Classical part of the twistor story

M. Pitkänen
Email: matpitka@luukku.com.
http://tgdtheory.com/public_html/
December 21, 2014

Contents

1 Introduction 1

2 Background and motivations 2
 2.1 Basic facts . 2
 2.2 Basic definitions related to twistor spaces . 4
 2.3 Why twistor spaces with Kähler structure? . 6

3 About the identification of 6-D twistor spaces as sub-manifolds of $CP_3 \times F_3$ 6
 3.1 Conditions for twistor spaces as sub-manifolds 7
 3.2 Twistor spaces by adding CP_1 fiber to space-time surfaces 8
 3.3 Twistor spaces as analogs of Calabi-Yau spaces of super string models 10

Abstract

Twistors Grassmannian formalism has made a breakthrough in $\mathcal{N} = 4$ supersymmetric gauge theories and the Yangian symmetry suggests that much more than mere technical breakthrough is in question. Twistors seem to be tailor made for TGD but it seems that the generalization of twistor structure to that for 8-D imbedding space $H = M^4 \times CP_2$ is necessary. M^4 (and S^4 as its Euclidian counterpart) and CP_2 are indeed unique in the sense that they are the only 4-D spaces allowing twistor space with Kähler structure.

The Cartesian product of twistor spaces $P_3 = SU(2,2)/SU(2,1) \times U(1)$ and F_3 defines twistor space for the imbedding space H and one can ask whether this generalized twistor structure could allow to understand both quantum TGD and classical TGD defined by the extremals of Kähler action. In the following I summarize the background and develop a proposal for how to construct extremals of Kähler action in terms of the generalized twistor structure. One ends up with a scenario in which space-time surfaces are lifted to twistor spaces by adding CP_1 fiber so that the twistor spaces give an alternative representation for generalized Feynman diagrams.

There is also a very closely analogy with superstring models. Twistor spaces replace Calabi-Yau manifolds and the modification recipe for Calabi-Yau manifolds by removal of singularities can be applied to remove self-intersections of twistor spaces and mirror symmetry emerges naturally. The overall important implication is that the methods of algebraic geometry used in super-string theories should apply in TGD framework.

The physical interpretation is totally different in TGD. The landscape is replaced with twistor spaces of space-time surfaces having interpretation as generalized Feynman diagrams and twistor spaces as sub-manifolds of $P_3 \times F_3$ replace Witten’s twistor strings.

1 Introduction

Twistor Grassmannian formalism has made a breakthrough in $\mathcal{N} = 4$ supersymmetric gauge theories and the Yangian symmetry suggests that much more than mere technical breakthrough is in question. Twistors seem to be tailor made for TGD but it seems that the generalization of twistor structure to that for 8-D imbedding space $H = M^4 \times CP_2$ is necessary. M^4 (and S^4 as its
2. Background and motivations

Euclidian counterpart) and CP_2 are indeed unique in the sense that they are the only 4-D spaces allowing twistor space with Kähler structure.

The Cartesian product of twistor spaces $P_3 = SU(2,2)/SU(2,1) \times U(1)$ and F_3 defines twistor space for the imbedding space H and one can ask whether this generalized twistor structure could allow to understand both quantum TGD \cite{K10,K11,K13} and classical TGD \cite{K9} defined by the extremals of Kähler action.

In the following I summarize the background and develop a proposal for how to construct extremals of Kähler action in terms of the generalized twistor structure. One ends up with a scenario in which space-time surfaces are lifted to twistor spaces by adding CP_1 fiber so that the twistor spaces give an alternative representation for generalized Feynman diagrams having as lines space-time surfaces with Euclidian signature of induced metric and having wormhole contacts as basic building bricks.

There is also a very close analogy with superstring models. Twistor spaces replace Calabi-Yau manifolds \cite{A1} and the modification recipe for Calabi-Yau manifolds by removal of singularities can be applied to remove self-intersections of twistor spaces and mirror symmetry \cite{B6}emerges naturally. The overall important implication is that the methods of algebraic geometry used in super-string theories should apply in TGD framework.

The physical interpretation is totally different in TGD. Twistor space has space-time as base-space rather than forming with it Cartesian factors of a 10-D space-time. The Calabi-Yau landscape is replaced with the space of twistor spaces of space-time surfaces having interpretation as generalized Feynman diagrams and twistor spaces as sub-manifolds of $P_3 \times F_3$ replace Witten’s twistor strings \cite{B7}. The space of twistor spaces is the lift of the “world of classical worlds” (WCW) by adding the CP_1 fiber to the space-time surfaces so that the analog of landscape has beautiful geometrization.

2 Background and motivations

In the following some background plus basic facts and definitions related to twistor spaces are summarized. Also reasons for why twistor are so relevant for TGD is considered at general level.

