bution to transition amplitudes since WCW (”world of classical worlds”) metric is completely
degenerate for them.

The mere condition that one has CP1 fiber bundle structure does not force field equations
since it leaves the dependence between real coordinates of the base spaces free. Of course,
CP1 bundle structure alone does not imply twistor space structure. One can ask whether
non-vacuum extremals could correspond to holomorphic constraints between (z2, z3) and
(w2, w3).

6. The metric of twistor space is not Kähler in the general case. However, if it allows complex
structure there is a Hermitian form ω, which defines what is called balanced Kähler form [A4]
satisfying d(ω ∧ ω) = 2ω ∧ dω = 0: ordinary Kähler form satisfying dω = 0 is special case
about this. The natural metric of compact 6-dimensional twistor space is therefore balanced.
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Clearly, mere CP1 bundle structure is not enough for the twistor structure. If the the Kähler
and symplectic forms are induced from those of CP3 × Y3, highly non-trivial conditions are
obtained for the imbedding of the twistor space, and one might hope that they are equivalent
with those implied by Kähler action at the level of base space.

7. Pessimist could argue that field equations are additional conditions completely independent
of the conditions realizing the bundle structure! One cannot exclude this possibility. Mathe-
matician could easily answer the question about whether the proposed CP1 bundle structure
with some added conditions is enough to produce twistor space or not and whether field
equations could be the additional condition and realized using the holomorphic ansatz.

3.2 Twistor spaces by adding CP1 fiber to space-time surfaces

The physical picture behind TGD is the safest starting point in an attempt to gain some idea
about what the twistor spaces look like.

1. Canonical imbeddings of M4 and CP2 and their disjoint unions are certainly the natural
starting point and correspond to canonical imbeddings of CP3 and F3 to CP3 × F3.

2. Deformations of M4 correspond to space-time sheets with Minkowskian signature of the
induced metric and those of CP2 to the lines of generalized Feynman diagrams. The simplest
deformations of M4 are vacuum extremals with CP2 projection which is Lagrangian manifold.

Massless extremals represent non-vacuum deformations with 2-D CP2 projection. CP2 co-
ordinates depend on local light-like direction defining the analog of wave vector and local
polarization direction orthogonal to it.

The simplest deformations of CP2 are CP2 type extremals with light-like curve as M4 projec-
tion and have same Kähler form and metric as CP2. These space-time regions have Euclidian
signature of metric and light-like 3-surfaces separating Euclidian and Minkowskian regions
define parton orbits.

String like objects are extremals of type X2 × Y 2, X2 minimal surface in M4 and Y 2 a
complex sub-manifold of CP2. Magnetic flux tubes carrying monopole flux are deformations
of these.

Elementary particles are important piece of picture. They have as building bricks wormhole
contacts connecting space-time sheets and the contacts carry monopole flux. This requires
at least two wormhole contacts connected by flux tubes with opposite flux at the parallel
sheets.

3. Space-time surfaces are constructed using as building bricks space-time sheets, in particular
massless exrremals, deformed pieces of CP2 defining lines of generalized Feynman diagrams
as orbits of wormhole contacts, and magnetic flux tubes connecting the lines. Space-time
surfaces have in the generic case discrete set of self intersections and it is natural to remove
them by connected sum operation. Same applies to twistor spaces as sub-manifolds of CP3×
F3 and this leads to a construction analogous to that used to remove singularities of Calabi-
Yau spaces [A4].

Physical intuition suggests that it is possible to find twistor spaces associated with the basic
building bricks and to lift this engineering procedure to the level of twistor space in the sense that
the twistor projections of twistor spaces would give these structure. Lifting would essentially mean
assigning CP1 fiber to the space-time surfaces.

