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I.Introduction.

The real history of non-Aristotelian logic begins on May 18,1910 when N.A. Vasiliev
presented to the Kazan University faculty a lecture "On Partial Judgements, the Triangle
of Opposition, the Law of Excluded Fourth" [Vasiliev 1910] to satisfy the requirements for
obtaining the title of privat-dozent. In this lecture Vasiliev expounded for the first time the
key principles of non-Aristotelian, imaginary, logic. In this work he likewise constructed
his "imaginary" logic free of the laws of contradiction and excluded middle in the
informal, so-to-speak Aristotelian, manner (although imaginary logic is in essense non-
Aristotelian).Thus the birthday of new logic was exactly fixed in the annals of history.
Vasiliev’s reform of logic was radical, and he did his best to determine whether it was
possible for the new logic with new laws and new subject to imply a new logical
Universe. Vasiliev began the modern non-classical revolution in logic, but he certainly
did not complete it. The founder of paraconsistent logic, N.A. Vasiliev, stated as a
characteristic feature of his logic, three kinds of sentence, i.e. "S is A", "S is not A", "S is
and is not A". Thus Vasiliev logic rejected the law of non-contradiction: A  A and
the law of excluded middle: A  A.However Vasiliev’s logic preserve the law of
excluded fourth: A  A A  A. Possible formalized versions of Vasiliev’s logic with
one level of contradiction LP1

# was proposed by A.I.Arruda [1]. In this paper we proposed
paraconsistent first-order logic LP

# with infinite hierarchy levels of contradiction.
Corresponding paraconsistent set theory KSth

# is discussed.
The postulates (or their axioms schemata) of Vasiliev-Amida propositional

paraconsistent logic VA1 are the following:
The language 1 of paraconsistent logic VA1  VA1V has as
primitive symbols (i) countable set of a clalassical propositional variables, (ii)

countable set V  P ii of a non clalassical propositional variables,(iii) the connectives
, ,,, and (iv) the parentheses (,).
I. Logical postulates:
1 A  B  A,
2 A  B  A  B  C  A  C,
3 A  B  A  B,
4 A  B  A,
5 A  B  B,



6 A  A  B,
7 B  A  B,
6 A  A  B,
7 B  A  B,
8 A  C  B  C  A  B  C,

9 A  A,
10 B  B  A if B  V.
II.Rules of a conclusion:
Anrestricted Modus Ponens ruleMP : A,A  B  B.

Theorem 1.1.[1]. (1) If B  V, then B,B  A; (2) A  A iff A  V;
(3) A  A.

The postulates (or their axioms schemata) of Vasiliev-Amida propositional
paraconsistent logic VA2 are the following:
The language 2 of paraconsistent logic VA2  VA2V has as
primitive symbols (i) countable set of a clalassical propositional variables, (ii)

countable set V  P ii of a non clalassical propositional variables,(iii) the connectives
, ,,, and (iv) the parentheses (,).
I. Logical postulates:
1 A  B  A,
2 A  B  A  B  C  A  C,
3 A  B  A  B,
4 A  B  A,
5 A  B  B,
6 A  A  B,
7 B  A  B,
6 A  A  B,
7 B  A  B,
8 A  C  B  C  A  B  C,

9 A  A,
10 B  B  A if B  V,

11 P i  P i iff P i V, i  1,2, . . . .
II.Rules of a conclusion:
Anrestricted Modus Ponens ruleMP : A,A  B  B.

II.Paraconsistent Logic with n levels of contradiction LPn
#.

Modern formalized versions of Vasiliev’s logic with one level of contradiction may be
found in Amida [1980], [Puga and Da Costa 1988], Smimov [Smirnov 1987], and



[Smimov 1987a, 161-169]. There is also the presentation Smimov given at the
International Congress of Logic, Methodology and Philosophy of Science in Uppsala in
1991.
.

Paraconsistent Logic with one levels of a contradiction
LP1

#.

Let us consider now Vasiliev-Arruda type paraconsistent logic LP1
#  LP1

#V, with
one level of contradiction.
The postulates (or their axioms schemata) of propositional paraconsistent logic
LP1

# are the following:
The language 1

# of paraconsistent logic LP1
#  LP1

#V, has as
primitive symbols (i) countable set of a clalassical propositional variables, (ii)

countable set V  P ii of a non clalassical propositional variables, (iii) the
connectives w,s,,, and (iv) the parentheses (,).
Remark.2.1.We distinguish a weak negation w and a strong negation s.
The definition of formula is the usual. We denote the set of the all formulae of
LP1

#V1, by 1
#, where V1  V0  V1 and  is a given subset of 1

#. Here we
used the following definitions: V0  V,V1  1 |  V,1    w. A,B,C, ...
will be used as metalanguage variables which indicate formulas of LP1

#V,. We
assume through that V1   1

#.
I. Logical postulates:

1 A  B  A,
2 A  B  A  B  C  A  C,
3 A  B  A  B,
4 A  B  A,
5 A  B  B,
6 A  A  B,
7 B  A  B,
8 A  C  B  C  A  B  C,

9 P i  wP i iff P i V, i  1,2, . . .
10 A  wA iff A  V,
11 B  wB  A if B  V1,

12 A  wA A wA iff A  V1,
13 A  sA if A  1

#,
14 B  sB  A if A,B  1

#.

II.Rules of a conclusion:
Restricted Modus Ponens ruleMPR :



A,A  B  B iff A  .

Unrestricted Modus Tollens rules: P  Q,wQ  wP;P  Q,sQ  sP.

The rule of a strong contradiction: A  sA  B.

III.Quantification

Corresponding to the propositional paraconsistent relevant logic LP1
#V, we

construct the corresponding paraconsistent relevant first-order predicate calculus LP1
# 

LP1
# V , . The language of the paraconsistent predicate calculus LP1

#, denoted by 1
#
,

is an extension of the language 1
# introduced above, by adding, as usually,for every m,

denumerable families of m-ary predicate symbols R1
m,R2

m, . . . ,Rn
m, . . . ,and m-ary function

symbols f1
m, f2

m, . . . , fnm, . . . , and the universal  and existential  quantifiers.

We assume throughout that: the language 1
#
contains also

(i) the classical numerals 0,1, ;
(ii) countable set  of the classical consistent set variables   x,y, z, . . . ;
(iii) countable set  of the non classical inconsistent set variables   x,y, z, . . . ;
(iv) countable set  of the classical non-logical constants   a,b,c. . . ;
(iv) countable set  of the non classical non-logical constants   ă,b ,c. . . ;

Definition 2.1. An LP1
# wff  (well-formed formula ) is a LP1

#- sentence iff it hasn’t
free variables; a wff Ψ is open if it has free variables. We’ll use the slang ‘k – place
open wff’ to mean a wff with k distinct free variables.

Definition 2.2. An LP1
# wff  is a classical iff it hasn’t non classical variables and

non classical constants.

Definition 2.3. An LP1
# wff  is a non classical iff it has an non classical variables

or non classical constants.We denote the set of the all formulae of LP1
# V , by

1
#
, where V  V1 and    is a given subsets of 1

#
.We assume through that

V    1
#
.

The postulates of LP1
# V , are those of LP1

# V , (suitably adapted) plus the

following:

(I)
  x

  xx
,

(II) xx  y,

(III) x  xx,

(IV)
x  
xx  

,

(V) xx1  xx1,
(VI) xx1  xx1,
(VII) xx1  xx  xwx,
(VIII) xx1  xx  xwx,
where we used the following definitions:
0  ,1  w  w and
0  ,1    w



and where the variables x and y and the formulas  and  satisfy the usual definition.

From the calculi LP1
# V , ,one can construct the following predicate calculus with

equality. This is done by adding to their languages the binary predicates symbol of
strong equality    or  s  and weak equality w  with suitable modifications in
the concept of formula, and by adding the following postulates:
(IX) xx s x,
(X) xy x s y1  B ,

(XI) xyx s y  x  y,
(XII) xyzx s y  y s z  x s z,

(XIII) yxy w x,
(XIV) yxy w x1,
(XV) xyx w y  x  y
(XVI) xy x w y1  1x  1y ,

(XVII) xyzx w y  y w z  x w z,
(XVIII) xyz x w y1  y w z1  x w z1 ,

(XIX) xyzx w y  y s z  x w z,
(XX) xyz x w y1  y s z  x w z1 ,

(XXI) xyzx s y  y w z  x w z,

(XXII) xyz x s y  y w z1  x w z1 .

II.Rules of a conclusion:
Restricted Modus Ponens ruleMPR :

A,A  B  B iff A   .

Unrestricted Modus Tollens rules: P  Q,wQ  wP;P  Q,sQ  sP.

The rule of a strong contradiction: A  sA  B.

Definition 2.4. Classical V-object Cl  Cl V , is the object such that from any

classical formula of the form PCl  wPCl,where PNCl   by using principles

as in paraconsistent logical calculas LP1
# V , using Restricted Modus Ponens rule,

one can deduce any formula i.e., classical object Cl is the object which hasn’t any
inconsistent property with respect to a weak negation w.
Definition 2.5. Non classical V-object NCl  NCl V , of the 1-degree of

inconsistency is the object NCl such that: from any non classical formula of the form
PNCl  wPNCl,where PNCl   by using principles as in paraconsistent logical

calculas LP1
# V , using Restricted Modus Ponens rule one can’t deduce any formula

whatsoever i.e., non classical object of the 1-degree of inconsistency is the object NCl

which has at least one inconsistent property of the 1-degree with respect to a weak
negation w.
The simplest example of non classical objects 1-degree inconsistency is inconsistent

numbers ă such that



ă w 1  wă w 1, 2.1

or

b w 1  b w 2 . 2.2

Remark.2.2. Note that: (i) formula (2.1) meant that ă w 1  V and (ii) formula

(2.2) meant that b w 1   and b w 2   .

Paraconsistent Logic with n levels of contradiction LPn
#.

Let us consider now paraconsistent logic LPn
#  LPn

#V, with n levels of
contradiction.
The postulates (or their axioms schemata) of propositional paraconsistent logic
LPn

#  LPn
# V , are the following:

The language n
# of paraconsistent logic LPn

# has as primitive symbols (i) countable
set of a clalassical propositional variables, (ii) countable set V  P ii of a non
clalassical propositional variables, (iii) the connectives w,s,,, and (iv) the
parentheses (,).
Remark 2.3.We distinguish a weak negation w and a strong negation s.
The definition of formula is the usual. We denote the set of the all formulae of
LPn

# V , by n
# where V and  is a given subsets of n

#. We assume through

that V    n
#.

A,B,C, ... will be used as metalanguage variables which indicate formulas of
LPn

# V , .

Definition 2.6. (i) k stands for k1  k11, where 0  ,
1  w  w, 0  k  n.
(ii) the (finite) k-order of the level of a weak consistency (w-consistency) is:
k, 0  k  n.
Definition 2.7. (i) k stands for k1  k11, where 0  ,
1    w, 0  k  n.
(ii) the (finite) k-order of the level of a weak inconsistency (w-inconsistency) is:
n, 1  k  n.

I. Logical postulates:

1 A  B  A,

2 A  B  A  B  C  A  C,
3 A  B  A  B,



4 A  B  A,

5 A  B  B,
6 A  A  B,
7 B  A  B,
8 A  C  B  C  A  B  C,

9 P  wP iff P  V,
10 Pk iff P  V,

11 A  wA if A  V 
k0

n

Vk. ,

12 A  sA if A  n
#,

13 B  sB  A if A,B  n
#,

14 A  wAA  wA  A2

n1

. . .Ak . . . An if A  n
#,

15 B  wB  A if B  V 
k0

n

Vk.

II.Rules of a conclusion:

Restricted Modus Ponens ruleMPR :

A,A  B  B iff A  V .
Unrestricted Modus Tollens rule: P  Q,wQ  wP;P  Q,sQ  sP.

The rule of a strong contradiction: A  sA  B.

III.Quantification

Corresponding to the propositional paraconsistent relevant logic LPn
# V we construct

the corresponding paraconsistent relevant first-order predicate calculus. These new

calculus will be denoted by LPn
# V .

The postulates of LPn
# V are those of LPn

# V (suitably adapted)

plus the following:

(I)
  x

  xx
,

(II) xx  y,

(III) x  xx,

(IV)
x  
xx  

,

(V) xxk  xxk,k  1,2, . . . ,n,
(VI) xxk  xxk,k  1,2. . . ,n,
(VII) xxk  xxk,k  1,2. . . ,n.

From the calculus LPn
# V ,we can construct the following predicate calculus with



equality.This is done by adding to their languages the binary predicates symbol of
strong equality    or  s  and weak equality w  with suitable
modifications in the concept of formula, and by adding the following postulates:
(IX) xx s x,
(X) x x s x1  B ,

(XI) xyx s y  x  y,
(XII) xyzx s y  y s z  x s z,

(XIII) yxx w xk,k  0,1, 2, . . . ,n,

(XIV) xy x w yk  kx  ky ,k  1,2, . . . ,n,

(XV) xyz x w yk  y w zk  x w zk ,k  0,1, 2, . . . ,n,

(XVI xyz x w yk  y s z  x w zk ,k  0,1, 2, . . . ,n,

(XVII) xyz x s y  y w zk  x w zk ,k  0,1, 2, . . . ,n,

(XVIII) yxy w xk,k  0,1, 2, . . . ,n.