2.1 Basic facts

First some background.

1. The twistors originally introduced by Penrose (1967) have made breakthrough during last decade. First came the twistor string theory of Edward Witten \cite{B7} proposed twistor string theory and the work of Nima-Arkani Hamed and collaborators \cite{B1} led to a revolution in the understanding of the scattering amplitudes of scattering amplitudes of gauge theories \cite{B2,?}. Twistors do not only provide an extremely effective calculational method giving even hopes about explicit formulas for the scattering amplitudes of $\mathcal{N} = 4$ supersymmetric gauge theories but also lead to an identification of a new symmetry: Yangian symmetry \cite{?,B5,B4}, which can be seen as multilocal generalization of local symmetries.

This approach, if suitably generalized, is tailor-made also for the needs of TGD. This is why I got seriously interested on whether and how the twistor approach in empty Minkowski space M^4 could generalize to the case of $H = M^4 \times CP_2$. The twistor space associated with H should be just the cartesian product of those associated with its Cartesian factors. Can one assign a twistor space with CP_2?

2. First a general result \cite{A1} deserves to be mentioned: any oriented manifold X with Riemann metric allows 6-dimensional twistor space Z as an almost complex space. If this structure is integrable, Z becomes a complex manifold, whose geometry describes the conformal geometry of X. In general relativity framework the problem is that field equations do not imply conformal geometry and twistor Grassmann approach certainly requires conformal structure.

3. One can consider also a stronger condition: what if the twistor space allows also Kähler structure? The twistor space of empty Minkowski space M^4 (and its Euclidian counterpart
2.1 Basic facts

S^4 is the Minkowskian variant of $P_3 = SU(2, 2)/SU(2, 1) \times U(1)$ of 3-D complex projective space $CP_3 = SU(4)/SU(3) \times U(1)$ and indeed allows Kähler structure.

Rather remarkably, there are no other space-times with Minkowski signature allowing twistor space with Kähler structure. Does this mean that the empty Minkowski space of special relativity is much more than a limit at which space-time is empty?

This also means a problem for GRT. Twistor space with Kähler structure seems to be needed but general relativity does not allow it. Besides twistor problem GRT also has energy problem: matter makes space-time curved and the conservation laws and even the definition of energy and momentum are lost since the underlying symmetries giving rise to the conservation laws through Noether’s theorem are lost. GRT has therefore two bad mathematical problems which might explain why the quantization of GRT fails. This would not be surprising since quantum theory is to high extent representation theory for symmetries and symmetries are lost. Twistors would extend these symmetries to Yangian symmetry but GRT does not allow them.

4. What about twistor structure in CP_2? CP_2 allows complex structure (Weyl tensor is self-dual), Kähler structure plus accompanying symplectic structure, and also quaternion structure. One of the really big personal surprises of the last years has been that CP_2 twistor space indeed allows Kähler structure meaning the existence of antisymmetric tensor representing imaginary unit whose tensor square is the negative of metric in turn representing real unit. The article by Nigel Hitchin, a famous mathematical physicist, describes a detailed argument identifying S^4 and CP_2 as the only compact Riemann manifolds allowing Kählerian twistor space [A1]. Hitchin sent his discovery for publication 1979. An amusing co-incidence is that I discovered CP_2 just this year after having worked with S^2 and found that it does not really allow to understand standard model quantum numbers and gauge fields. It is difficult to avoid thinking that maybe synchrony indeed a real phenomenon as TGD inspired theory of consciousness predicts to be possible but its creator cannot quite believe. Brains at different side of globe discover simultaneously something closely related to what some conscious self at the higher level of hierarchy using us as instruments of thinking just as we use nerve cells is intensely pondering.

Although 4-sphere S^4 allows twistor space with Kähler structure, it does not allow Kähler structure and cannot serve as candidate for S in $H = M^4 \times S$. As a matter of fact, S^4 can be seen as a Wick rotation of M^4 and indeed its twistor space is CP_3.

In TGD framework a slightly different interpretation suggests itself. The Cartesian products of the intersections of future and past light-cones - causal diamonds (CDs) - with CP_2 - play a key role in zero energy ontology (ZEO) [K1]. Sectors of "world of classical worlds" (WCW) [K5] [K3] correspond to 4-surfaces inside $CD \times CP_2$ defining a the region about which conscious observer can gain conscious information: state function reductions - quantum measurements - take place at its light-like boundaries in accordance with holography. To be more precise, wave functions in the moduli space of CDs are involved and in state function reductions come as sequences taking place at a given fixed boundary. This kind of sequence is identifiable as self and give rise to the experience about flow of time. When one replaces Minkowski metric with Euclidian metric, the light-like boundaries of CD are contracted to a point and one obtains topology of 4-sphere S^4.