1. Twistor spaces should decompose to regions for which the metric induced from the CP3×F3

metric has different signature. In particular, light-like 5-surfaces should replace the light-
like 3-surfaces as causal horizons. The signature of the Hermitian metric of 4-D (in com-
plex sense) twistor space is (1,1,-1,-1). Minkowskian variant of CP3 is defined as projective
space SU(2,2)/SU(2,1)times;U(1). The causal diamond (CD) (intersection of future and past
directed light-cones) is the key geometric object in zero energy ontology (ZEO) and the
generalization to the intersection of twistorial light-cones is suggestive.
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2. Projective twistor space has regions of positive and negative projective norm, which are
3-D complex manifolds. It has also a 5-dimensional sub-space consisting of null twistors
analogous to light-cone and has one null direction in the induced metric. This light-cone has
conic singularity analogous to the tip of the light-cone of M4.

These conic singularities are important in the mathematical theory of Calabi-You manifolds
since topology change of Calabi-Yau manifolds via the elimination of the singularity can be
associated with them. The S2 bundle character implies the structure of S2 bundle for the
base of the singularity (analogous to the base of the ordinary cone).

3. Null twistor space corresponds at the level of M4 to the light-cone boundary (causal diamond
has two light-like boundaries). What about the light-like orbits of partonic 2-surfaces whose
light-likeness is due to the presence of CP2 contribution in the induced metric? For them
the determinant of induced 4-metric vanishes so that they are genuine singularities in metric
sense. The deformations for the canonical imbeddings of this sub-space (F3 coordinates
constant) leaving its metric degenerate should define the lifts of the light-like orbits of partonic
2-surface. The singularity in this case separates regions of different signature of induced
metric.

It would seem that if partonic 2-surface begins at the boundary of CD, conical singularity
is not necessary. On the other hand the vertices of generalized Feynman diagrams are 3-
surfaces at which 3-lines of generalized Feynman digram are glued together. This singularity
is completely analogous to that of ordinary vertex of Feynman diagram. These singularities
should correspond to gluing together 3 deformed F3 along their ends.

4. These considerations suggest that the construction of twistor spaces is a lift of construction
space-time surfaces and generalized Feynman diagrammatics should generalize to the level of
twistor spaces. What is added is CP1 fiber so that the correspondence would rather concrete.

5. For instance, elementary particles consisting of pairs of monopole throats connected buy
flux tubes at the two space-time sheets involved should allow lifting to the twistor level.
This means double connected sum and this double connected sum should appear also for
deformations of F3 associated with the lines of generalized Feynman diagrams. Lifts for the
deformations of magnetic flux tubes to which one can assign CP3 in turn would connect the
two F3s.

6. A natural conjecture inspired by number theoretic vision is that Minkowskian and Euclidian
space-time regions correspond to associative and co-associative space-time regions. At the
level of twistor space these two kinds of regions would correspond to deformations of CP3

and F3. The signature of the twistor norm would be different in this regions just as the
signature of induced metric is different in corresponding space-time regions.

These two regions of space-time surface should correspond to deformations for disjoint unions
of CP3s and F3s and multiple connected sum form them should project to multiple connected
sum (wormhole contacts with Euclidian signature of induced metric) for deformed CP3s.
Wormhole contacts could have deformed pieces of F3 as counterparts.

There are interesting questions related to the detailed realization of the twistor spaces of space-
time surfaces.

1. In the case of CP2 J would naturally correspond to the Kähler form of CP2. Could one
identify J for the twistor space associated with space-time surface as the projection of J?
For deformations of CP2 type vacuum extremals the normalization of J would allow to satisfy
the condition J2 = −g. For general extremals this is not possible. Should one be ready to
modify the notion of twistor space by allowing this?

2. Or could the associativity/co-associativity condition realized in terms of quaternionicity of
the tangent or normal space of the space-time surface guaranteeing the existence of quaternion
units solve the problem and J could be identified as a representation of unit quaternion? In
this case J would be replaced with vielbein vector and the decomposition 1+3 of the tangent
space implied by the quaternion structure allows to use 3-dimensional permutation symbol
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to assign antisymmetric tensors to the vielbein vectors. Also the triviality of the tangent
bundle of 3-D space allowing global choices of the 3 imaginary units could be essential.