III. Paraconsistent Logic with infinite hierarchy levels of
contradiction LP

# .

The postulates (or their axioms schemata) of propositional paraconsistent logic
LP

#  LP
# V , are the following:

The language 
# of paraconsistent logic LP

# has as primitive symbols (i) countable
set of a clalassical propositional variables, (ii) countable set V  P ii of a non
clalassical propositional variables, (iii) the connectives w,s,,, and (iv) the
parentheses (,).
Remark.3.1.We distinguish a weak negation w and a strong negation s.
The definition of formula is the usual. We denote the set of the all formulae of
LP

# V , by 
# where V and  is a given subsets of 

# . We assume through

that V    
# .

A,B,C, ... will be used as metalanguage variables which indicate formulas of
LP

# V , .

Definition 3.1. (i) n stands for n1  n11, where
0  ,1  w  w, 1  n  .
(ii)  stands for nn .
(iii) the finite n-order of the level of a weak consistency (w-consistency) is:
0  ,n, 1  n  .
(iv) the ifinite -order of level of a weak consistency (w-consistency) is : .



Definition 3.2. (i) n stands for n1  n10,
where 0    w, 1  n  .
(ii)  stands for nn .
(iii) the finite n-order of the level of a weak inconsistency (w-inconsistency) is:
n, 1  n  .
(iv) the ifinite -order of the level of a weak inconsistency (w-inconsistency) is: .
I. Logical postulates:

1 A  B  A,
2 A  B  A  B  C  A  C,
3 A  B  A  B,
4 A  B  A,
5 A  B  B,
6 A  A  B,
7 B  A  B,
8 A  C  B  C  A  B  C,

9 P i  wP i iff P i V, i  1,2, . . . ,

10 P i
n iff P i V, i  1,2, . . . ; 1  n  ,

11 A  wA if A  V 
k

Vk,

12 A  sA if A 
# ,

14 B  sB  A if A,B  
# ,

15 A  wA  A1  A2

n

. . . An if A  
# , 1  n  ,

16 B  wB  A if B  V  
k

Vk.

II.Rules of a conclusion:

Restricted Modus Ponens ruleMPR :

A,A  B  B iff A  V .
Unrestricted Modus Tollens rule: P  Q,wQ  wP;P  Q,sQ  sP.

The rule of a strong contradiction: A  sA  B.

III.Quantification

Corresponding to the propositional paraconsistent relevant logic LP
# V we construct

the corresponding paraconsistent relevant first-order predicate calculus. These new

calculus will be denoted by LP
# V .

The postulates of LP
# V are those of LP

# V (suitably adapted)

plus the following:

(I)
  x

  xx
,



(II) xx  y,

(III) x  xx,

(IV)
x  
xx  

,

(V) xxn  xxn, 1  n  ,
(VI) xxn  xxn, 1  n  ,
(VII) xxn  xxn, 1  n  , . .

From the calculus LP
# V ,we can construct the following predicate calculus with

equality.This is done by adding to their languages the binary predicates symbol of
strong equality    or  s  and weak equality w  with suitable
modifications in the concept of formula, and by adding the following postulates:
(IX) xx s x,

(X) x x s x1  B ,

(XI) xyx s y  x  y,
(XII) xyzx s y  y s z  x s z,

(XIII) yxx w xn, 0  n  ,

(XIV) xy x w yn  nx  ny , 1  n  ,

(XV) xyz x w yn  y w zn  x w zn , 0  n  ,

(XVI) xyz x w yn  y s z  x w zn , 0  n  ,

(XVII) xyz x s y  y w zn  x w zn , 0  n  ,

(XVIII) yxy w xn, 0  n  .

IV. Paraconsistent Set Theory ZFC
# .

IV.1. Paraconsistent set theory KSth
#

Cantor’s "naive" set theory KSth was based mainly on two fundamental principles: the
postulate of extensionality (if the sets x and y have the same elements, then they are
equal), and the postulate of comprehension or separation (every property determines a
set, composed of the objects that have this property). The latter postulate, in the
standard (first-order) language of set theory, becomes the following schema of formulas:

yxx  y  Fx,y. 4.1. 1

Now, it is enough to replaces the formula Fx,y in (4.1) by x  x to derive Russell’s
paradox. That is, the principle of comprehension (4.1) entails an inconsistency. Thus, if
one adds (4.1) to classical first-order logic, conceived as the logic of a set-theoretic
language, a trivial theory is obtained.
Remark.4.1.We distinguish a weakly inconsisten membership relation  w  and



a strongly consisten membership relation s .
Definition 4.1. (i) the minimal order of the level of a weak
consistency (w-consistency) is: 1  0  w0  w0,0    x w y;
(ii) the minimal order of the level of a weak inconsistency (w -inconsistency) is:
1  0  w0,0    x w y.
Definition 4.2.(i) x w,n y is to stands for x w yn and is to
mean "x is a weakly consistent member of y of the n-order (of the n-level) of
w-consistency ".
(ii) x w,n y is to stands for x w yn and is to mean "x is a weakly
inconsistent member of y of the n-order (of the n-level) of w-inconsistency ".

Definition 4.1. An LP1
# wff  is a w-wff iff it does not contain the connective: w.

We now replace the formula (4.1) by formulae

yxx w,n y  Fx,y ,

n  0,1, 2, . . .

4.1. 2

and

yxx w,n y  Fx,y,

n  0,1, 2, . . . .

4.1. 3

Theorem 4.1. (1) The collections n  xx w,n nwx w,n x is
contradictory of the n  1-order of w-inconsistency.
(2) The collections n  xx w,n nwx w,n x is
contradictory of the n  1-order of w-inconsistency.
Theorem 4.2. (1) The collection   xnx w,n wx w,n x is
contradictory of the   1-order of w-inconsistency.
(2) The collection   xnx w,n wx w,n x is
contradictory of the   1-order of w-inconsistency.
The standard non-classical response to these paradoxes is to find fault with the

logical and deduction principles involved in the deduction. Most standard approaches to
the paradoxes take them to be important lessons in the behaviour of a Boolean
negation.
However if you wish to define negation non-classically, there are many options

available.You can define negation inferentially, taking A to mean that if A, then
something absurd follows,or it can be defined by way of the equivalence between the
truth of ~A and the falsity of A, and allowing truth and falsity to have rather more
independence from one another than is usually taken to be the case: say, allowing
statements to be neither true nor false, or both true and false. The former account takes
truth as primary, and defines negation in terms of a rejected proposition and implication.
For example, one can to define a strong negation ~sA non-classically [16]:

~sA  A  xyx w y  x s y.
4.1. 4

Theorem 4.3. The collection ~s such that x w ~s~sx w x i.e.,



~s  x~sx w x is contradictory.
Proof. Replace Fx,y in the axiom schema of abstraction (4.2) in the
definition of collection by ~sx w x, so that the implicit definition of ~s

becomes

x w ~s~sx w x. 4.1. 5

Instantiating in (4.5) x by ~s then by unrestricted modus pones MP,
we obtain:
(1)  ~sw~s ~s~sw~s .

By unrestricted modus pones MP one obtain the contradiction

(2)  ~sw~s~s~sw~s .

Thus, if we adds (4.2)-(4.3) to first-order logic LP
# V , , conceived as the logic

of a set-theoretic language with suitable adapted V and  a nontrivial paraconsistent
set theory KSth

# is obtained.

IV.2. Paraconsistent Set Theory ZFC
# .

Basic Definitions and Elementary Operations on
Inconsistent Sets.

Remark 4.2.1. In this subsection, we will be, to distinguish:
(i) a weak implication A w B, where A w B abbreviates A,A w B  B,B  V and
(ii) a strong implication A s B, where A s B abbreviates A,A s B  B;
(iii) a weak negation wA, where wA abbreviates A  B,B  V and
(iv) a strong negation sA where sA abbreviates A  B.
Designations 4.2.1.We will be write for short:
x w

n
y instead x w yn,n  1,2, . . . ;

and we will write for short:
x wn y instead x w yn,n  1,2, . . .

Remark 4.2.2. Thus in particular we will be write:
x w1 y instead x w y  x w y  wx w y, etc.

and we will be write:
x w

1
y instead x w y  x w y  wx w y, etc.

Remark 4.2.3.However we will be often write for short:
x w y instead x w0 y and x w y instead x w0 y.

Remark 4.2.4. In this subsection, we will be distinguish:
(I) the relations:
(i) consistent (s-consistent) equality denoted by  s  and such that



x,yx s y  sx s y  B; 4.2. 1

(ii) weak or strongly inconsistent (or w-inconsistent) equality denoted by  w 
or by  w  for short, and such that

x,yx w y  wx w y  B;
4.2. 2

(iii) wn-inconsistent) equalities denoted by w1 , . . . ,  wn  , . . . ,n  1,2, . . .

and such that

nx,yx wn y  wx wn y  B,

x,yx w1 y s x w0 y,

nx,yx wn1 y s x wn y,

4.2. 3

where x w0 y  x w y;

(II) the relations:
(i) consistent (or s-consistent) membership relation denoted by  s ,and such that

x,yx s y  sx s y  B; 4.2. 4

(ii) weak or strongly inconsistent (or w-inconsistent) membership relation denoted by
 w  and such that

x,yx w y  wx w y  B,

nx,yx wn y  B
4.2. 5

(iii) wn-inconsistent membership relations denoted by  w1 , . . . ,  wn , . . . ,
n  1,2, . . .and such that

nx,yx wn y  wx wn y  B,

x,yx w1 y s x w0 y,

nx,yx wn1 y s x wn y,

4.2. 6

where x w0 y  x w y;

Remark 4.2.5. Note that: (1) in accordance with (4.2.2) the w-inconsistent equality
 w  admit the infinite levels of a contradiction;
Definition 4.2.1. Let x and X be a sets such that:
(i) the statement x s X holds, then we will be say that
x is a strong member (or s-member) of a set X;
(ii) the statement x w X holds, then we will be say that
x is a weak member (or w-member) of a set X;

Remark 4.2.5. We note, that in ZFC
# valid:

(i) x,yx s y  sx s y  B,
(ii)



(ii) x,yx w y  wx w y  B,B  V ,n  1,2,
(ii) x,yx s y  wx s y  B,
(ii) x,y : x w y  n

x w y  B,B  V ,n  1,2,
(iii) x,y : x s y  wx s y  B,
(iv) x,y : x w y  n

x w y  B,B  V ,n  1,2,
Remark 4.2.4. (i) sA abbreviates A  B, i.e. s is a strong negation,
(ii) A s B abbreviates A,A s B  B, i.e.s is a strong implication.
Designations 4.2.2. (I) We will be write for short:

(i) x w0 y instead x w y  x w y  wx w
1

y ,

(i) x w0 y instead x w y  x w y  wx w
1

y ,

(ii) x w1 y instead x w y  x w y  x w1 y  wx w
2

y ,

(iii) x wn y instead x w y  x w y . . .x wn y  wx w
n1

y ,

n  1,2,

(iv) x w0 y instead x w y  x w y  wx w
1

y ,

(v)
(vi)

(iii) x wn y instead x s y  x w y . . . x wn y  wx w
n1

y ,

n  1,2,
(iv) x w y instead x s y  x w0 y 0n

x wn y,

(v) x w y instead x s y  x w0 y 0n
x wn y.

(II) We will be write for short:
(i) x w

s y instead x s y  x w y  swx w y

(ii) x w0
s y instead x s y  x w y  sx w

1
y ,

(iii) x w1
s y instead x s y  x w y  x w1 y  sx w

2
y ,

(iv) x wn
s y instead x s y  x w y . . .x wn y  sx w

n1
y , n  1,2,

(v) x wn
s y instead x s y  x w y . . . x wn y  sx w

n1
y ,

n  1,2,
(vi) x w

s y instead x s y  x w0
s y 0n

x wn
s y,

(vii) x w
s y instead x s y  x w0

s y 0n
x wn

s y.

(III)We often will be write for short:
(i) x w0 y instead x w0 y,

(ii) x w1 y instead x w1 y,n  1,2, ,

(iii) x wn y instead x wn y,n  1,2, ,

(iv) x w y instead x w y,

(v) x w y instead x w y.

