The explanation of the gravitational constant
by Tobias Richter

Table of Contents:

1. Description of the variables
2. Comparison between new and old amps Definiton
3. Establishment of a new fundamental constant
4. Impact on Gravitationstherie
5. Impact on ART
6. The statement and the come about of all the other fundamental constants.

1. Description of the variables

F = force in [N] (Newtons)
I = Stromsrärke in [A] (amps)
Q = charge in [C] (Coulomb)
t = time [s] (seconds)
p = Pulse [kg * m / s]
m = mass in [kg] (kg)
v = velocity [m / s]
r = radius in m (meters)
?0 = the permittivity of free space
? = the circle constant, ? = 3.14159

2. Comparison between new and old amps Definiton

Old ampere definition:
The unit 1 ampere is that of a time-invariant electric current, parallel, spaced by two vacuum 1 meter apart, straight infinitely long conductor of negligible cross section flowing between these conductors each a meter of length electrodynamic force equal to 2 × 10^-7 Newton would cause.

New ampere definition:
1N = 1 * kg * m * s^-2 or 1 kg m / s^2
1A = 2 × 10^-7 N * or 2 * 10^-7 kg m / s^2

That's all. Nothing more.

3. Establishment of a new fundamental constant

The number 2 × 10^-7 is a Dimensionslose constant of nature.
All other fundamental constants have this constant of nature (the so-called . TORIC- constant of nature) included.

4. Impact on Gravitationstherie

It is my premise, according to the new definition amp that the current is equal to the TORIC -Naturkonstante * force.
$$I = 2 \times 10^{-7} \text{ F or } 1 \text{ A} = 2 \times 10^{-7} \text{ N}$$

Since A is current charge per time or force is equal pulse per period, the following applies:
$$I = \frac{Q}{t} \text{ and } F = \frac{p}{t}$$

So we have the result: Q is the charge TORIC - Nature constant * pulse and pulse again mass times velocity.
$$Q = 2 \times 10^{-7} \text{ p respectively } \text{ Q} = 2 \times 10^{-7} \text{ m } \ast \text{ v because } p = m \ast \text{ v}.$$ Or $$C = 2 \times 10^{-7} \text{ kg } \ast \text{ m } / \text{ s}$$

Unification of gravitation and electromagnetism by the Association of Coulomb's law and law of gravity.
$$F = k0 \ast Q1 \ast Q2 / r^2 \text{ where } k0 = 1 / 4 \ast \pi \ast 0 \text{ or } 8.987552 \ast N \ast 10^9 \text{ m}^2 / \text{ C}^2$$

is calculated as follows:
$$F = 8.987552 \ast N \ast 10^9 \text{ m}^2 / \text{ C}^2 \ast Q1 \ast Q2 / r^2$$

The law of gravitation, we have:
$$F = G \ast m1 \ast m2 / r^2 \text{ where } G = 6.673 \ast 10^{-11} \text{ N } \ast \text{ m}^2 / \text{ kg}^2$$

Now when I use my premise in the formula of Coulomb I get the law of gravity:
$$F = 8.987552 \ast N \ast 10^9 \text{ m}^2 / \text{ C}^2 \ast Q1 \ast Q2 / r^2$$

It is $$Q1 = 2 \cdot 10^{-7} \text{ m1 } \ast \text{ v and Q2} = 2 \cdot 10^{-7} \text{ m2 } \ast \text{ v}$$

$$F = 8.987552 \ast 10^9 \ast N \ast m^2 / C^2 \ast 2 \ast 10^{-7} \ast m1 \ast v \ast 2 \ast 10^{-7} \ast m2 \ast v / r^2$$

We are still running for F on the left $$F = I/2 \ast 10^{-7}$$

Then we have:
$$I/2 \ast 10^{-7} = 8.987552 \ast 10^9 \text{ N} \ast m^2 / C^2 \ast 2 \ast 10^{-7} \ast m1 \ast v \ast 2 \ast 10^{-7} \ast m2 \ast v / r^2$$

If we have this whole formula with $$2 \ast 10^{-7}$$ times take (on the left and on the right), we obtain:
$$I = 8.987552 \ast 10^9 \ast N \ast m^2 / C^2 \ast 2 \ast 10^{-7} \ast m1 \ast v \ast 2 \ast 10^{-7} \ast m2 \ast v / r^2 \ast 2 \ast 10^{-7}$$