3. Does associativity/co-associativity imply twistor space property or could it provide alter-
native manner to realize this notion? Or could one see quaternionic structure as an ex-
tension of almost complex structure. Instead of single J three orthogonal J :s (3 almost
complex structures) are introduced and obey the multiplication table of quaternionic units?
Instead of S2 the fiber of the bundle would be SO(3) = S3. This option is not attrac-
tive. A manifold with quaternionic tangent space with metric representing the real unit is
known as quaternionic Riemann manifold and CP2 with holonomy U(2) is example of it. A
more restrictive condition is that all quaternion units define closed forms: one has quater-
nion Kähler manifold, which is Ricci flat and has in 4-D case Sp(1)=SU(2) holonomy. (see
http://www.encyclopediaofmath.org/index.php/Quaternionic_structure).

4. Anti-self-dual property (ASD) of metric guaranteeing the integrability of almost complex
structure of the twistor space implies the condition ω ∧ dω = 0 for the twistor space. What
does this condition mean physically for the twistor spaces associated with the extremals of
Kähler action? For the 4-D base space this property is of course identically true. ASD
property need of course not be realized.

3.3 Twistor spaces as analogs of Calabi-Yau spaces of super string mod-
els

CP3 is also a Calabi-Yau manifold in the strong sense that it allows Kähler structure and complex
structure. Witten’s twistor string theory considers 2-D (in real sense) complex surfaces in twistor
space CP3. This inspires some questions.

1. Could TGD in twistor space formulation be seen as a generalization of this theory?

2. General twistor space is not Calabi-Yau manifold because it does does not have Kähler
structure. Do twistor spaces replace Calabi-Yaus in TGD framework?

3. Could twistor spaces be Calabi-Yau manifolds in some weaker sense so that one would have
a closer connection with super string models.

Consider the last question.

1. One can indeed define non-Kähler Calabi-Yau manifolds by keeping the hermitian metric and
giving up symplectic structure or by keeping the symplectic structure and giving up hermitian
metric (almost complex structure is enough). Construction recipes for non-Kähler Calabi-
Yau manifold are discussed in [A4]. It is shown that these two manners to give up Kähler
structure correspond to duals under so called mirror symmetry [B6]which maps complex and
symplectic structures to each other. This construction applies also to the twistor spaces.

2. For the modification giving up symplectic structure, one starts from a smooth Kähler Calabi-
Yau 3-fold Y , such as CP3. One assumes a discrete set of disjoint rational curves diffeomor-
phic to CP1. In TGD framework work they would correspond to special fibers of twistor
space.

One has singularities in which some rational curves are contracted to point - in twistorial case
the fiber of twistor space would contract to a point - this produces double point singularity
which one can visualize as the vertex at which two cones meet (sundial should give an idea
about what is involved). One deforms the singularity to a smooth complex manifold. One
could interpret this as throwing away the common point and replacing it with connected sum
contact: a tube connecting the holes drilled to the vertices of the two cones. In TGD one
would talk about wormhole contact.

3. Suppose the topology looks locally like S3 × S2 × R± near the singularity, such that two
copies analogous to the two halves of a cone (sundial) meet at single point defining double
point singularity. In the recent case S2 would correspond to the fiber of the twistor space. S3

http://www.encyclopediaofmath.org/index.php/Quaternionic_structure
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would correspond to 3-surface and R± would correspond to time coordinate in past/future
direction. S3 could be replaced with something else.

The copies of S3×S2 contract to a point at the common end of R+ and R− so that both the
based and fiber contracts to a point. Space-time surface would look like the pair of future
and past directed light-cones meeting at their tips.

For the first modification giving up symplectic structure only the fiber S2 is contracted to a
point and S2 ×D is therefore replaced with the smooth ”bottom” of S3. Instead of sundial
one has two balls touching. Drill small holes two the two S3s and connect them by connected
sum contact (wormhole contact). Locally one obtains S3×S3 with k connected sum contacts.

For the modification giving up Hermitian structure one contracts only S3 to a point instead
of S2. In this case one has locally two CP3:s touching (one can think that CPn is obtained
by replacing the points of Cn at infinity with the sphere CP1). Again one drills holes and
connects them by a connected sum contact to get k-connected sum of CP3.