Definition 4.2.1. Let x be an object (set). We shall say that x is a strongly consistent
object (s-consistent) or classical object iff: x s x and x w x  B, i.e. x is a strongly
consistent object (set) iff x s x  sx w x.
Designations 4.2.3. We will be write for short: s-conx iff x is s ̵ consistent object

(set).
Definition 4.2.2.Let x be an object (set). We shall say that:



(i) x is a weakly consistent (w-consistent) object (set) iff
(1) x w x, (2) x w x  B,B  V (3) sx s x and (4) sx w1 x, i.e. x w1 x  B;
(ii) x is a weakly inconsistent (w-inconsistent) object (set) iff
(1) x w x, (2) sx s x and (3) x w1 x  B,B  V .
Designations 4.2.4. We will be write for short:
(i) w-conx or w0

-conx iff x is w ̵ consistent object (set).
(ii) w-incx or w0-incx iff x is w ̵ inconsistent object (set).
Definition 4.2.3.Let x be an object (set). We shall say that:
(i) x is w1-inconsistent object iff x w1 x and x w1 x  B,B  V .
(ii) x is wn-inconsistent object iff x wn x and x wn x  B,B  V ,n  1,2,
(iii) x is w-inconsistent object iff n x wn x  x wn x  B,B  V .

Designations 4.2.5. We will be write for a short:
(i) wn-incx iff x is wn-inconsistent object (set), n  1,2,
(ii) w-incx iff x is w-inconsistent object (set).
Definition 4.2.4.Let x be an object (set). We shall say that:
(i) x is a weakly w1-inconsistent object iff w1-incx and sw2-incx.
(ii) x is a weakly wn-inconsistent object iff wn-incx and swn1-incx,n  1,2,
Designations 4.2.6. We will be write for a short:
(i) w1

-incx iff x is a weakly w1-inconsistent object (set).
(ii) wn

-incx iff x is a weakly wn-inconsistent object (set).
Definition 4.2.5. Let x and y be any s ̵ consistent objects (sets),i.e. s-conx and

s-cony.
We shall say that objects (sets) x and y are strongly equivalent (s-equivalent) iff x s y.
Definition 4.2.6. Let x and y be an objects (sets) such that w-conx and w-cony.
We shall say that objects (sets) x and y are weakly equivalent (w-equivalent) iff x w y.
Definition 4.2.7. Let x and y be an objects (sets) such that w-conx and w-cony.
We shall say that objects (sets) x and y are weakly equivalent in consistent sense
(w-equivalent) iff x w y and sx w1 y.
Definition 4.2.8. Let x and y be any objects (sets) such that wn-incx and wn-incy,
then we shall say that:
(i) x and y are wn- equivalent iff x wn y,x wn y  B,B  V ,n  0,1, 2,
(ii) x and y are wn- equivalent in consistent sense (wn

- equivalent) iff x wn y and
sx wn1 y,n  0,1, 2,
(iii) x and y are w- equivalent iff n x wn y  x wn y  B,B  V

Designations 4.2.7. We will be write for a short:
(i) x wn y iff x and y is a wn- equivalent,(ii) x wn

 y iff x and y are wn
- equivalent,

(iii) x w y iff x and y are w- equivalent.
Definition 4.2.9. Let x and y be an objects (sets) such that s-conx and wn-incy.
We shall say that objects (sets) x and y are weakly equivalent (w-equivalent) iff x w y.
Definition 4.2.10. Let x and y be any objects (sets) such that s-incx and wn-incy,
then we shall say that:
(i) x and y are wn- equivalent iff x wn y where x wn y  B,B  V ,n  0,1, 2,
(ii) x and y are wn- equivalent in consistent sense (wn

- equivalent) iff x wn y and
sx wn1 y,n  0,1, 2,
(iii) x and y are w- equivalent iff n x wn y  x wn y  B,B  V



Designations 4.2.8. We will be write for a short:
(i) x wn y iff x and y is a wn- equivalent,
(ii) x wn

 y iff x and y are wn
- equivalent,

(iii) x w y iff x and y are w- equivalent.
Definition 4.2.11. Let x and y be any objects (sets), then:
(i) we shall say that x is a strongly consistent member (s-member) of y if x s y.
(ii) we shall say that x is a weakly consistent member (wc-member) of y if x w y and
x w y  B, i.e. x is a weakly consistent member of y if x w y and sx w y
(iii) we shall say that x is a weak w1-inconsistent member (w1-member) of y if
x w y  x w y
Designations 4.2.9.We will be write for a short:
(i) x wc y or x w0

c y iff x is a weak consistent member of y

Definition 4.2.12. We shall say that:
(i) an formula  of Set Theory ZFC

# is a a strongly consistent formula iff formula 
contains only predicates x s y and x s y. Sometimes we designate such formula by

s.
(ii)
(iii)
Designations 4.2.10. Before introducing any set-theoretic axioms at all, we can

introduce some important abbreviations. Let x,y and z be any consistent objects (sets)
(i) x s y abbreviates zz s x  z s y;
(ii) x s y abbreviates x s y  x s y;
(iii) x s y abbreviates sx s y;
(iv) x s y abbreviates sx s y;
(v) u s s x  s x  zz s u  y s xz s y;
(vi) u s s x  s x  zz s u  y s xz s y;
(vii) x s yϕs abbreviates xx s y  ϕs;
(viii) x s yϕs abbreviates xx s y  ϕs;
(ix) !sxϕsx abbreviates xϕsx  xyϕsx  ϕsy  x s y
Designations 4.2.11.For any terms r, s, and t, we make the following abbreviations of
formulas.
(i) x s t or x s ts for xx s t s ;
(ii) x s tw for xx s t w ;
(iii) x wn t or x wn ts for xx wn t s ;

(iv) x wn tw for xx wn t w ;

(v) x wn t or x wn ts for xx wn t s ;

(vi) x wn tw for xx wn t w .

Designations 4.2.12.For any terms r, s, and t, we make the following abbreviations of
formulas.
(i) x s t for xx s t  ;
(ii) x w t for xx w t  ;
(iii) x wn t for xx wn t  ;
(iv) x wn t for xx wn t  ;
(v) x wn

s t for x x wn
s t   .

Designations 4.2.13.For any terms r, s, and t, we make the following abbreviations of



formulas.
(i) x s t or x s

s t for sx s t;
(ii) x s

w t for wx s t;
(iii) x w

w t for wx w t;
(iv) x w

s t for sx w t;
(iv) x wn

w t for wx wn t;

(iv) x wn
s t for sx wn t;

(v) x wn
w t for wx wn t;

(vi) x wn
s t for sx wn t;

(vii) x wn
w,s t for w x wn

s t ;

(viii) x wn
s,s t for s x wn

s t .

Designations 4.2.14.
(i) The notation x|xs,s will stand for a set X such that xx s X s x.

(ii) The notation x|xw,s will stand for a set X such that

xx w X s x.
(iii) The notation x|xw,w will stand for a set X such that

xx w X w x.
(iv) The notation x|xwn,s

will stand for a set X such that

xx wn X s x.

(v) The notation x|xwn,s
will stand for a set X such that

xx wn X s x.

(vi) The notation x|xwn,w
will stand for a set X such that

xx wn X w x.

Designations 4.2.15.Whenever we have a finite number of terms t1, t2, . . . , tn then
(i) the notation t1, t2, . . . , tns,s is used as an abbreviation for the class:

x|x s t1  x s t2  ···  x s tns,s;

(ii) the notation t1, t2, . . . , tnw,s is used as an abbreviation for the class:

x|x w t1  x w t2  ···  x w tnw,s;

(iii) the notation t1, t2, . . . , tnw,w is used as an abbreviation for the class:

x|x w t1  x w t2  ···  x w tnw,w;

(iv) the notation t1, t2, . . . , tnwn,s
is used as an abbreviation for the class:

x|x wn t1  x wn t2  ···  x wn tnwn,s
;

(v) the notation t1, t2, . . . , tnwn,s
is used as an abbreviation for the class:

x|x wn t1  x wn t2  ···  x wn tnwn,w
;

(vi) the notation t1, t2, . . . , tnwn,s
is used as an abbreviation for the class:

x|x wn t1  x wn t2  ···  x wn tnwn,s
;

(vii) the notation t1, t2, . . . , tnwn,s
is used as an abbreviation for the class:

x|x wn t1  x wn t2  ···  x wn tnwn,w
.

Designations 4.2.16.We abbreviate the following important sets:
(i) s, s-union t1 s,s t2 or t1 s t2 for x|x s t1  x s t2s,s;



(ii) w, s-union t1 w,s t2 or t1 w,s t2 for x|x w t1  x w t2w,s;

(iii) w,w-union t1 w,w t2 or t1 w,w t2 for x|x w t1  x w t2w,w;

(iv) wn, s-union t1 wn,s t2 or t1 wn,s t2 for x|x wn t1  x wn t2wn,s
;

(v) wn,w-union t1 wn,w t2 or t1 wn,w t2 for x|x wn t1  x wn t2wn,w
;

(vi) wn, s-union t1 wn,s t2 or t1 wn,s t2 for x|x wn t1  x wn t2wn,s
;

(vii) wn,w-union t1 wn,w t2 or t1 wn,w t2 for x|x wn t1  x wn t2wn,w
;

Designations 4.2.17.We abbreviate the following important sets:

(i) s, s-union s, s-C or s, s-
Ss C

S for x|x s S for some S s C s,s
;

(ii) w, s-union w, s-C or w, s-
Sw C

S for x|x w S for some S w C
w,s

;

(iii) w,w-union w,w-C or w,w-
Sw C

S for x|x w S for some S w C
w,w

;

Designations 4.2.18.We abbreviate the following important sets:
(i) s, s-intersection t1 s,s t2 or t1 s t2 for x|x s t1  x s t2s,s;

(ii) w, s-intersection t1 w,s t2 for x|x w t1  x w t2w,s;

(iii) w,w-intersection t1 w,w t2 for x|x w t1  x w t2w,w;

(iv) wn, s-intersection t1 wn,w t2 for x|x wn t1  x wn t2wn,w
;

(v) wn,w-intersection t1 wn,w t2 for x|x wn t1  x wn t2wn,w
;

(vi) wn, s-intersection t1 wn,w t2 for x|x wn t1  x wn t2wn,w
;

(vii) wn,w-intersection t1 wn,w t2 for x|x wn t1  x wn t2wn,w
.

Designations 4.2.19.We abbreviate the following important sets:

(i) s, s-intersection s, s-C or s, s-
Ss C

S for x|x s S for all S s C s,s
;

(ii) w, s-intersection w, s-C or w, s-
Ss C

S for x|x w S for all S w C
w,s

;

(iii) w,w-intersection w,w-C or w,w-
Ss C

S for x|x w S for all S w C
w,w

;

IV.3. The Axioms of Paraconsistent Set Theory ZFC
# .

IV.3.1.The Axioms of Extensionality.

(1) Strong axiom of w-extensionality

uu w X s u w Y s X w Y. 4.3. 1

(2) Weak axiom of w-extensionality



uu w X w u w Y w X w Y. 4.3. 2

(3) Strong axiom of wn-extensionality

uu wn X s u wn Y s X wn Y. 4.3. 3

(4) Weak axiom of wn-extensionality

u u w
n

X w u w
n

Y w X w
n

Y. 4.3. 4

(5) Strong axiom of wn-extensionality

uu wn X s u wn Y s X wn Y. 4.3. 5

(6) Weak axiom of wn-extensionality

u u w
n

X w u w
n

Y w X w
n

Y. 4.3. 6

IV.3.2.The Axioms of Empty Set.
(1) Axiom of strongly w-empty set

xuu w
s x. 4.3. 7

The strongly w-empty set, denoted w
s .

(2) Axiom of weakly w-empty set

xuu w
w x. 4.3. 8

The weakly w-empty set, denoted w
w.

(3) Axiom of weakly w0-empty set

xu u w0
w x . 4.3. 9

The weakly w0-empty set, denoted w0
w .

IV.3.3.The Axioms of Pairing.
(1) Strong axiom of w, s-pairing.

abcxx w c s x w a  x w b 4.3. 

and we define the w, s-pair a,bw,s by a,bw,s w c.

IV.3.4.The Axioms of Separation.
(1) Strong Separation Schemes.

(i) Let ϕu,p1, . . . ,pk be a formula free from symbols wn
s ,wn

s ,n  1,2, . . . . For any

X
and p1, . . . ,pk, there exists a set Y w u w X|ϕu,p1, . . . ,pkw,s, i.e.



XpYuu w Y s u w X  ϕu,p1, . . . ,pk 4.3. 4

(ii) Let ϕu,p1, . . . ,pk be a formula free from symbols wn
s ,wn

s ,n  1,2, . . . . For any

X
and p1, . . . ,pk, there exists a set Y wn u wn X|ϕu,p1, . . . ,pkwn,s

, i.e.

XpYuu wn Y s u wn X  ϕu,p1, . . . ,pk 4.3. 

(iii) Let ϕu,p1, . . . ,pk be a formula free from symbols wn
s ,wn

s ,n  1,2, . . . . For any

X
and p1, . . . ,pk, there exists a set Y wn u wn X|ϕu,p1, . . . ,pkwn,s

, i.e.

XpYuu wn Y s u wn X  ϕu,p1, . . . ,pk 4.3. 

(2)Weak Separation Schemes.