If we sort we get:
$$I = 8.987552 \ast 10^9 \ast 2 \ast 10^{-7} \ast 2 \ast 10^{-7} \ast 2 \ast 10^{-7} \ast N \ast m^2 / C^2 \ast v \ast v \ast m1 \ast m2 / r^2$$

$$I = 7.12 \times 10 \ast 11 \text{ N} \ast m^2 / C^2 \ast v^2 \ast m1 \ast m2 / r^2$$

And $$v^2 = C^2 / \text{ kg}^2 \text{ } \text{ N} \ast m^2 / C^2 \ast C^2 / \text{ kg}^2 = N \ast m^2 / \text{ kg}^2$$

In units:
$$A = 7.12 \times 10 \ast 11 \text{ N} \ast m^2 / C^2 \ast C^2 / \text{ kg}^2 = N \ast m^2 / \text{ kg}^2 \times m1 \times m2 / r^2$$

$$A = G \ast m1 \ast m2 / r^2$$

We also get:
$$I = 7.12 \times 10 \ast 11 \text{ N} \ast m^2 / c^2 \ast C^2 / \text{ kg}^2 \ast N \ast m^2 / \text{ kg}^2 \ast m1 \ast m2 / r^2$$

$$I = G \ast m1 \ast m2 / r^2$$

If this formula is correct, is therefore no gravitational force gravitational But only a current. If Newton wrong?

5. Impact on ART
Albert Einstein There are also the gravitational constant \(G \) in its formula:

\[G?? = k * T?? \]

where \(G?? \) the so-called Einstein tensor, which to some extent represents the curvature of space-time and \(T?? \) is called the energy-momentum tensor of the curved space-time.

In tensors are not interestieren us first because we want was not compute the space-time, but the constant \(k \) by which both the gravitational constant and the speed of light contains.

Si e is: \(k = 8? * G / c^4 \) or \(8? * 6.7 * 10^-11 / 2997924584 \)
The result is: \(2. 084 643 763 * 10^-43 \)
I use my G - formula I get:

\[8.987552 * N * 10^-9 m2 / C^2 * 2 * 2 * 10^-7 * 10^-7 * 2 * 10^-7 \]

\[= 1 / 4? * (2 * 10^-7)^3 \]

Since, therefore, is : \(k = 8? * 1 / 4? * (2 * 10^-7)^3 / c^4 \)

\[k * c^4 = 8? * 1 / 4? * (2*10^-7)^3 \]

or \(k^*c^4 = 1?0 \ 2*(2 * 10^-7)^3 \)

times \(?0 \) follows:

\[k * c^2 * c^2 * ?0 = 2*(2*10^-7)^3 \]

\[1/?0 = c^2 \]

\[k = ?0 * 2*(2*10^-7)^3 / c^2 \]

and the results about : \(2.237115675 * 10^-43 \)

So almost the same number.

With the formula \(Q / m = 2 * 10^-7 \) \(v \)

Have yourself available other natural constant explain, ideal for \(v = c \) and \(c = 299792458 m / s \).

\[Q/m = (2 * 10^-7)^n * v \], ideal für \(n = 0, 1, 2, 3, 4, ... \)

1) \(Q / m = (2 * 10^-7)^0 * 299.792.458 m / s = 299.792.m / s \)
2) \(Q / m = (2 * 10^-7)^1 * 299.792.458 m / s = 59.9584916 \)
3) \(Q / m = (2 * 10^-7)^2 * 299.792.458 m / s = 0.00001199169 \)
4) \(Q / m = (2 * 10^-7)^3 * 299.792.458 m / s = 2.398339664 * 10^-12 \)
5) \(Q / m = (2 * 10^-7)^4 * 299.792.458 m / s = 4.796679328 * 10^-19 \)
6) \(F / m = (2 * 10^-7)^5 * 299.792.458 m / s = 9.593.358.656 * 10^-26 \)
7) \(F / m = (2 * 10^-7)^6 * 299.792.458 m / s = 1.918671731 * 10^-32 \)

2) Line is very reminiscent of the Verhältnis \(360/2? \) \((360 / 2? = 57.29577951) \)
3) This number seems to be unknown.
4) This figure provides the approximate value of the Compton wavelength of the electron \(2.4263102389 * 10^-12 \)
5) The 5. line lies in the proper sizes of the elementary charge or the Hartree energy.
 \((4.35974434 \ (19) * 10^-18 J \) or \(1.602176565 \ (35) * 10^-19C) \)
6) The proton or neutron mass is located in the vicinity of this order of magnitude.
7) Pretty much deviation from the plank’s constant or reduced- plank’s constant.
Not to mention the magnetic constant \(?0 = 2? * 2 * 10^-7 \)