5. Another really big personal surprise was that there are no other compact 4-manifolds with Euclidian signature of metric allowing twistor space with Kähler structure! The imbedding space $H = M^4 \times CP_2$ is not only physically unique since it predicts the quantum number spectrum and classical gauge potentials consistent with standard model but also mathematically unique!

After this I dared to predict that TGD will be the theory next to GRT since TGD generalizes string model by bringing in 4-D space-time. The reasons are many-fold: TGD is the only known solution to the two big problems of GRT: energy problem and twistor problem. TGD is consistent with standard model physics and leads to a revolution concerning the identification of space-time at microscopic level: at macroscopic level it leads to GRT but explains some of its anomalies for which there is empirical evidence (for instance, the observation
2.2 Basic definitions related to twistor spaces

One can find from web several articles explaining the basic notions related to twistor spaces and Calabi-Yau manifolds. At the first look the notions of twistor as it appears in the writings of physicists and mathematicians don’t seem to have much common with each other and it requires effort to build the bridge between these views. The bridge comes from the association of points of Minkowski space with the spheres of twistor space: this clearly corresponds to a bundle projection from the fiber to the base space, now Minkowski space. The connection of the mathematician’s formulation with spinors remains still somewhat unclear to me although one can understand \mathbb{CP}_1 as projective space associated with spinors with 2 complex components. Minkowski signature poses additional challenges. In the following I try my best to summarize the mathematician’s view, which is very natural in classical TGD.

There are many variants of the notion of twistor depending on whether how powerful assumptions one is willing to make. The weakest definition of twistor space is as \mathbb{CP}_1 bundle of almost complex structures in the tangent spaces of an orientable 4-manifold, Complex structure at given point means selection of antisymmetric form J whose natural action on vector rotates a vector in the plane defined by it by $\pi/2$ and thus represents the action of imaginary unit. One must perform this kind of choice also in normal plane and the direct sum of the two choices defines the
full J. If one choses J to be self-dual or anti-self-dual (eigenstate of Hodge star operation), one can fix J uniquely. Orientability makes possible the Hodge star operation involving 4-dimensional permutation tensor.

The condition $i^1 = -1$ is translated to the condition that the tensor square of J equals to $J^2 = -g$. The possible choices of J span sphere S^2 defining the fiber of the twistor spaces. This is not quite the complex sphere CP_1, which can be thought of as a projective space of spinors with two complex components. Complexification must be performed in both the tangent space of X^4 and of S^2. Note that in the standard approach to twistors the entire 6-D space is projective space P_3 associated with the C^8 having interpretation in terms of spinors with 4 complex components.

One can introduce almost complex structure also to the twistor space itself by extending the almost complex structure in the 6-D tangent space obtained by a preferred choices of J by identifying it as a point of S^2 and acting in other points of S^2 identified as antisymmetric tensors. If these points are interpreted as imaginary quaternion units, the action is commutator action divided by 2. The existence of quaternion structure of space-time surfaces in the sense as I have proposed in TGD framework might be closely related to the twistor structure.

Twistor structure as bundle of almost complex structures having itself almost complex structure is characterized by a hermitian Kähler form ω defining the almost complex structure of the twistor space. Three basic objects are involved: the hermitian form K can be thought of as a projective space of spinors with two complex components. Complexification must be performed in both the tangent space of X^4 and of S^2. Note that in the standard approach to twistors the entire 6-D space is projective space P_3 associated with the C^8 having interpretation in terms of spinors with 4 complex components.

One can introduce almost complex structure also to the twistor space itself by extending the almost complex structure in the 6-D tangent space obtained by a preferred choices of J by identifying it as a point of S^2 and acting in other points of S^2 identified as antisymmetric tensors. If these points are interpreted as imaginary quaternion units, the action is commutator action divided by 2. The existence of quaternion structure of space-time surfaces in the sense as I have proposed in TGD framework might be closely related to the twistor structure.

Twistor structure as bundle of almost complex structures having itself almost complex structure is characterized by a hermitian Kähler form ω defining the almost complex structure of the twistor space. Three basic objects are involved: the hermitian form h, metric g and Kähler form ω satisfying $h = g + i\omega$, $g(X,Y) = \omega(X,JY)$.

In the base space the metric of twistor space is the metric of the base space and in the tangent space of fibre the natural metric in the space of antisymmetric tensors induced by the metric of the base space. Hence the properties of the twistor structure depend on the metric of the base space.

The relationship to the spinors requires clarification. For 2-spinors one has natural Lorentz invariant antisymmetric bilinear form and this seems to be the counterpart for J.

One can consider various additional conditions on the definition of twistor space.