(i) Let ϕu,p1, . . . ,pk be a formula. For any X and p1, . . . ,pk, there exists a set
Y w u w X|ϕu,p1, . . . ,pkw,w, i.e.

XpYuu w Y w u w X  ϕu,p1, . . . ,pk 4.3. 

(ii) Let ϕu,p1, . . . ,pk be a formula. For any X and p1, . . . ,pk, there exists a set
Y wn u wn X|ϕu,p1, . . . ,pkwn,s

, i.e.

XpYuu wn Y w u wn X  ϕu,p1, . . . ,pk 4.3. 

(iii) Let ϕu,p1, . . . ,pk be a formula. For any X and p1, . . . ,pk, there exists a set
Y wn u wn X|ϕu,p1, . . . ,pkwn,s

, i.e.

XpYuu wn Y w u wn X  ϕu,p1, . . . ,pk 4.3. 

IV.3.5.The Axioms of Replacement.
(1) Strong Replacement Scheme.

(i) Let x,y,u be a formula free from symbols wn
s ,wn

s , then for any n  1,2, . . . .

xyy x,y,u  x,y ,u s y w y   s

s szyy w z s xx w sx,y,u.
4.3. 

The set z is denoted y|xx,y,u  x w sw,s.

(ii) Let x,y,u be a formula free from symbols wn
s ,wn

s , then for any

u  p1, . . . ,pk, n  1,2, . . . .

xyy x,y,u  x,y ,u s y wn y
  s

s szyy wn z s xx wn sx,y,u.
4.3. 

The set z is denoted y|xx,y,u  x wn swn,s
.

(iii) Let x,y,u be a formula free from symbols wn
s ,wn

s , then for any



u  p1, . . . ,pk, n  1,2, . . . .

xyy x,y,u  x,y ,u s y wn y
  s

s szyy wn z s xx wn sx,y,u.
4.3. 

The set z is denoted y|xx,y,u  x wn swn,s
.

(2)Weak Replacement Scheme.
(i) Let x,y,u be a formula, then for any u  p1, . . . ,pk, n  1,2, . . .

xyy x,y,u  x,y ,u w y w y   w

w szyy w z w xx w sx,y,u.
4.3. 

The set z is denoted y|xx,y,u  x w sw,w.

(ii) Let x,y,u be a formula, then for any u  p1, . . . ,pk, n  1,2, . . .

xyy x,y,u  x,y ,u w y wn y
  w

w szyy wn z w xx wn sx,y,u.
4.3. 

The set z is denoted y|xx,y,u  x wn swn,w
.

(iii) Let x,y,u be a formula,then for any u  p1, . . . ,pk, n  1,2, . . .

xyy x,y,u  x,y ,u s y wn y
  w

w szyy wn z s xx wn sx,y,u.
4.3. 

The set z is denoted y|xx,y,u  x wn swn,w
.

w

IV.3.6.The Axioms of Union.

IV.3.6.(1) Strong Axiom of Union.
(i) Strong w-union

xystt w ys s uu w x  t w u. 4.3. 

The set ys is denoted w,s x or s,w-x.

(ii) Strong wn-union

xystt wn ys s uu wn x  t wn u. 4.3. 

The set ys is denoted wn,s x or s,wn-x.

(iii) Strong wn-union

xystt wn ys s uu wn x  t wn u. 4.3. 

The set ys is denoted wn,s x or s,wn-x.

IV.3.6.(2) Weak Axiom of Union.
(i) Weak w-union



xywtt w yw w uu w x  t w u. 4.3. 

The set yw is denoted w,w x or w,w-x.

(ii) Weak wn-union

xywtt wn yw w uu wn x  t wn u. 4.3. 

The set yw is denoted wn,w x or w,wn-x.

(iii) Weak wn-union

xywtt wn yw w uu wn x  t wn u. 4.3. 

The set yw is denoted wn,w x or w,wn-x.

IV.3.7.The Axioms of Power Set.

IV.3.7.(1) Strong Axioms of Power Set.
(i) Strong axiom of w-power set.

XYstt w Ys s zz w t s z w X 4.3. 

For any set X,a set Ys is denoted Pw
s X.

(ii) Strong axiom of wn-power set.

XYstt wn Ys s zz wn t s z wn X 4.3. 

For any set X,a set Ys is denoted Pwn
s X.

(iii) Strong axiom of w0-power set.

XYstt w0 Ys s zz w0 t s z w0 X 4.3. 

For any set X,a set Ys is denoted Pw0
s X.

(iv) Strong axiom of wn-power set.

XYstt wn Ys s zz wn t s z wn X 4.3. 

For any set X,a set Ys is denoted Pwn
s X.

IV.3.7.(2) Weak Axioms of Power Set.
(i) Weak axiom of w-power set.

XYwtt w Yw w zz w t w z w X 4.3. 

For any set X,a set Yw denoted Pw
wX.

(ii) Weak axiom of wn-power set.

XYwtt wn Yw w zz wn t w z wn X 4.3. 

For any set X,a set Yw is denoted Pwn
w X.

(iii) Weak axiom of w0-power set.

XYwtt w0 Yw w zz w0 t s z w0 X 4.3. 

For any set X,a set Ys is denoted Pw0
w X.

(iv) Weak axiom of wn-power set.



XYwtt wn Yw w zz wn t w z wn X 4.3. 

For any set X,a set Yw is denoted Pwn
w X.

IV.3.8.The Axioms of Infinity.

IV.3.8.(1) Strong Axioms of Infinity.
(i) Strong Axiom of w-infinity

Xyy w X  zz w
s y  yy w X s

s zz w X  tt  z s t w y  t w y
4.3. 

There is a set X such that w
s w X and whenever y w X, then y w,s yw,s w X.

A set X is denoted w
s .

(ii) Strong Axiom of wn-infinity.

X yy wn X  z z wn
s y  yy wn X s

s zz wn X  tt wn z s t wn y  t wn y
4.3. 

There is a set X such that wn
s wn X and whenever y wn X, then

y wn,s ywn,s
wn X.A set X is denoted wn

s .

(iii) Strong Axiom of w0-infinity.

X yy w0 X  z z w0
s y  yy w0 X s

s zz w0 X  tt w0 z s t w0 y  t w0 y
4.3. 

There is a set X such that w0
s w0 X and whenever y w0 X, then

y w0,s yw0,s
w0 X.A set X is denoted w0

s .

(iv) Strong Axiom of wn-infinity.

X yy wn X  z z wn
s y  yy wn X s

s zz wn X  tt wn z s t wn y  t wn y
4.3. 

There is a set X such that wn
s wn X and whenever y wn X, then

y wn,s ywn,s
wn X.A set X is denoted wn

s .

IV.3.8.(2) Weak Axioms of Infinity.
(i) Weak Axiom of w-infinity

Xyy w X  zz w
w y  yy w X w

s zz w X  tt  z w t w y  t w y
4.3. 

There is a set X such that w
w w X and whenever y w X, then y w,s yw,w w X.

A set X is denoted w
w.

(ii) Weak Axiom of wn-infinity.



X yy wn X  z z wn
w y  yy wn X w

s zz wn X  tt wn z w t wn y  t wn y
4.3. 

There is a set X such that wn
s wn X and whenever y wn X, then

y wn,w ywn,w
wn X.A set X is denoted wn

w .

(iii) Weak Axiom of w0-infinity.

X yy w0 X  z z w0
w y  yy w0 X w

s zz w0 X  tt w0 z w t w0 y  t w0 y
4.3. 

There is a set X such that w0
w w0 X and whenever y w0 X, then

y w0,w yw0,w
w0 X.A set X is denoted w0

w .

(iv) Weak Axiom of wn-infinity.

X yy wn X  z z wn
w y  yy wn X w

w zz wn X  tt wn z w t wn y  t wn y
4.3. 

There is a set X such that wn
w wn X and whenever y wn X, then

y wn,w ywn,w
wn X.A set X is denoted wn

w .

IV.4.w-Inconsistent Relations and Functions

IV.4.1.w-Consistent Relations and Functions
Definition 4.4.1.An w-consistent ordered pair a,bs,w (or s-w-ordered pair ) is defined

to
be

a,bs,w  as,w,a,bs,w s,w
. 4.4. 1

Similarly we define

a,b,cs,w  a,b,cs,w  as,w,a,bs,w, as,w,a,bs,w s,w
,c

s,w s,w
, 4.4. 2

etc.
Definition 4.4.2. Let Rw

s be an w-consistent set. An w-consistent set Rw
s is a binary

w-consistent relation (or s-w-relation) if all w-elements of Rw
s are w-consistent ordered

pairs, i.e. for z w
s Rw

s there exists x and y such that z w
s x,ys,w. We can also denote

x,ys,w w
s Rw

s as xRw
s y, and say that x is in s-w-relation Rw

s with y if xRw
s y holds.

Designation 4.4.1.

IV.5. w-Inconsistent w-Equivalences and w-Orderings



Definition 4.5.1. Let Rw
s  be a binary w-consistent w-relation in A.

(i) Rw
s is s-w-reflexive (or strongly w-reflexive) in A if for all a w

s A, aRw
s a.

(ii) Rw
s is s-w-symmetric (or strongly w-symmetric) in A if for all a,b w

s A :
aRw

s b s bRw
s a.

(iii) Rw
s is s-w-antisymmetric (or strongly w-antysymmetric) in A if

for all a,b w
s A : aRw

s b  bRw
s as a w

s b.
(iv) Rw

s is s-w-asymmetric (or strongly w-asymmetric) in A if
for all a,b w

s A : aRw
s bs sbRw

s a,i.e. aRw
s b and bRw

s a cannot both be true.
(v) Rw

s is s-w-transitive (or strongly w-transitive) in A if
for all a,b,c w

s A : aRw
s b bRw

s cs aRw
s c.

Definition 5.1.1.An w-consistent (or strong) w-ordering w
s of A is called s-w-linear or

s-w-total if any two w-elements of A are comparable in the ordering w
s ;i.e. for any

a,b w
s A, either a w

s b,b w
s a, or a w

s b. The pair A,w
s  is called a s-w-linearly

w-ordered set.
Definition 5.1.The condition that X w

s A has a strong w
s -least element reads

xx w
s Xy w

s Xx w
s y 4.5. 1

or in the following equivalent form

xx w
s Xy w

s Xsy w
s x. 4.5. 2

Definition 5.1.1.An w-inconsistent (or weak) w-ordering w
w of A is called

V.The w-inconsistent natural numbers

V.1.The w-consistent natural numbers
In defining the w-consistent natural numbers we begin by examining the most

fundamental set, the strong w-empty set w
s .We can very easily create a pattern that is a

prime candidate for the definition of the w-consistent natural numbers:
w-empty set w

s has zero elements in the w-consistent sense;
w

s  has one element in the w-consistent sense;
w

s ,w
s  has two elements in the w-consistent sense,etc.

Revisiting our prime candidate for w-consistent natural numbers, we can revise it as:
0w
s w

s w
s ;

1w
s w

s 0w
s  w

s w
s w,s w

s  w
s w

s ;
We see that each number is de ned based on the number that precedes it. This

sequence is anchored by 0w
s . As long as 0w

s is defined, then 1w
s can be defined. Once 1w

s

is defined, 2w
s can also be, and so on. This brings us to the concept of w-consistent

induction.

Definition 5.1.1. The w-consistent w-successor (or strong w-successor) of a set x is



the
set

Sw
s x w

s x w,s xw,s. 5.1. 1

Definition 5.1..A set Iws is called s-w-inductive (or strongly w-inductive) if
(i) w

s w
s Iws .

(b) If x w
s Iws , then Sw

s x w
s Iws .

Definition 5.1... The w-consistent set of all w-consistent natural numbers is defined by

Definition 5.1..Let A \ws by a set every nonempty w-subset X of A \ws has w-consistent
(strong) w-complement A\ws X.Any w-consistent s-w-linear w-ordering w

s of a set A is a
w-consistent well-ordering if every nonempty w-subset X of A \ws has a w

s -least element.
The structure A \ws ,w

s  is called w-consistent well-ordered set.