For k CP1s the outcome looks locally like to a k-connected sum of S3×S3 or CP3 with k ≥ 2.
In the first case one loses symplectic structure and in the second case hermitian structure.
The conjecture is that the two manifolds form a mirror pair.

The general conjecture is that all Calabi-Yau manifolds are obtained using these two modi-
fications. One can ask whether this conjecture could apply also the construction of twistor
spaces representable as surfaces in CP3 × F3 so that it would give mirror pairs of twistor
spaces.

4. This smoothing out procedures isa actually unavoidable in TGD because twistor space is sub-
manifold. The 6-D twistor spaces in 12-D CP3×F3 have in the generic case self intersections
consisting of discrete points. Since the fibers CP1 cannot intersect and since the intersection
is point, it seems that the fibers must contract to a point. In the similar manner the 4-D
base spaces should have local foliation by spheres or some other 3-D objects with contract
to a point. One has just the situation described above.

One can remove these singularities by drilling small holes around the shared point at the two
sheets of the twistor space and connected the resulting boundaries by connected sum contact.
The preservation of fiber structure might force to perform the process in such a manner that
local modification of the topology contracts either the 3-D base (S3 in previous example or
fiber CP1 to a point.

The interpretation of twistor spaces is of course totally different from the interpretation of
Calabi-Yaus in superstring models. The landscape problem of superstring models is avoided and the
multiverse of string models is replaced with generalized Feynman diagrams! Different twistor spaces
correspond to different space-time surfaces and one can interpret them in terms of generalized
Feynman diagrams since bundle projection gives the space-time picture. Mirror symmetry means
that there are two different Calabi-Yaus giving the same physics. Also now twistor space for a
given space-time surface can have several imbeddings - perhaps mirror pairs define this kind of
imbeddings.

To sum up, the construction of space-times as surfaces of H lifted to that of (almost) complex
sub-manifolds in CP3 × F3 with induced twistor structure shares the spirit of the vision that
induction procedure is the key element of classical and quantum TGD. It also gives deep connection
with the mathematical methods applied in super string models and these methods should be of
direct use in TGD.

REFERENCES

Mathematics

[A1] Kählerian twistor spaces. Proc. London Math. Soc.. https: // people. maths. ox. ac. uk/
hitchin/ hitchinlist/ Hitchin% 20KAHLERIAN% 20TWISTOR% 20SPACES% 20( PLMS% 201981)

.pdf , 8(43):133–151, 1981.

https://people.maths.ox.ac.uk/hitchin/hitchinlist/Hitchin%20KAHLERIAN%20TWISTOR%20SPACES%20(PLMS%201981).pdf
https://people.maths.ox.ac.uk/hitchin/hitchinlist/Hitchin%20KAHLERIAN%20TWISTOR%20SPACES%20(PLMS%201981).pdf
https://people.maths.ox.ac.uk/hitchin/hitchinlist/Hitchin%20KAHLERIAN%20TWISTOR%20SPACES%20(PLMS%201981).pdf


THEORETICAL PHYSICS 12

[A2] V. Bouchard. Lectures on complex geometry, Calabi-Yau manifolds and toric geometry.
http://www.ulb.ac.be/sciences/ptm/pmif/Rencontres/ModaveI/CGL.ps, 2005.

[A3] B. Shipman. The geometry of momentum mappings on generalized flag manifolds, connections
with a dynamical system, quantum mechanics and the dance of honeybee. http://math.

cornell.edu/~oliver/Shipman.gif, 1998.

[A4] L-Sheng Tseng and Shing-Tung Yan. Non-Kähler Calabi-Yau submanifolds. Proceed-
ings in Symposia in Pure Mathematics. http: // www. math. uci. edu/ ~ lstseng/ pdf/

TsengYau201216. pdf , 85:241–253, 2012.

Theoretical Physics

[B1] N. Arkani-Hamed et al. A duality for the S-matrix. http://arxiv.org/abs/0907.5418,
2009.