1. Kähler form ω is not closed in general. If it is, it defines symplectic structure and Kähler structure. S^4 and CP_2 are the only compact spaces allowing twistor space with Kähler structure.

2. Almost complex structure is not integrable in general. In the general case integrability requires that each point of space belongs to an open set in which vector fields of type $(1,0)$ or $(0,1)$ having basis $\partial/\partial z_+$ and $\partial/\partial z_-$ expressible as linear combinations of real vector fields with complex coefficients commute to vector fields of same type. This is non-trivial conditions since the leading names for the vector field for the partial derivatives does not yet guarantee these conditions.

This necessary condition is also enough for integrability as Newlander and Nirenberg have demonstrated. An explicit formulation for the integrability is as the vanishing of Nijenhuis tensor associated with the antisymmetric form J (see http://insti.physics.sunysb.edu/conf/simonsworkII/talks/LeBrun.pdf and http://en.wikipedia.org/wiki/Almost_complex_manifold#Integrable_almost_complex_structures). Nijenhuis tensor characterizes Nijenhuis bracket generalizing ordinary Lie bracket of vector fields (for detailed formula see http://en.wikipedia.org/wiki/FrlicherNijenhuis_bracket).

3. In the case of twistor spaces there is an alternative formulation for the integrability. Curvature tensor maps in a natural manner 2-forms to 2-forms and one can decompose the Weyl tensor W identified as the traceless part of the curvature tensor to self-dual and anti-self-dual parts W^+ and W^-, whose actions are restricted to self-dual resp. anti-self-dual forms (self-dual and anti-self-dual parts correspond to eigenvalue +1 and -1 under the action of Hodge * operation: for more details see http://www.math.ucla.edu/~greene/YauTwister(8-9).pdf). If W^- or W^+ vanishes - in other worlds W is self-dual or anti-self-dual - the assumption that J is self-dual or anti-self-dual guarantees integrability. One says that the metric is anti-self-dual (ASD). Note that the vanishing of Weyl tensor implies local conformal flatness (M^4 and sphere are obviously conformally flat). One might think that ASD condition guarantees that the parallel translation leaves J invariant.

ASD property has a nice implication: the metric is balanced. In other words one has $d(\omega \wedge \omega) = 2\omega \wedge d\omega = 0$.

2.3 Why twistor spaces with Kähler structure?

I have not yet even tried to answer an obvious question. Why the fact that M^4 and CP^2 have twistor spaces with Kähler structure could be so important that it could fix the entire physics? Let us consider a less general question. Why they would be so important for the classical TGD-exact part of quantum TGD - defined by the extremals of Kähler action [K2]?

1. Properly generalized conformal symmetries are crucial for the mathematical structure of TGD [K3, K6, K12, K4]. Twistor spaces have almost complex structure and in these two special cases also complex, Kähler, and symplectic structures (note that the integrability of the almost complex structure to complex structure requires the self-duality of the Weyl tensor of the 4-D manifold).

The Cartesian product $CP_3 \times F_3$ of the two twistor spaces with Kähler structure is expected to be fundamental for TGD. The obvious wishful thought is that this space makes possible the construction of the extremals of Kähler action in terms of holomorphic surfaces defining 6-D twistor sub-spaces of $CP_3 \times F_3$ allowing to circumvent the technical problems due to the signature of M^4 encountered at the level of $M^4 \times CP_2$. It would also make the the magnificent machinery of the algebraic geometry so powerful in string theories a tool of TGD. For years ago I considered the possibility that complex 3-manifolds of $CP_3 \times CP_3$ could have the structure of S^2 fiber space and have space-time surfaces as base space. I did not realize that this spaces could be twistor spaces nor did I realize that CP^2 allows twistor space with Kähler structure so that $CP_3 \times F_3$ is a more plausible choice.

2. Every 4-D orientable Riemann manifold allows a twistor space as 6-D bundle with CP_1 as fiber and possessing almost complex structure. Metric and various gauge potentials are obtained by inducing the corresponding bundle structures. Hence the natural guess is that the twistor structure of space-time surface defined by the induced metric is obtained by induction from that for $CP_3 \times F_3$ by restricting its twistor structure to a 6-D (in real sense) surface of $CP_3 \times F_3$ with a structure of twistor space having at least almost complex structure with CP_1 as a fiber. If so then one can indeed identify the base space as 4-D space-time surface in $M^4 \times SCP_2$ using bundle projections in the factors CP_3 and F_3.

3. There might be also a connection to the number theoretic vision about the extremals of Kähler action. At space-time level however complexified quaternions and octonions could allow alternative formulation. I have indeed proposed that space-time surfaces have associative of co-associative meaning that the tangent space or normal space at a given point belongs to quaternionic subspace of complexified octonions.