V.2.The w-inconsistent natural numbers

V. The Standard and Non-Standard Models of formal
Paraconsistent theories.

V.1. Generalized Incompleteness Theorems.
Let Th be some fixed, but unspecified, paraconsistent, i.e. inconsistent but nontrivial

formal theory and in these case we wrote PTh or PconPTh instead Th. For later
convenience, we assume that the encoding is done in some fixed consistent formal
theory S and that PTh contains S. We do not specify S— it is usually taken to be a
formal system of arithmetic, although a weak set theory is often more convenient. The
sense in which S is contained in PTh is better exemplified than explained: If S is a formal

system of arithmetic and PTh is, say, ZFn, 1  n   or ZFC# then PTh contains S in the
sense that there is a well-known embedding, or interpretation, of S in PTh.Since
encoding is to take place in S, it will have to have a large supply of constants and closed
terms to be used as codes. (E.g. in formal arithmetic, one has 0,1,... .) S will also have
certain function symbols to be described shortly.
To each formula , of the language of PTh is assigned a closed term, c, called the

code of . [N.B. If x is a formula with free variable x, then xc is a closed term
encoding the formula x with x viewed as a syntactic object and not as a parameter.]
Corresponding to the logical connectives and quantifiers are function symbols, neg,



imp, etc., such that, for all formulae , : S  negn
c  n

c,

S  impc, c    c, etc. Of particular importance is the substitution operator
sub, represented by the function symbol sub, . For formulae x, terms t with codes
tc :

S  subxc, tc  tc. 5.1. 1

Iteration of the substitution operator sub allows one to define function symbols sub3,
sub4, . . . , such that

S  subnx1,x2, . . . ,xnc, t1 c, t2 c, . . . , tn c  t1, t2, . . . , tnc. 5.1. 2

It well known [17] that one can also encode derivations and have a binary relation
ProvThx,y (read "x proves y " or "x is a proof of y") such that for closed t1, t2 :
S  ProvTht1, t2 iff t1 is the code of a derivation in PTh of the formula with code t2.It

follows that

PTh   iff S  ProvPTht, 
c 5.1. 3

for some closed term t.
Definition 5.1.1.Thus one can define

PrPThy  xProvPThx,y, 5.1. 4

and therefore one obtain a predicate asserting provability.
Remark 5.1.1. We note that it is not always the case that :

PTh   iff S  PrPTh
c. 5.1. 5

It well known [17] that the above encoding can be carried out in such a way that the
following important conditions D1,D2 and D3 are met for all sentences:



D1.PTh   implies S  PrPTh
c,

D2.S  PrPTh
c  PrPThPrPTh

cc,

D3.S  PrPTh
c  PrPTh  c  PrPTh

c.

5.1. 6

Generalized Incompleteness Theorems depend on the following.
Theorem 5.1.1. (Diagonalization Lemma). Let x in the language of PTh have only

the free variable indicated. Then there is a sentence  such that

S    c. 5.1. 7

Proof. Given x, let x  subx,x be the diagonalization of x. Let
m  xc and   m. Then we claim that S    c.For x in S, we see
that

  m  subm,m  subxc,m  mc  c. 5.1. 8

We apply now (5.1.7) to nPrThx.
Theorem 5.1.2. (Generalized First Incompleteness Theorem).Let (1) PconnTh and
(2) Th   nPrTh

c.
Then (i)

Th  , 5.1. 9

(ii) under an additional assumption

Th  n. 5.1. 10

Proof. (i) Observe Th  implies Th  PrTh
c by D1, which implies Th  n,

contradicting the paraconsistency of Th.
(ii) The additional assumption is a strengthening of the converse to D1, namely

Th  PrTh
c implies Th .We have Th  n,hence Th  nnPrTh

c so
that Th  PrTh

c and, by the additional assumption,Th  , again contradicting the
paraconsistency of Th.
Theorem 5.1.3. (Generalized Second Incompleteness Theorem).
Let PconnTh be nPrThn 

c,where n  A  nA is any convenient



n-contradictory statement. Then

Th  PconnTh.
5.1. 11

Proof. Let  be as in the statement of Theorem 5.2.. We show: S    PconnTh.
Observe that S    nPrTh

c implies S    nPrThn 
c, since S    n

implies S  PrTh  n 
c,by D1, which implies S  PrThn 

c  PrTh
c,by D3.

But   nPrThn 
c is just   PconnTh and we have proven half of the

equivalence. Conversely, by D2,S  PrThc  PrThPrTh
cc , which implies

S  PrThc   PrThn
c,by D1,D3, since   nPrTh

c.This yields S 
PrTh  n

c, by D1,D3, and logic, which implies S  PrThc  PrThn 
c by

D1,D3, and logic. By contraposition, S  nPrThn 
c  nPrTh

c,which is
S PconnTh  , by definitions.
Theorem 5.1.4. S  PconnTh  Pconn Th  nPconnTh .

Proof.By the proof of Theorem 5.3, (i) S  PconnTh  nPrTh
c,

(ii) S  PconnTh  .Using now D2,D3, it follows that
S  PconnTh  nPrThPconnTh

c,so that

S PconnTh  nPrThnPconnTh  n 
c 5.1. 12

which gives S  PconnTh  Pconn Th  nPconnTh .

Definition 5.2.Define: (i)

ProvTh
 x,y  ProvThx,y 

zw  xProvThz,w  y  negnw  w  negny

5.1. 13

(ii)

PrTh
 y  xProvTh x,y 5.1. 14

and
(iii)

Pconn
 Th  PrTh

 n 
c. 5.1. 15



Theorem 5.1.5. (Generalized Rossers Theorem).Let (1) PconnTh and
(2) Th   nPrTh

 c.
Then
(i)

Th  , 5.1. 16

(ii)

Th  n. 5.1. 17

(iii)

Th  Pconn
 Th. 5.1. 18

Proof.(i) By the paraconsistency of Th, ProvTh and ProvTh
 binumerate the same

relation. Hence D1 holds: Th   Th  PrTh
 c.Thus, the proof of the first part of

the First Incompleteness Theorem yields the result.
(ii) This follows from (iii).
(iii) Follows immediately from the remarks that Th is paraconsistent and
Th  nn.
Theorem 5.1.6. (Generalized Löb’s Theorem). Let be (1) PconnTh and (2)  be

closed. Then

Th  PrTh
c   iff Th  . 5.1. 19

Proof. The one direction is obvious. For the other, assume that Th  . Then
Th  n is consistent and we may appeal to the Generalized Second

Incompleteness Theorem to conclude that Th  n does not yield PconnTh  n,
hence not nPrTh  n 

c. Thus Th  n  nPrTh
c.Contraposition yields

Th  PrTh
c  .

Let be PconnTh.Now we focuses our attention on the following schemata:

(I) Generalized Local Reflection Principle RfnTh :

PrTh
c  ,  closed. 5.1. 20



(II) Generalized First Uniform Reflection Principle RFNTh :

xPrThxc  xx, x has only x free. 5.1. 21

(III) Generalized Second Uniform Reflection Principle RFNTh :

xPrThxc  xx, x has only x free. 5.1. 22

Theorem 5.1.7. (Generalized First Incompleteness Theorem).Let be PconnTh.Then
for some true, unprovable 

Th  PrTh
c   5.1. 23

Theorem 5.1.8. (Generalized Second Incompleteness Theorem).Let be
PconnTh.Then for any refutable 

Th  PrTh
c   5.1. 24

Theorem 5.1.6 simply yields

Th  PrTh
c   iff Th , 5.1. 25

V.2. The Generalized Compactness Theorem
corresponding to paraconsistent first-order logic LP

# .
In order to use the Generalized Compactness Theorem, and in fact, even to state it,

we must first develop the logical language to which it applies. In this case, we shall use
paraconsistent first-order logic LP

# with infinite hierarchy levels of contradiction. We will
begin by listing the requisite definitions.
Definition 5.2.1. A language  is a not necessarily countable collection of relation
symbols P, function symbols G, and constant symbols c.
Definition 5.2.2. The inconsistent universe V inc is inconsistent universal set or any
inconsistent set A inc  V inc.



Definition 5.2.3. An interpretation function  is a function such that:
(1) For each n-place relation symbol P of ,P  R where R  A inc

n .
(2) For each m-place function symbol G of , G  F where F : A inc

m  A inc

is an m-place function on A inc.
(3) For each constant symbol c, c  x for some x  A inc.
Definition 5.2.4. An inconsistent model Minc for any paraconsistent theory Thinc with a

language  (paraconsistent -theory) consists of a universe A inc and an interpretation
function , which we denote by

MTh inc  Minc  A inc,, 5.2. 1

or Minc.
Definition 5.2.5. A term is one of four things:
(i) A variable is a term.
(ii) A constant symbol is a term.
(iii) If F is an m-placed function symbol, and t1, . . . , tm are terms, then Ft1, . . . , tm
is a term.

(iv) A string of symbols is a term only if it can be shown to be a term by a finite
number of applications of (i)-(iii).

Remark.5.2.1.The purpose of (iv) is to ensure that there are no infinite terms.
Remark.5.2.2.Now before we continue, we note that there is two two-place relation
symbol which always belongs to rst-order logic, even though it does not belong to .
This relation is called the identity relation, and is denoted by s and w .
Definition 5.2.6. An atomic formula of  is a string of the form:

(i) t1 s t2 where t1 and t2 are terms of .
(ii) t1 w t2 where t1 and t2 are terms of .
(iii) Pt1, . . . , tn where P is an n-placed relation and t1, . . . , tn are terms of .
Definition 5.2.7. A formula of  is defined as follows:
(i) An atomic formula is a formula.
(ii) If  and  are formulas, then   ,  ,s,w,  ,   are formulas.
(iii) If v is a variable and  is a formula, then v is a formula.
(iv) If a string of symbols can be shown to be a formula by a finite number of
applications of (i)-(iii), then it is a formula.
Definition 5.2.8. A formula is a sentence if every variable in the formula is bound
by the quantifier  or .
Definition 5.2.9. A sentence  is true in a model Minc, or alternatively, Minc is
a model of , denoted Minc  , if for every possible sequence of elements in A inc,
substituting these elements in A inc for the variables present in  yields a true
sentence at last at inconsistent sence,i.e.,both  and w holds in Minc for some .
Remark.5.2.2.Note that: (1) this idea of truth precludes the possibility of both  and
s holding in A inc but (2) the possibility of both  and w holds in Minc for some .

Definition 5.2.10. We say that Minc is inconsistent model of a set of sentences  if
Minc is a model of  for all   .

Definition 5.2.11. A sentence  is a consequence of a set of sentences , denoted



  , if every model Minc of  is a model of .
Definition 5.2.12. sentence  is deducible from , expressed  RMP , if there
exists a nite chain of sentences 0, . . . ,n where n is  and each previous
sentence in the chain either belongs to , follows from one of the axioms of
Thinc  LP

# , or can be inferred from previous sentences.
Definition 5.2.13. A set of sentences  is paraconsistent if and only if (i) there does
not exist a sentence  such that  RMP  and  RMP s, (ii) there
exist at least one sentence  such that RMP  .
Lemma 5.2.1. Let  be a set of sentences. If  RMP , then   .
Theorem 5.2.1.(Generalized Soundness Theorem). Let  be a set of formulas. If 

has an inconsistent model Minc, then  is paraconsistent.
Proof. Suppose that is not paraconsistent. Then there exists some  such that:
(i)  RMP  and  RMP s, or (ii)  RMP  for all .
1. From assumption (i) by Lemma 5.2.1, we have    and   s.This means
that  cannot have a model Minc, because if it did, then    and   s, which is
impossible.
2. From assumption (i) by Lemma 5.2.1, we have    for all .This means
that  cannot have a model Minc, because if it did, then  RMP  for all , which is
impossible.Thus, we have proved our statement.
Theorem 5.2.1.(Generalized Godel’s Completeness Theorem). Let  be a set of
formulas. If  is paraconsistent, then it has an inconsistent model Minc.
Proof. Let  be an arbitrary paraconsistent set of sentences of some language .
Let  be an expansion of  created by adding a set of new constant symbols not in
 that has the same cardinality as . The firrst step is to add sentences to  to
create a paraconsistent set of sentences  in the language . It is possible to show
by canonical way, that  has a model Minc which is a model for . Now if we let inc

be the reduction of Minc to only involve the original language , it is possible to show
by canonical way, that inc is a model for , because the sentences in do not involve
any constants which belonged to ,so the reduction of Minc to inc did not affect its
ability to model .
Theorem 5.2.2.(Generalized Compactness Theorem). Any paraconsistent set of
sentences  has a model Minc if and only if every finite subset of  has a model.

V.3. The Non-Standard Models of Paraconsistent second
order arithmetic Z2

#.
This subsection presents the terminology and results necessary to prove the existence

of non-standard models of paraconsistent second order arithmetic Z2
# and paraconsistent

Peano arithmetic PA inc  Z2
# [24] and that there are 20 such countable models.

Definition 5.3.1.Any paraconsistent theory Thinc with a language  is called
paraconsistent -theory.
Definition 5.3.2.Let Minc be an inconsistent model Minc  A inc,,.
(i) The set A inc of all elements of Minc, called the domain of Minc and named by
domMinc.



(ii) For a constant symbol c the constant element c named by cMinc .
(iii) For a relation symbol R, the relation R named by RMinc .

(iv) For a function symbol F, the function F named by FMinc .
Notation5.3.1. Any inconsistent model Minc  A inc,, we often call as
-model.
Definition 5.3.3.Let Thinc be an paraconsistent -theory and let   . If Minc  
for all   Thinc, then Minc is inconsistent model for Thinc, written Minc  Thinc or MTh inc .
Definition 5.3.4.The second-order language of paraconsistent second order
arithmetic Z2

# named by 2
#.

Definition 5.3.5. Inconsistent model for paraconsistent second order arithmetic Z2
#

is an inconsistent model Minc  Z2
# such that Minc   for all   Z2

#.
Definition 5.3.6. Any inconsistent model Minc  A inc,, of paraconsistent
-theory Thinc is colled inconsistent -model.
Definition 5.3.7. The signature SMinc of an inconsistent model Minc of paraconsistent
-theory Thinc lists the set of functions, relations and constants of that inconsistent
model.
Definition 5.3.8.Let S be a signature and let M1

inc and M2
inc be -models with

signature S  SM1
inc  SM2

inc .A homomorphism f : M1
inc  M2

inc, is a function f from

domM1
inc to domM2

inc such that:
1. For each constant c of S, f cM1

inc
 cM2

inc
.