[B2] N. Arkani-Hamed et al. The All-Loop Integrand For Scattering Amplitudes in Planar N=4
SYM. http://arxiv.org/find/hep-th/1/au:+Bourjaily_J/0/1/0/all/0/1, 2010.

[B3] P. Svrcek F. Cachazo and E. Witten. MHV Vertices and Tree Amplitudes In Gauge Theory.
http://arxiv.org/abs/hep-th/0403047, 2004.

[B4] J. Henn J. Drummond and J. Plefka. Yangian symmetry of scattering amplitudes inN = 4 su-
per Yang-Mills theory. http://cdsweb.cern.ch/record/1162372/files/jhep052009046.

pdf, 2009.

[B5] C. R. Nappi L. Dolan and E. Witten. Yangian Symmetry in D = 4 superconformal Yang-Mills
theory. http://arxiv.org/abs/hep-th/0401243, 2004.

[B6] B. R. Greene P. S. Aspinwall and D. R. Morrison. Calabi-Yau Moduli Space, Mirror Mani-
folds, and Space-time Topology Change in String Theory. http://arxiv.org/abs/hep-th/

9309097, 1993.

[B7] E. Witten. Perturbative Gauge Theory As a String Theory In Twistor Space. http://arxiv.
org/abs/hep-th/0312171, 2003.

Books related to TGD

[K1] M. Pitkänen. About Nature of Time. In TGD Inspired Theory of Consciousness. Onlinebook.
http://tgdtheory.fi/public_html/tgdconsc/tgdconsc.html#timenature, 2006.

[K2] M. Pitkänen. Basic Extremals of Kähler Action. In Physics in Many-Sheeted Space-Time.
Onlinebook. http://tgdtheory.fi/public_html/tgdclass/tgdclass.html#class, 2006.

[K3] M. Pitkänen. Construction of Configuration Space Kähler Geometry from Symmetry
Principles. In Quantum Physics as Infinite-Dimensional Geometry. Onlinebook. http:

//tgdtheory.fi/public_html/tgdgeom/tgdgeom.html#compl1, 2006.

[K4] M. Pitkänen. Construction of Quantum Theory: Symmetries. In Towards M-Matrix. On-
linebook. http://tgdtheory.fi/public_html/tgdquant/tgdquantum.html#quthe, 2006.

[K5] M. Pitkänen. Does TGD Predict the Spectrum of Planck Constants? In Hyper-finite Factors
and Dark Matter Hierarchy. Onlinebook. http://tgdtheory.fi/public_html/neuplanck/
neuplanck.html#Planck, 2006.

[K6] M. Pitkänen. Does the Modified Dirac Equation Define the Fundamental Action Principle?
In Quantum Physics as Infinite-Dimensional Geometry. Onlinebook. http://tgdtheory.fi/
public_html/tgdgeom/tgdgeom.html#Dirac, 2006.

[K7] M. Pitkänen. General Theory of Qualia. In Bio-Systems as Conscious Holograms. Onlinebook.
http://tgdtheory.fi/public_html/hologram/hologram.html#qualia, 2006.

http://www.ulb.ac.be/sciences/ptm/pmif/Rencontres/ModaveI/CGL.ps
http://math.cornell.edu/~oliver/Shipman.gif
http://math.cornell.edu/~oliver/Shipman.gif
http://www.math.uci.edu/~lstseng/pdf/TsengYau201216.pdf
http://www.math.uci.edu/~lstseng/pdf/TsengYau201216.pdf
http://arxiv.org/abs/0907.5418
http://arxiv.org/find/hep-th/1/au:+Bourjaily_J/0/1/0/all/0/1
http://arxiv.org/abs/hep-th/0403047
http://cdsweb.cern.ch/record/1162372/files/jhep052009046.pdf
http://cdsweb.cern.ch/record/1162372/files/jhep052009046.pdf
http://arxiv.org/abs/hep-th/0401243
http://arxiv.org/abs/hep-th/9309097
http://arxiv.org/abs/hep-th/9309097
http://arxiv.org/abs/hep-th/0312171
http://arxiv.org/abs/hep-th/0312171
http://tgdtheory.fi/public_html/tgdconsc/tgdconsc.html#timenature
http://tgdtheory.fi/public_html/tgdclass/tgdclass.html#class
http://tgdtheory.fi/public_html/tgdgeom/tgdgeom.html#compl1
http://tgdtheory.fi/public_html/tgdgeom/tgdgeom.html#compl1
http://tgdtheory.fi/public_html/tgdquant/tgdquantum.html#quthe
http://tgdtheory.fi/public_html/neuplanck/neuplanck.html#Planck
http://tgdtheory.fi/public_html/neuplanck/neuplanck.html#Planck
http://tgdtheory.fi/public_html/tgdgeom/tgdgeom.html#Dirac
http://tgdtheory.fi/public_html/tgdgeom/tgdgeom.html#Dirac
http://tgdtheory.fi/public_html/hologram/hologram.html#qualia