3 About the identification of 6-D twistor spaces as sub-manifolds of $CP_3 \times F_3$

How to identify the 6-D sub-manifolds with the structure of twistor space? Is this property all that is needed? Can one find a simple solution to this condition? What is the relationship of twistor spaces to the Calabi-Yau manifolds of suyper string models? In the following intuitive considerations of a simple minded physicist. Mathematician could probably make much more interesting comments.
3.1 Conditions for twistor spaces as sub-manifolds

Consider the conditions that must be satisfied using local trivializations of the twistor spaces. Before continuing let us introduce complex coordinates \(z_i = x_i + i y_i \) resp. \(w_j = u_j + i v_j \) for \(CP_3 \) resp. \(F_3 \).

1. 6 conditions are required and they must give rise by bundle projection to 4 conditions relating the coordinates in the Cartesian product of the base spaces of the two bundles involved and thus defining 4-D surface in the Cartesian product of compactified \(M^4 \) and \(CP_2 \).

2. One has Cartesian product of two fiber spaces with fiber \(CP_1 \) giving fiber space with fiber \(CP_1^1 \times CP_1^2 \). For the 6-D surface the fiber must be \(CP_1 \). It seems that one must identify the two spheres \(CP_1^1 \). Since holomorphy is essential, holomorphic identification \(w_1 = f(z_1) \) or \(z_1 = f(w_1) \) is the first guess. A stronger condition is that the function \(f \) is meromorphic having thus only finite numbers of poles and zeros of finite order so that a given point of \(CP_1^1 \) is covered by \(CP_1^{1+1} \). Even stronger and very natural condition is that the identification is bijection so that only Möbius transformations parametrized by \(SL(2,C) \) are possible.

3. Could the Möbius transformation \(f : CP_1^1 \rightarrow CP_1^2 \) depend parametrically on the coordinates \(z_2, z_3 \) so that one would have \(w_1 = f_1(z_1, z_2, z_3) \), where the complex parameters \(a, b, c, d \) \((ad - bc = 1) \) of Möbius transformation depend on \(z_2 \) and \(z_3 \) holomorphically? Does this mean the analog of local \(SL(2,C) \) gauge invariance posing additional conditions? Does this mean that the twistor space as surface is determined up to \(SL(2,C) \) gauge transformation?

What conditions can one pose on the dependence of the parameters \(a, b, c, d \) of the Möbius transformation on \((z_2, z_3)\)? The spheres \(CP_1 \) defined by the conditions \(w_1 = f(z_1, z_2, z_3) \) and \(z_1 = g(w_1, w_2, w_3) \) must be identical. Inverting the first condition one obtains \(z_1 = f^{-1}(w_1, z_2, z_3) \). If one requires that his allows an expression as \(z_1 = g(w_1, w_2, w_3) \), one must assume that \(z_2 \) and \(z_3 \) can be expressed as holomorphic functions of \((w_2, w_3)\): \(z_i = f_i(w_k) \), \(i = 2, 3 \), \(k = 2, 3 \). Of course, non-holomorphic correspondence cannot be excluded.

4. Further conditions are obtained by demanding that the known extremals - at least non-vacuum extremals - are allowed. The known extremals \([K2]\) can be classified into \(CP_2 \) type vacuum extremals with 1-D light-like curve as \(M^4 \) projection, to vacuum extremals with \(CP_2 \) projection, which is Lagrangian sub-manifold and thus at most 2-dimensional, to massless extremals with 2-D \(CP_2 \) projection such that \(CP_2 \) coordinates depend on arbitrary manner on light-like coordinate defining local propagation direction and space-like coordinate defining a local polarization direction, and to string like objects with string world sheet as \(M^4 \) projection (minimal surface) and 2-D complex sub-manifold of \(CP_2 \) as \(CP_2 \) projection. There are certainly also other extremals such as magnetic flux tubes resulting as deformations of string like objects. Number theoretic vision relying on classical number fields suggest a very general construction based on the notion of associativity of tangent space or co-tangent space.

5. The conditions coming from these extremals reduce to 4 conditions expressible in the holomorphic case in terms of the base space coordinates \((z_2, z_3)\) and \((w_2, w_3)\) and in the more general case in terms of the corresponding real coordinates. It seems that holomorphic ansatz is not consistent with the existence of vacuum extremals, which however give vanishing contribution to transition amplitudes since WCW ("world of classical worlds") metric is completely degenerate for them.

The mere condition that one has \(CP_1 \) fiber bundle structure does not force field equations since it leaves the dependence between real coordinates of the base spaces free. Of course, \(CP_1 \) bundle structure alone does not imply twistor space structure. One can ask whether non-vacuum extremals could correspond to holomorphic constraints between \((z_2, z_3)\) and \((w_2, w_3)\).