2. For each n  0,n-ary relation symbol R of S and n-tuple a  M1
inc, if a  RM1

inc
then

fa  RM2
inc
.

3. For each n  0,n-ary function symbol F of S and n-tuple a  RM1
inc
,

f FM1
inc
a  FM2

inc
fa.

Where a  a0, . . . ,an1 and fa  fa0, . . . , fan1.
Definition 5.3.9.An embedding of M1

inc into M2
inc is a homomorphism f : M1

inc  M2
inc

which is injective and satisfies:
1. For each n  0, each n-ary relation symbol R of S and each n-tuple a  M1

inc,
a  RM1

inc
 fa  RM2

inc
.

Furthermore, M1
inc and M2

inc are isomorphic, written M1
inc  M2

inc, when there exists a
surjective embedding f : M1

inc  M2
inc.

The importent question is recapitulated formally as motivation for classifying the
properties
of standard and non-standard models of inconsistent arithmetic Z2

# [24].
Problem. Given the standard model  inc of Z2

#, if Minc  Z2
# and Minc   inc, then how

many such countable models Minc are there and how do they differ from  inc?
The answer to this question requires the theory of inconsistent non-standard models

and
will be answered by Theorem 5.3.1 and Theorem 5.3.3 below .
Definition 5.3.10. Let AZ2

# be a set of the all axioms of Z2
#. A non-standard model

Minc

of Z2
# is an 2

#-model such that Minc w ϕ, for all ϕ  AxZ2
#, and Minc   inc, where

 inc

is the standard model of Z2
#.

That is to say, an model Minc of Z2
# or PA inc  Z2

# is non-standard when there does not



exist a surjective weakly embedding f :  inc w Minc. Unpacking the definitions, this
means that for any homomorphism f :  inc  Minc, either there exists a constant symbol,
relation, or function which is not mapped to (i.e., f is not a bijection), or the condition for
an embedding - that a  Rinc  a  RMinc

- does not holds. The explicit construction of
such a non-standard model Minc of Z2

# will require a connection between the satisfiability
of a theory and some new constant symbol which ensures that Minc   inc.
Theorem 5.3.1. (Generalized Gödel’s Completeness Theorem) Let Thinc be an
paraconsistent -theory and let   , where ϕ is an -sentence. Then Minc w ϕ if

and
only if Thinc  ϕ.
Corollary 5.3.1. Thinc is paraconsistent if and only if Thinc is satisfiable.
Proof. Assume to the contrary that there exists a theory Thinc such that Thinc is

paraconsistent and Thinc is not satisfiable. Since Thinc is not satisfiable, there does not
exist a model Minc of Thinc. So, any model Minc of Thinc is a model of s (s    s ).
Then, Thinc  s and so by the Completeness Theorem, Thinc RMP s ; yet this
contradicts the assumption that Thinc is paraconsistent. Assume to the contrary that
there exists a theory Thinc such that Thinc is satisfiable and Thinc is not paraconsistent;
this is an immediate contradiction by the definition of satisfiability. Therefore,Thinc is
paraconsistent if and only if Thinc is satisfiable.
Theorem 5.3.2.(Generalized Compactness Theorem) Thinc is satisfiable if and only if

every finite subset of Thinc is satisfiable.
Theorem 5.3.3.There exists inconsistent non-standard models of PAinc.
Proof. We want to prove that there exists a model Minc  MPA inc for PAinc which is not

isomorphic to the standard model  inc. Let nw be the value of the weak numeral nw
formed by
nw1 w1

nw1 1 s

1w1 w1 . . .w1 1w1 , and let c be a new constant symbol such that c w1 cw1

where cw1 is an w1-inconsistent object, i.e. w1-inccw1. Then we set:

Thkw1

inc  AxPAinc  wcw1 w1inc nw1 |nw1inc w1inc kw1  5.3. 1

be a set of axioms in the language 2
#  cw1, where n,k wcon  inc. For a given k, give

the interpretation cw1
inc w1inc kw1

inc Then, since PAinc is paraconsistent,Thkw1inc
inc is

paraconsistent, and thus satisfiable by Corollary 5.3.1, for each k wcon  inc. Therefore,
the standard model of PAinc is a model for Thkw1

inc ; that is to say,  inc  Thkw1

inc . Since

Th
kw1
1
inc  Th

kw1
2
inc . . . Th

kw1
i
inc . . . 5.3. 2

and each Th
kw1
i
inc is satisfiable for i  . We set now



Thinc#  
i

Th
kw1
i
inc . 5.3. 3

is satisfiable by the Generalized Compactness Theorem. So, there exists an
2

#  cw1-model MPA inc such that MPA inc  Thinc# and thus MPA inc  AxPAinc.Assume
now to the contrary that MPA inc   inc, then there exists a surjective embedding
f :  inc  MPA inc and so fn w n, for all n   inc. But since cw1 w n, for all n   inc,
there does not exist an image in MPA inc of cw1 under f, which contradicts that f is a
w-surjective embedding. Therefore, MPA inc is a model for Peano arithmetic PAinc.

V.3

VI.Paralogical Nonstandard Analysis.

VI.1. The inconsistent ultrafilter.

VI.1.1. The consistent ultrafilter.
We remind some classical definitions.
Definition 6.1.1.Letcon be an infinite classical set con  Vcon. Any consistent filter
con that is a family of subsets of con satisfying the following properties:
(i)con s con,s s con.
(ii) A1, . . . ,An s con s A1 s . . .s An s con.
(iii) A s con and A s B s B s con.
Definition 6.1.2.A filter con oncon is called free if it contains no finite set.
Definition 6.1.3.A filter con is called an consistent ultrafilter overcon if for all
E s con either E s con orcon \sE s con, i.e.,

E s con s con \sE s
s con, 6.1. 1

where we abrraviate: con \sE s
s con  scon \sE s con.

Remark.6.1.1.Notice that from the nontriviality condition [Definition 6.1.1(i)] it follows
that
if con is an ultrafilter oncon and E s con,then exactly one of the sets E and

con \sE
belongs con.

VI.1.2. The inconsistent w-ultrafilter.
Definition 6.1.4.Letw be a infinite weakly inconsistent (w-inconsistent ) set

w  Vw.
Any weakly inconsistent filter (w-filter) w that is w1-inconsistent family of w-subsets

of



w satisfying the following properties:
(i)w w w,w

s w
s w.

(ii.a) A1, . . . ,An w w s A1 w,s . . .w,s An w w.
(ii.b) A1, . . . ,An w1 

w s A1 w,s . . .w,s An w1 
w.

(iii.a) A w w and A w B s B w w.
(iii.b) A w1 

w and A w B s B w1 
w.

Definition 6.1.5.A w-filter w onw is called free if it contains no finite set.
Definition 6.1.6.A w-filter w is called an w-ultrafilter overw if for all
E w w either E w w orw \sE w w, i.e.,

E w w s w \sE w
s w, 6.1. 2

Remark.6.1.2.Notice that from the nontriviality condition [Definition 6.1.4(i)] it follows
that
if w is an w-ultrafilter onw and E w w,then exactly one of the sets E andw \sE
w-belongs w.

VI.1.3. The weakly consistent w0-ultrafilter.
Definition 6.1.7.Letw0 be a infinite weakly consistent (w0-consistent) set

w0  Vw0 .
Any weakly consistent filter (w0-filter) w0 that is a family of w0-subsets of w0

satisfying
the following properties:
(i)w0  w0 ,w0

s w0
s w0 .

(ii.a) A1, . . . ,An w0 
w0 s A1 w0 . . .w0 An w0 

w0 ,
(ii.b) A1, . . . ,An w0 

w0   A1, . . . ,An w0
w w0  s

A1 w0 . . .w0 An w0 
w0   A1 w0 . . .w0 An w0

w w0 .
(iii.a) A w0 

w0 and A w0 B s B w0 
w0 ,

(iii.b) A w0 
w0   A w0

w w0  and A w0 B s B w0 
w0  s B w0

w w0 .
Definition 6.1.8.Any w0-filter w0 onw0 is called free if it contains no finite set.
Definition 6.1.9.Weakly consistent filter w0 is called a w0-ultrafilter
overw0 if for all E w0 

w0 either E w0 
w0 orw0 \w0

E w0 
w0 .

E w0 
w0 s w0 \sE w

s w0 , 6.1. 3

Remark.6.1.3.Notice that from the nontriviality condition [Definition 6.1.7(i)] it follows
that
if w0 is an ultrafilter onw0 and E w0 

w0 ,then E w0 
w0 orw0 \Ew0 w0 

w0 .
We can now construct an w-inconsistent and w0-consistent nonstandard extensions.

VI.1.4 The w-inconsistent nonstandard extension.
Definition 6.1.10.Let be w a free w-ultrafilter onw and introduce a strong
w-equivalence relation fw w

s gw on w-sequences f w w w
w

by

fw w
s gw s  w w | f w w g w

w
w w. 6.1. 4

Remark.6.1.4.Note that for any f w,g w,h w w w

f w w gw  g w w hw s f w w hw. 6.1. 5



Definition 6.1.11.w
w

"divided" out by the w-equivalence relation inc on clases fw
w

by
formula

f w w fw
w ,

gw gw w fw
w s fw w gw ,

6.1. 6

gives us the inconsistent nonstandard extension #w, the inconsistent hyperreals; in
symbols,

#ww  w
w

w , 6.1. 7

which mean a natural w-embedding:

f w w fw
w 6.1. 8

If f w w w
inc

, we denote its image in #ww by fw
w , and, of course,every element in

#ww

is of the form finc
w , for some f w : w w w.

Remark.6.1.5.Note that for any f w,g w w w
w

f w w gw s fw
w w gw

w . 6.1. 9

For any w-inconsistent real number rw w w,such that rw w r, r s , let rw denote
the
constant w-function with value rw in w, i.e., rw w rw, for all  w w. We then

have a
natural w-embedding:

#w : w w
#ww 6.1. 10

by setting #wrw w rw
w , for all rw w w. We must now lift the structure of w to the

w-inconsistent hyperreals (w-hyperreals) #ww

Remark.6.1.6.Notice that as an algebraic w-inconsistent structure, w is a w-complete
w-odered field,i.e., a w-structure of the form

w,w ,w , 0w, 1w, 6.1. 11

where w w  is the set of elements of the structure, w and w are the binary
operations of addition and multiplication, w is the ordering relation, and 0w w 0 s 
and 1w w 1 s  are two distinguished elements of the domain. And it is complete in
the sense that every nonempty set w-bounded from above has a w-least w-upper bound.
(I) The #w-embedding of (6.1.10) sends 0w to #w0 w 0w

w  0w and 1 to #w1 w 1w
w 

1w. We must lift the operations and relations of w to #ww. We get the clue from (6.1.9),
which tells us when:
(i) two elements fw and gw, of #ww are w-equal:

fw
w w gw

w s  w w | f w w gw w w, 6.1. 12

(ii) two elements fw and gw, of #ww are not w-equal in strong consistent sense:

fw
w w

s gw
w s  w w | f w w gw w

s w, 6.1. 13

(iii) two elements fw and gw, of #ww are not w-equal in a weak sense:



fw
w w

w gw
w s  w w | f w w gw w

w w, 6.1. 14

(iv) two elements fw and gw, of #ww are are w-equal and are not w-equal in a weak
w-inconsistent sense:

fw
w w gw

w  fw
w w

w gw
w s fw

w w1 gw
w s

s  w w | f w w gw w w 

  w w | f w w gw w
w w .

6.1. 15

In a similar way we extend w to #w by setting for arbitrary fw
w ,and gw

w ,in #ww:

fw
w0 w gw

w s  w w |fw w gw w w,

fw
w0 w

s gw
w s  w w |fw w gw w

s w,

fw
w0 w

w gw
w s  w w |fw w gw w

w w,

fw
w0 w gw

w  fw
w0 w

s gw
w s fw

w0 w1 gw
w s

s  w w |fw w gw w w  

 w w |fw w gw w
w w .