BOOKS RELATED TO TGD 13

[K8] M. Pitkänen. Identification of the Configuration Space Kähler Function. In Quan-
tum Physics as Infinite-Dimensional Geometry. Onlinebook. http://tgdtheory.fi/public_
html/tgdgeom/tgdgeom.html#kahler, 2006.

[K9] M. Pitkänen. Physics in Many-Sheeted Space-Time. Onlinebook. http://tgdtheory.fi/
public_html/tgdclass/tgdclass.html, 2006.

[K10] M. Pitkänen. Quantum Physics as Infinite-Dimensional Geometry. Onlinebook.http://
tgdtheory.fi/public_html/tgdgeom/tgdgeom.html, 2006.

[K11] M. Pitkänen. TGD as a Generalized Number Theory. Onlinebook. http://tgdtheory.fi/
public_html/tgdnumber/tgdnumber.html, 2006.

[K12] M. Pitkänen. The Recent Vision About Preferred Extremals and Solutions of the Modified
Dirac Equation. In Quantum Physics as Infinite-Dimensional Geometry. Onlinebook. http:
//tgdtheory.fi/public_html/tgdgeom/tgdgeom.html#dirasvira, 2012.

[K13] M. Pitkänen. Quantum TGD. Onlinebook. http://tgdtheory.fi/public_html/

tgdquantum/tgdquantum.html, 2013.

[K14] M. Pitkänen. Criticality and dark matter. In Hyper-finite Factors and Dark Matter
Hierarchy. Onlinebook. http://tgdtheory.fi/public_html/neuplanck/neuplanck.html#

qcritdark, 2014.

http://tgdtheory.fi/public_html/tgdgeom/tgdgeom.html#kahler
http://tgdtheory.fi/public_html/tgdgeom/tgdgeom.html#kahler
http://tgdtheory.fi/public_html/tgdclass/tgdclass.html
http://tgdtheory.fi/public_html/tgdclass/tgdclass.html
http://tgdtheory.fi/public_html/tgdgeom/tgdgeom.html
http://tgdtheory.fi/public_html/tgdgeom/tgdgeom.html
http://tgdtheory.fi/public_html/tgdnumber/tgdnumber.html
http://tgdtheory.fi/public_html/tgdnumber/tgdnumber.html
http://tgdtheory.fi/public_html/tgdgeom/tgdgeom.html#dirasvira
http://tgdtheory.fi/public_html/tgdgeom/tgdgeom.html#dirasvira
http://tgdtheory.fi/public_html/tgdquantum/tgdquantum.html
http://tgdtheory.fi/public_html/tgdquantum/tgdquantum.html
http://tgdtheory.fi/public_html/neuplanck/neuplanck.html#qcritdark
http://tgdtheory.fi/public_html/neuplanck/neuplanck.html#qcritdark

	Introduction
	Background and motivations
	Basic facts
	Basic definitions related to twistor spaces
	Why twistor spaces with Kähler structure?

	About the identification of 6-D twistor spaces as sub-manifolds of CP3F3
	Conditions for twistor spaces as sub-manifolds
	Twistor spaces by adding CP1 fiber to space-time surfaces
	Twistor spaces as analogs of Calabi-Yau spaces of super string models