6. The metric of twistor space is not Kähler in the general case. However, if it allows complex structure there is a Hermitian form \(\omega \), which defines what is called balanced Kähler form \([A4]\) satisfying \(d(\omega \wedge \omega) = 2 \omega \wedge d\omega = 0 \): ordinary Kähler form satisfying \(d\omega = 0 \) is special case about this. The natural metric of compact 6-dimensional twistor space is therefore balanced.
3.2 Twistor spaces by adding CP_1 fiber to space-time surfaces

Clearly, mere CP_1 bundle structure is not enough for the twistor structure. If the the Kähler and symplectic forms are induced from those of $CP_3 \times F_3$, highly non-trivial conditions are obtained for the imbedding of the twistor space, and one might hope that they are equivalent with those implied by Kähler action at the level of base space.

7. Pessimist could argue that field equations are additional conditions completely independent of the conditions realizing the bundle structure! One cannot exclude this possibility. Mathematician could easily answer the question about whether the proposed CP_1 bundle structure with some added conditions is enough to produce twistor space or not and whether field equations could be the additional condition and realized using the holomorphic ansatz.

3.2 Twistor spaces by adding CP_1 fiber to space-time surfaces

The physical picture behind TGD is the safest starting point in an attempt to gain some idea about what the twistor spaces look like.

1. Canonical imbeddings of M^4 and CP_2 and their disjoint unions are certainly the natural starting point and correspond to canonical imbeddings of CP_3 and F_3 to $CP_3 \times F_3$.

2. Deformations of M^4 correspond to space-time sheets with Minkowskian signature of the induced metric and those of CP_2 to the lines of generalized Feynman diagrams. The simplest deformations of M^4 are vacuum extremals with CP_2 projection which is Lagrangian manifold. Massless extremals represent non-vacuum deformations with 2-D CP_2 projection. CP_2 co-ordinates depend on local light-like direction defining the analog of wave vector and local polarization direction orthogonal to it.

The simplest deformations of CP_2 are CP_2 type extremals with light-like curve as M^4 projection and have same Kähler form and metric as CP_2. These space-time regions have Euclidian signature of metric and light-like 3-surfaces separating Euclidian and Minkowskian regions define parton orbits.

String like objects are extremals of type $X^2 \times Y^2$, X^2 minimal surface in M^4 and Y^2 a complex sub-manifold of CP_2. Magnetic flux tubes carrying monopole flux are deformations of these.

Elementary particles are important piece of picture. They have as building bricks wormhole contacts connecting space-time sheets and the contacts carry monopole flux. This requires at least two wormhole contacts connected by flux tubes with opposite flux at the parallel sheets.

Space-time sheets are constructed using as building bricks space-time sheets, in particular massless extremals, deformed pieces of CP_2 defining lines of generalized Feynman diagrams as orbits of wormhole contacts, and magnetic flux tubes connecting the lines. Space-time sheets have in the generic case discrete set of self intersections and it is natural to remove them by connected sum operation. Same applies to twistor spaces as sub-manifolds of $CP_3 \times F_3$ and this leads to a construction analogous to that used to remove singularities of Calabi-Yau spaces [A4].

Physical intuition suggests that it is possible to find twistor spaces associated with the basic building bricks and to lift this engineering procedure to the level of twistor space in the sense that the twistor projections of twistor spaces would give these structure. Lifting would essentially mean assigning CP_1 fiber to the space-time surfaces.

1. Twistor spaces should decompose to regions for which the metric induced from the $CP_3 \times F_3$ metric has different signature. In particular, light-like 5-surfaces should replace the light-like 3-surfaces as causal horizons. The signature of the Hermitian metric of 4-D (in complex sense) twistor space is (1,1,-1,-1). Minkowskian variant of CP_3 is defined as projective space $SU(2,2)/SU(2,1)times;U(1)$. The causal diamond (CD) (intersection of future and past directed light-cones) is the key geometric object in zero energy ontology (ZEO) and the generalization to the intersection of twistorial light-cones is suggestive.
2. Projective twistor space has regions of positive and negative projective norm, which are 3-D complex manifolds. It has also a 5-dimensional sub-space consisting of null twistors analogous to light-cone and has one null direction in the induced metric. This light-cone has conic singularity analogous to the tip of the light-cone of M^4.

These conic singularities are important in the mathematical theory of Calabi-Yau manifolds since topology change of Calabi-Yau manifolds via the elimination of the singularity can be associated with them. The S^2 bundle character implies the structure of S^2 bundle for the base of the singularity (analogous to the base of the ordinary cone).