6.1. 16

(II) With this definition of w in #ww we easily show that the extended domain #ww is
w-linearly w-ordered w-inconsistent field. As an example we verify w-transitivity of w in
#ww. Let fw

w w gw
w , and gw

w w hw
w ,i.e.,

D1
w w  w w |f w w gw w w,

D2
w w  w w |gw w hw w w

6.1. 17

By the finite intersection property,[see Definition 6.1.4.(ii)] D1
w w D2

w w w. If
 w D1

w w D2
w, then fw w gw and gw w hw; hence by transitivity of w in

w,

fw w gw  gw w0 hw s fw w0 hw. 6.1. 18

Thus

D1
w w D2

w w0  w w |fw w hw 6.1. 19

The closure property [Definition 6.1.4(iii)] then tells us that fw
w w hw

w . Similarly one
can

to prove that given any fw
w ,gw

w w
#ww , then either fw

w w gw
w ,or gw

w w fw
w , or

fw
w w gw

w .
Remark.6.1.7.The w-relation w on #ww introduced in (6.1.16) extends the relation

w

on w, i.e., given any r1, r2 w w we see that r1 w r2 in w iff #wr1 w
#wr2 in #ww.

We now have w-inconsistent w-linear order on #ww and can verify that #ww contains
w-inconsistent infinitesimals (w-infinitesimals) and weakly consistent infinite numbers
(w-infinite numbers). A (positive) w-infinitesimal w in #ww is an
w-element w w

#ww such that #w0w w w w
#wrw for all rw w  0w in w.

Notice that w-nfinitesimals exist. Let w a free w-ultrafilter onw w w

and let f1
wnw w nw1 and f2

wnw w nw2 for nw  w. Then 1,w w f1,w
w and



2,w w f2,w
w ,is a positive w-infinitesimals and 2,w w 1,w.

In the same way g1
wnw0 w nw and g2

wnw w nw
2 introduce a weakly consistent

infinite numbers, 1,w w g1,w
w , and 2,w w g2,w

w , and we have that 1,w w 2,w

in #ww.
(III) It remains to extend the operations w and w to #ww. Looking back to (6.1.12)
and (6.1.16) we have nothing to do but to set

fw
w w gw

w w hw
w s

s  w w |f w w gww w hw w w,
6.1. 19

and

fw
w w gw

w w hw
w w

w  w w | f w w gw w hw w w.
6.1. 20

With these definitions one can to proves easily that #ww is an w-inconsistent
extension of
w. And these definitions introduce an w-inconsistent algebra on the w-infinitesimals

and

on the w-infinitely large numbers. One may wish to verify easily that if fw
w w gw

w , and
#w0w w hw

w ,then

fw
w w hw

w w gw
w w hw

w . 6.1. 21

One should also notice that for the w0-infinitesimals 1,w and 2,w and the w0-infinite
1,w0

and 2,w0 introduced above, we have, e.g., 2,w w 1,w
2 , 1,w0 w0 1,w0 w0 1w0 , is

infinitesimal, and 6 w’ is infinite.Thus the w0-infinitely small and the w0-infinitely large
have
a decent wekly consistent arithmetic.
The way we extended the particular operators w0 and w0 and the particular
relation w0 from w0 to

#w0w0 can be used to extend any function and relation
on w0 to

#w0w0 . Let F be an n-ary w0-function on w0 , i.e.,

Fw0 :

n times

w0 w0    w0 w0w0 w0 . 6.1. 22

Then we introduce the extended w0-function #w0F by the w0-equivalence

#w0Fw0 fw0
1,w0 , . . . , fw0

n,w0 w0 gw0
w0 s

 w0 
w0 |Fw0 f 1,w0, . . . , f n,w0 w0 g w0 w0 

w0

6.1. 23

The reader may want to verify that #w0F is a w0-function and that #w0F really
extends F, i.e., #w0F#w0 r1,w0 , , . . . ,

#w0 rn,w0  w0
#w0 rw0 iff F

w0r1,w0 , . . . , rn,w0   rw0 . In the
same way we extend any n-ary w0-relation Sw0 on w0 to a w0-relation #w0Sw0 on #w0w0 .
Note that since a w0-subset E w0 w0 corresponds to an unary w0-relation, we have

an
w0-extension #w0E characterized by the condition

fw0
w0 w0

#w0E s  w0 
w0 |f  E w0 

w0 . 6.1. 24



Thus if E  0w0 , 1w0, then
#w0E as a subset of #w0w0 will have every positive

w0-infinitesimal as an w0-element, but not #w00w0 , a fact which can be read off
immediately from condition (6.1.24).But first a few elementary observations on the
w0-extension of subsets of w0 : #w0w0 is the w0-empty set in #w0w0 . If E w0 w0 ,

then
#w0 rw0 w0

#w0E for all rw0 w0 E, but in general(see the example E  0w0 , 1w0

above)#w0E
will contain elements not of the form #w0 rw0 for any rw0 w0 E. Furthermore #w0 is a
Boolean homomorphism in the sense that #w0 E1 w0 E2 w0 #w0E1 w0 

#w0E2 and
#wE1 w E2 w0 #wE1 w #wE2 for arbitrary sets E1, E2 w w. Finally, we note
that #wE1 w

#wE2 iff E1 w E2, and #wrw w
#wE iff rw w E.

Before proceeding we need to discuss the important concept of standard
part. By virtue of (6.1.23) the absolute-value function ||w on w has an extension to

#ww

that we will denote by #w ||w.
Definition 6.1.12.An w-element x w

#wwis called w-finite if #w |x|w w
#wrw for some

0w w rw.
As we shall see, every finite x w

#ww is w-infinitely close to some rw w w in the

sense that #w x w
#wrw

w
is either #w0w or w0-positively w0-infinitesimal in #w0w.

Definition 6.1.13.This w-unique rw is called the w-standard part of x and is denoted by
stwx or w x.
The proof of existence of the standard part is simple. Let x w

#ww be finite. Let D1

be
the set of rw w w such that #wrw w x and D2 the set of rw w w such that
x w

#wrw.The pair D1,D2 forms a Dedekind cut in w, hence determines a unique
rw w w. A simple argument shows that stwx w rw.

VI.2.1 The w0-consistent nonstandard extension.
Definition 6.2.1.Let be w0 a free w0-consistent ultrafilter onw0 and introduce an
w0-equivalence relation f w0 w0

w0 gw0 on w0-sequences f w0 w0 w0
w0

by

f w0 w0 gw0 s  w0 
w0 | f w0 g w0 

w0 . 6.2. 1

Definition 6.2.2.w0
w0

divided out by the w0-equivalence relation w0 gives us the
w0-consistent nonstandard extension #w0w0 , the hyperreals; in symbols,

#w0w0  w0
w0 w0 . 6.2. 2

Remark.6.2.3.Note that for any f w0 ,g w0 ,h w0 w0 w0
w0

it follows

f w0 w0 gw0  g w0 w0 hw0 s f w0 w0 hw0 . 6.2. 3

Remark.6.2.4.If f w0 w0 w0
 w0

, we denote its image in #w0w0 by fw0
w0 , and, of

course,every w0-element in #w0w0 is of the form fw0
w0 , for some f w0 : w0  w0 .

Remark.6.2.5.Note that for any f w0 ,g w0 ,h w0 it follows by definitions

f w0 w0
w0 gw0 s fw0

w0 w0 gw0
w0 ,

f w0 w0
w0 gw0  gw0  hw0

w0 s f w0  hw0
w0 .

6.2. 4



For any real number rw0 w0 w0 let r
w0 denote the constant w0-function with value rw0

in
w0 , i.e.,r

w0 w0 rw0 , for all  w0 
w0 . We then have a natural w0-embedding:

#w0 : w0 w0
#w0w0 6.2. 5

by setting #w0 rw0 w0 rw0
w0 , for all rw0 w0 w0 .

(I) The #w0-embedding of (6.2.5) sends 0 to #w00 w0 0w0
w0  0w0 and 1 to

#w01 w0 1w0
w0  1w0 .We must lift the operations and relations of  to #w0w0 . We get

the clue from (6.2.1), which tells us when two elements fw0 and gw0 , of #ww0 are
w0-equal:

fw0
w0 w0 gw0

w0 s  w0 
w0 |f w0 w0 gw0 w0 

w0 . 6.2. 6

In a similar way we extend w0 to #w0w0 by setting for arbitrary fw0
w0 ,and gw0

w0 ,in #w0w0

fw0
w0 w0 gw0

w0 s  w0 
w0 |fw0 w0 gw0 w0 

w0 ,

fw0
w0 w0

s gw0
w0 s  w0 

w0 |fw0 w0 gw0 w0
s w0 ,

fw0
w0 w0

w gw0
w0 s  w0 

w0 |fw0 w0 gw0 w0
w w0 ,

fw0
w0 w0 gw0

w0  fw0
w0 w0

w gw0
w0 s

s  w0 
w0 |fw0 w0 gw0 w0 

w0  

s w0 
w0 |fw0 w0 gw0 w0

w w0 .

6.2. 7

(II) With this definition of w0 in
#w0w0 we easily show that the extended domain #w0w0 is

linearly w0-ordered w0-inconsistent field. As an example we verify w0-transitivity of w0 in
#w0. Let fw0

w0 w0 gw0
w0 , and gw0

w0 w0 hw0
w0 ,i.e.,

D1
w0 w0  w0 

w0 |f w0 w0 gw0 w0 
w0 ,

D2
w0 w0  w0 

w0 |gw0 w0 hw0 w0 
w0

6.2. 8

By the finite intersection property,[see Definition 6.2.7.(ii)] D1
w0 w0 D2

w0 w0 
w0 . If

 w0 D1
w0 w0 D2

w0 , then fw0 w0 gw0 and gw0 w0 hw0; hence by transitivity
of
w0 in w0 ,

fw0 w0 gw  gw0 w0 hw0 s fw0 w0 hw0. 6.2. 9

Thus

D1
w0 w0 D2

w0 w0  w0 
w0 |fw0 w0 hw0 6.2. 10

The closure property [Definition 6.1.7(iii)] then tells us that fw0
w0 w0 hw0

w0 . Similarly one

can to prove that given any fw0
w0 ,gw0

w0 w0 #w0, then either fw0
w0 w0 gw0

w0 ,or

gw0
w0 w0 fw0

w0 , or fw0
w0 w0 gw0

w0 .
Remark.6.2.6.The w0-relation w0 on

#w0w0 introduced in (6. 2.5) extends the relation

w0 on w0 , i.e., given any r1, r2 w0 w0 we see that r1 w0 r2 in w0 iff
#w0 r1 w0

#w0 r2
in

#w0w0 .
We now have a weakly consistent linear order on #w0 and can verify that #w0w0

contains
weakly consistent infinitesimals (w0-infinitesimals) and weakly consistent infinite



numbers
(w0-infinite numbers). A (positive) w0-infinitesimal w0 in

#w0w0 is an
w0-element w0 w0

#w0 such that 0w0 w0 w0 w0
#w0 r for all r  0 in .

Notice that w0-nfinitesimals exist. Let w0 a free w0-consistent ultrafilter on
w0 w0 w0

and let f1
w0 nw0 w0 nw0

1 and f2
w0 nw0 w0 nw0

2 for n  w0 . Then 1,w0 w0 f1,w0

w0 and

2,w0 w0 f2,w0

w0 ,is a positive w0-infinitesimals and 2,w0 w0 1,w0 .

In the same way g1
w0 nw0 w0 nw0

and g2
w0 nw0 w0 nw0

2 introduce a weakly consistent

infinite numbers, 1,w0 w0 g1,w0

w0 , and 2,w0 w0 g2,w0

w0 , and we have that 1,w0 w0

2,w0

in #w0w0 .
(III) It remains to extend the operations w0 and w0 to #w0w0 . Looking back to (6.2.1)
and (6.2.2) we have nothing to do but to set

fw0
w0 w0 gw0

w0 w0 hw0
w0 w0

w0  w0 
w0 |f w0 w0 g

w0w0
w0 hw0 w0 

w0 ,
6.2. 11

and

fw0
w0 w0 gw0

w0 w0 hw0
w0 w0

w0  w0 
w0 |f w0 w0 g

w0 w0 hw0 w0 
w0 .