3. Null twistor space corresponds at the level of M^4 to the light-cone boundary (causal diamond has two light-like boundaries). What about the light-like orbits of partonic 2-surfaces whose light-likeness is due to the presence of CP_2 contribution in the induced metric? For them the determinant of induced 4-metric vanishes so that they are genuine singularities in metric sense. The deformations for the canonical imbeddings of this sub-space (F_3 coordinates constant) leaving its metric degenerate should define the lifts of the light-like orbits of partonic 2-surface. The singularity in this case separates regions of different signature of induced metric.

It would seem that if partonic 2-surface begins at the boundary of CD, conical singularity is not necessary. On the other hand the vertices of generalized Feynman diagrams are 3-surfaces at which 3-lines of generalized Feynman diagram are glued together. This singularity is completely analogous to that of ordinary vertex of Feynman diagram. These singularities should correspond to gluing together 3 deformed F_3 along their ends.

4. These considerations suggest that the construction of twistor spaces is a lift of construction space-time surfaces and generalized Feynman diagrammatics should generalize to the level of twistor spaces. What is added is CP_1 fiber so that the correspondence would rather concrete.

5. For instance, elementary particles consisting of pairs of monopole throats connected by flux tubes at the two space-time sheets involved should allow lifting to the twistor level. This means double connected sum and this double connected sum should appear also for deformations of F_3 associated with the lines of generalized Feynman diagrams. Lifts for the deformations of magnetic flux tubes to which one can assign CP_3 in turn would connect the two F_3s.

6. A natural conjecture inspired by number theoretic vision is that Minkowskian and Euclidian space-time regions correspond to associative and co-associative space-time regions. At the level of twistor space these two kinds of regions would correspond to deformations of CP_3 and F_3. The signature of the twistor norm would be different in these regions just as the signature of induced metric is different in corresponding space-time regions.

These two regions of space-time surface should correspond to deformations for disjoint unions of CP_3s and F_3s and multiple connected sum form them should project to multiple connected sum (wormhole contacts with Euclidian signature of induced metric) for deformed CP_3s. Wormhole contacts could have deformed pieces of F_3 as counterparts.

There are interesting questions related to the detailed realization of the twistor spaces of space-time surfaces.

1. In the case of CP_2 J would naturally correspond to the Kähler form of CP_2. Could one identify J for the twistor space associated with space-time surface as the projection of J? For deformations of CP_2 type vacuum extremals the normalization of J would allow to satisfy the condition $J^2 = -g$. For general extremals this is not possible. Should one be ready to modify the notion of twistor space by allowing this?

2. Or could the associativity/co-associativity condition realized in terms of quaternionicity of the tangent or normal space of the space-time surface guaranteeing the existence of quaternion units solve the problem and J could be identified as a representation of unit quaternion? In this case J would be replaced with vielbein vector and the decomposition 1+3 of the tangent space implied by the quaternion structure allows to use 3-dimensional permutation symbol
to assign antisymmetric tensors to the vielbein vectors. Also the triviality of the tangent bundle of 3-D space allowing global choices of the 3 imaginary units could be essential.

3. Does associativity/co-associativity imply twistor space property or could it provide alternative manner to realize this notion? Or could one see quaternionic structure as an extension of almost complex structure. Instead of single J three orthogonal Js (3 almost complex structures) are introduced and obey the multiplication table of quaternionic units? Instead of S^4 the fiber of the bundle would be $SO(3) = S^3$. This option is not attractive. A manifold with quaternionic tangent space with metric representing the real unit is known as quaternionic Riemann manifold and CP^2 with holonomy $U(2)$ is example of it. A more restrictive condition is that all quaternion units define closed forms: one has quaternion Kähler manifold, which is Ricci flat and has in 4-D case $Sp(1)=SU(2)$ holonomy. (see http://www.encyclopediaofmath.org/index.php/Quaternionic_structure).

4. Anti-self-dual property (ASD) of metric guaranteeing the integrability of almost complex structure of the twistor space implies the condition $\omega \wedge d\omega = 0$ for the twistor space. What does this condition mean physically for the twistor spaces associated with the extremals of Kähler action? For the 4-D base space this property is of course identically true. ASD property need of course not be realized.

3.3 Twistor spaces as analogs of Calabi-Yau spaces of super string models

CP^3 is also a Calabi-Yau manifold in the strong sense that it allows Kähler structure and complex structure. Witten’s twistor string theory considers 2-D (in real sense) complex surfaces in twistor space CP^3. This inspires some questions.

1. Could TGD in twistor space formulation be seen as a generalization of this theory?

2. General twistor space is not Calabi-Yau manifold because it does not have Kähler structure. Do twistor spaces replace Calabi-Yaus in TGD framework?

3. Could twistor spaces be Calabi-Yau manifolds in some weaker sense so that one would have a closer connection with super string models.

Consider the last question.

1. One can indeed define non-Kähler Calabi-Yau manifolds by keeping the hermitian metric and giving up symplectic structure or by keeping the symplectic structure and giving up hermitian metric (almost complex structure is enough). Construction recipes for non-Kähler Calabi-Yau manifold are discussed in [A4]. It is shown that these two manners to give up Kähler structure correspond to duals under so called mirror symmetry [B6] which maps complex and symplectic structures to each other. This construction applies also to the twistor spaces.

2. For the modification giving up symplectic structure, one starts from a smooth Kähler Calabi-Yau 3-fold Y, such as CP^3. One assumes a discrete set of disjoint rational curves diffeomorphic to CP^1. In TGD framework work they would correspond to special fibers of twistor space.

One has singularities in which some rational curves are contracted to point - in twistorial case the fiber of twistor space would contract to a point - this produces double point singularity which one can visualize as the vertex at which two cones meet (sundial should give an idea about what is involved). One deforms the singularity to a smooth complex manifold. One could interpret this as throwing away the common point and replacing it with connected sum contact: a tube connecting the holes drilled to the vertices of the two cones. In TGD one would talk about wormhole contact.

3. Suppose the topology looks locally like $S^3 \times S^2 \times R_+$ near the singularity, such that two copies analogous to the two halves of a cone (sundial) meet at single point defining double point singularity. In the recent case S^2 would correspond to the fiber of the twistor space. S^3
would correspond to 3-surface and \(R_{\pm} \) would correspond to time coordinate in past/future direction. \(S^3 \) could be replaced with something else.

The copies of \(S^3 \times S^2 \) contract to a point at the common end of \(R_{+} \) and \(R_{-} \) so that both the based and fiber contracts to a point. Space-time surface would look like the pair of future and past directed light-cones meeting at their tips.

For the first modification giving up symplectic structure only the fiber \(S^2 \) is contracted to a point and \(S^2 \times D \) is therefore replaced with the smooth "bottom" of \(S^3 \). Instead of sundial one has two balls touching. Drill small holes two the two \(S^3 \)'s and connect them by connected sum contact (wormhole contact). Locally one obtains \(S^3 \times S^3 \) with \(k \) connected sum contacts.

For the modification giving up Hermitian structure one contracts only \(S^3 \) to a point instead of \(S^2 \). In this case one has locally two \(CP_3 \)'s touching (one can think that \(CP_n \) is obtained by replacing the points of \(C^n \) at infinity with the sphere \(CP_1 \)). Again one drills holes and connects them by a connected sum contact to get \(k \)-connected sum of \(CP_3 \).

For \(k \) \(CP_3 \)'s the outcome looks locally like a \(k \)-connected sum of \(S^3 \times S^3 \) or \(CP_3 \) with \(k \geq 2 \). In the first case one loses symplectic structure and in the second case hermitian structure. The conjecture is that the two manifolds form a mirror pair.

The general conjecture is that all Calabi-Yau manifolds are obtained using these two modifications. One can ask whether this conjecture could apply also the construction of twistor spaces representable as surfaces in \(CP_3 \times F_3 \) so that it would give mirror pairs of twistor spaces.

4. This smoothing out procedures is actually unavoidable in TGD because twistor space is submanifold. The 6-D twistor spaces in 12-D \(CP_3 \times F_3 \) have in the generic case self intersections consisting of discrete points. Since the fibers \(CP_1 \) cannot intersect and since the intersection is point, it seems that the fibers must contract to a point. In the similar manner the 4-D base spaces should have local foliation by spheres or some other 3-D objects with contract to a point. One has just the situation described above.

One can remove these singularities by drilling small holes around the shared point at the two sheets of the twistor space and connected the resulting boundaries by connected sum contact. The preservation of fiber structure might force to perform the process in such a manner that local modification of the topology contracts either the 3-D base (\(S^3 \) in previous example or fiber \(CP_1 \) to a point.

The interpretation of twistor spaces is of course totally different from the interpretation of Calabi-Yaus in superstring models. The landscape problem of superstring models is avoided and the multiverse of string models is replaced with generalized Feynman diagrams! Different twistor spaces correspond to different space-time surfaces and one can interpret them in terms of generalized Feynman diagrams since bundle projection gives the space-time picture. Mirror symmetry means that there are two different Calabi-Yaus giving the same physics. Also now twistor space for a given space-time surface can have several imbeddings - perhaps mirror pairs define this kind of imbeddings.

To sum up, the construction of space-times as surfaces of \(H \) lifted to that of (almost) complex sub-manifolds in \(CP_3 \times F_3 \) with induced twistor structure shares the spirit of the vision that induction procedure is the key element of classical and quantum TGD. It also gives deep connection with the mathematical methods applied in super string models and these methods should be of direct use in TGD.

REFERENCES

Mathematics

Theoretical Physics

Books related to TGD