6.2. 12

With these definitions one can to proves easily that #w0 is an w0-consistent extension
of
. And these definitions introduce an w0-consistent algebra on the
w0-infinitesimals and on the w0-infinitely large numbers. One may wish to verify easily

that

if fw0
w0 w0 gw0

w0 , and #w00 w0 hw0
w0 ,then

fw0
w0 w0 hw0

w0 w0 gw0
w0 w0 hw0

w0 . 6.2. 13

One should also notice that for the w0-infinitesimals 1,w0 and 2,w0 and the w0-infinite
1,w0

and 2,w0 introduced above, we have, e.g., 2,w0 w0 1,w0
2 , 1,w0 w0 1,w0 w0 1w0 , is

infinitesimal, and 6 w’ is infinite.Thus the w0-infinitely small and the w0-infinitely large
have
a decent wekly consistent arithmetic.
The way we extended the particular operators w0 and w0 and the particular
relation w0 from w0 to

#w0w0 can be used to extend any function and relation
on w0 to

#w0w0 . Let F be an n-ary w0-function on w0 , i.e.,

Fw0 :

n times

w0 w0    w0 w0w0 w0 . 6.2. 14

Then we introduce the extended w0-function #w0F by the w0-equivalence

#w0Fw0 fw0
1,w0 , . . . , fw0

n,w0 w0 gw0
w0 s

 w0 
w0 |Fw0 f 1,w0, . . . , f n,w0 w0 g w0 w0 

w0

6.2. 15



The reader may want to verify that #w0F is a w0-function and that #w0F really
extends F, i.e., #w0F#w0 r1,w0 , , . . . ,

#w0 rn,w0  w0
#w0 rw0 iff F

w0r1,w0 , . . . , rn,w0   rw0 . In the
same way we extend any n-ary w0-relation Sw0 on w0 to a w0-relation #w0Sw0 on #w0w0 .
Note thatsince a w0-subset E w0 w0 corresponds to an unary w0-relation, we have

an w0-extension #w0E characterized by the condition

fw0
w0 w0

#w0E s  w0 
w0 |f  E w0 

w0 . 6.2. 16

Thus if E w0 0w0 , 1w0w0 , then
#w0E as a subset of #w0w0 will have every positive

w0-infinitesimal as an w0-element, but not #w00w0 , a fact which can be read off
immediately from condition (6.2.16).But first a few elementary observations on the
w0-extension of subsets of w0 : #w0w0 is the w0-empty set in #w0w0 . If E w0 w0 ,

then
#w0 rw0 w0

#w0E for all rw0 w0 E, but in general (see the example E  0w0 , 1w0w0

above)
#w0E will contain elements not of the form #w0 rw0 for any rw0 w0 E. Furthermore

#w0 is a
Boolean homomorphism in the sense that #w0 E1 w0 E2 w0 #w0E1 w0 

#w0E2 and
#w0 E1 w0 E2 w0 #w0E1 w0 

#w0E2 for arbitrary sets E1, E2 w0 w0 . Finally, we
note
that #w0E1 w0

#w0E2 iff E1 w0 E2, and #w0 rw0 w0
#w0E iff rw0 w0 E.

Before proceeding we need to discuss the important concept of standard
part. By virtue of (6.2.15) the absolute-value function ||w0

on w0 has an extension to
#w0w0 that we will denote by #w0 ||w0

.

Definition 6.2.3.An w0-element x w0
#w0w0 is called finite if #w0 |x|w0

w0
#w0 rw0 for

some
0w0 w0 rw0 .
As we shall see, every finite x w0

#w0w0 is w0-infinitely close to some rw0 w0 w0 in
the

sense that #w0 x w0

#w0 rw0
w0

is either #w00w0 or w0-positively w0-infinitesimal in #w0w0 .

Definition 6.2.4.This w0-unique rw0 is called the w0-standard part of x and is denoted
by stw0x or

w0 x.
The proof of existence of the standard part is simple. Let x w0

#w0w0 be finite. Let D1

be
the set of rw0 w0 w0 such that #w0 rw0 w0 x and D2 the set of rw0

 w0 w0 such that
x w0

#w0 rw0 .The pair D1,D2 forms a Dedekind cut in w0 , hence determines a
unique
rw0 w0 w0 . A simple argument shows that stw0x w0 rw0 .

VI.2.2.The classical transfer principle.
We now remind the construction of the nonstandard extension. Let  be a free
ultrafilter on and introduce an equivalence relation on sequences in  as

f  g s   | f  g s . 6.2. 17

 divided out by the equivalence relation  gives us the nonstandard
extension , the hyperreals:   /.Two elements f,g   are equal:



f s g s   |f  g s . 6.2. 18

In a similar way we extend  to  by setting for arbitrary f,g  

f s g s   |f  g s . 6.2. 19

It remains to extend the operations , to  by

f s g s h s   |f  g  h s ,

f s g s h s   |f  g  h s 
6.2. 20

With these definitions we can prove easily that  is an ordered field extension of .
Let F be an n-ary function on .We introduce the extended function F by the

equivalence

F f
1 , . . . , f

n  g s  s |F f 1, . . . , f n  g s  6.2. 21

Note thatsince a w0-subset E w0 w0 corresponds to an unary w0-relation, we have

an w0-extension #w0E characterized by the condition

f s

E s   | f  E s . 6.2. 22

We consider now the standard consistent reals as a structure

,s ,s ,s ,s , ||, 0, 1, 6.2. 23

The properties of ordered fields in classical consistent
case
Any consistent ordered field F is a field together with a total ordering of its elements

that is compatible with the field operations. The basic example of an ordered field is the
field of real numbers, and every Dedekind-complete ordered field is isomorphic to the
reals .
Definition 6.2.5. A field is a nonempty set F containing at least 2 elements alongside

the two binary operations of addition, f : F s F  F such that fx,y  x s y and
multiplication fx,y  x  y that satisfy all of the axioms below.
I.Basic Properties of Equality
1. x s Fx s x.
2.x,y s Fx s y  y s x.
3.For any function fx1, . . . ,xn : F s . . .s F  F, if x1 s y1, . . . ,xn s yn then
fx1, . . . ,xn s fy1, . . . ,yn.
II.Axioms for Addition
Field Axiom for Addition 1. The operation of addition is closed, that is
x,yx s y s F.
Field Axiom for Addition 2. The operation of addition is commutative, that is
xyx s y s y s x (Commutativity of addition).
Field Axiom for Addition 3. The operation of addition is associative, that is
xyzx s y s z s x s y s z (Associativity of addition).
Field Axiom for Addition 4. The operation of addition has the additive identity element

of
0s such that xx s 0s s x (Existence of an additive identity).



III.Axioms for Multiplication
Field Axiom for Multiplication 1. The operation of multiplication is closed, that is
xyx s y s F.
Field Axiom for Multiplication 2. The operation of multiplication is commutative, that is
xy x s y  y s x (Commutativity of multiplication).
Field Axiom for Multiplication 3 The operation of multiplication is associative, that is
xyz x s y s z s x s y s z (Associativity of multiplication).
Field Axiom for Multiplication 4 The operation of multiplication has the multiplicative
identity element of 1s such that
x 1s s x s x (Existence of an multiplicative identity).
Field Axiom for Multiplication 5 The operation of multiplication has the multiplicative
inverse element of 1s/x such that
x x s 1s/x s 1s (Existence of a multiplicative inverse).
IV.Field Axiom for Distributivity
The operation of multiplication is distributive over addition, that is
xyzx s y s z s x s y s x s z (Distributive law).
V.Order Axioms
1. Either x s y or x s y or y s x (Trichotemy)
2. x s y if and only if x s z s y s z (Addition Law)
3. If zs  0s, then x s z s y s z if and only if x s y. If
c s 0s, then a s c s b s c if and only if b s a (Multiplication Law)
4.If x s y and y s z, then x s z (Transitivity)

The upper and lower bounds in classical consistent case
Definition 6.2.5.If A   is a set of real numbers, then:
(i) a s  is an upper bound for A if x s a for all x s A,
and we shall denote this relation by Us ,so aUsA meant that a is an upper bound of

A;
(ii) b is the least upper bound or supremum (s-supA) for A if b is
an upper bound, and moreover b s a whenever a is any upper bound for A,
and we shall denote this relation by LsUs ,so bLsUsA meant that b is least upper

bound
of A.
One similarly defines lower bound and greatest lower bound or infinum (infA) for A

by
replacing s by s .
Definition 6.2.6.If A   is a set of real numbers, then:
(i) a s  is an lower bound for A if a s x for all x s A,
and we shall denote this relation by Ls ,so aLsA meant that a is an lower bound of

A;
(ii) b is the gratest lower bound or infinum (s-infA) for A if b is
an lower bound, and moreover a s b whenever a is any lower bound for A,
and we shall denote this relation by GsLs ,so bGsLsA meant that b is gratest lower
bound of A.
Remark.6.2.7.The following second-order sentence expresses the least upper bound
property:



A s ww s A  zuu s A  u s z 

 xyww s A  w s x 

uu s A  u s y  x s y.

6.2. 23

The structure  has an associated consistent simple language s that can be used
to describe the kind of properties of  that are preserved under the -embedding:

 :   . 6.2. 23

The elementary formulas of  are expressions of the form
(i) t1  t2 s t3,(ii) t1  t2 s t3,(iii) |t1 | s t2, (iv) t1 s t2, (v) t1 s t2, (vi) t1 s X,
where t1, t2, t3 are either the constants 0 or 1 or a variable for an arbitrary
number r s , and X is a variable for a subset A s .
From the elementary formulas we generate the class of all formulas or
expressions of s using the propositional connectives:,,s,s ,
and the number quantifiers: xx s ,xx s  by the rules:
(vii) If  and  are formulas of s, then   ,  , s ,s,
are formulas of s,and the consistent number quantifiers xx s ,xx s 

are
formulas of s.
(viii) If  is a formula of s and x is a consistent number variable, then x,x
are formulas of s.
The language s is basically a first-order consistent language; i.e., we allow
number quantification but not set quantification.

We give a few examples: in the language s we can write down conditions which
express that s is a strongly consistent linear ordering:
(1) s-transitive xyzx s y  y s z s x s z
(2) s-irreflexive xsx s x
(3) s-linear xyx s y  x s y  y s x
A formula  of s is in general of the form

  X1, . . . ,Xm,x1, . . . ,xq, 6.2. 24

where x1, . . . ,xq are the free consistent number variables of , i.e., variables not
bound by a quantifier , and X1, . . . ,Xm are the (free) consistent set variables
of . Every formula in  has an standard interpretation in the structure ;e.g., let
X be the formula

X  y y s X s z z s  0  y1|y s y1 | s z s y1 s X 6.2. 25

and let A s , then A expresses the fact that A is open in .

The classical Lo s Theorem
Remind the following theorem.
Theorem 6.2.1. (Loś Theorem) Let X1, . . . ,Xm,x1, . . . ,xq be a formula of

. Then for any A1, . . . ,Am s  and f
1 , . . . , f

q s




 A1, . . . ,Am, f
1 , . . . , f

q s

s  s | A1, . . . ,Am, f 1, . . . , f q s .
6.2. 26

Proof.The proof is by induction on the number of logical symbols in . If  has no
logical
symbols, it is an elementary formula of the form (i)-(vi),and (6.2.26) then reduces to

one
of (6.2.18),(6.2.19),(6.2.20),(6.2.21), or (6.2.22). If  contains logical symbols, then 

is
of the form   ,  , s ,s,xx s ,xx s .The verification of
(6.2.26) is, by induction, in each case reduced to an elementary property of the
consistent ultrafilter .For example, if   1  2, (6.2.26) follows from the finite
intersection property of the consistent ultrafilter . The case   s1 uses in an
essential way that  is an consistent ultrafilter namely, that

\s s  s  s
s . 6.2. 27

Quantifiers offer no special difficulties,For example, if   x1 and let  have one
free
variable; we shall prove

f iff   |f s , 6.2. 28

where f is of the form x1x, f.Now f is true in  iff there is some
g s

 such that 1g, f is true in .By the induction hypothesis this means
that

  |1g, f s . 6.2. 29

But if 1g, f is true in , then x1x, f is also true in ,i.e.,

  |1g, f    |x1x, f. 6.2. 30

From (6.2.30) and the property (3) of consistent filters it follows that

  |f s . 6.2. 21

In order to prove the converse, assume that:     |f s .For each 
such that    we choose some  s  such that 1, f is true in . Let

g  

be a function g :    such that g s  for all    and g s  otherwise,
where  is some arbitrary s-element of .Then we have:

  |1g, f s . 6.2. 22

Hence by the induction hypothesis we have 1g, f is true in , i.e., we have
f  x1x, f is true in .

The theorem of Loś has the consistent transfer principle as an immediate corollary.
Theorem 6.2.2.(CONSISTENT TRANSFER PRINCIPLE).Let X1, . . . ,Xm,x1, . . . ,xq

be a formula of
. Then for any A1, . . . ,Am s  and r1, . . . , rn s , A1, . . . ,Am, r1, . . . , rn holds in


iff   A1, . . . , Am, r1, . . . , rn holds in ,i.e.,



A1, . . . ,Am, r1, . . . , rn s A1, . . . , Am, r1, . . . , rn. 6.2. 23

Proof.From (6.2.16) we get at once

A1, . . . , Am, r1, . . . , rn s   |A1, . . . ,Am, r1, . . . , rn s con 6.2. 24

But the set   |A1, . . . ,Am, r1, . . . , rn is equal to  con if  is true of
A1, . . . ,Am, r1, . . . , rn in , and is equal to  s if  is not true of A1, . . . ,Am, r1, . . . , rn in

.
Thus A1, . . . ,Am, r1, . . . , rn holds in  iff A1, . . . , Am, r1, . . . , rn holds in .

VI.4.The Generalized Los Theorem
We will consider the standard w-inconsistent reals as an w-inconsistent algebraic

structure w.As w-inconsistent algebraic structure, w is a w-complete w-ordered field,
i.e., w-inconsistent structure of the form

w  w,w ,w ,w ,w , 0w, 1w, 6.4. 1

where w w r|r w r s w is the set of w-elements of the inconsistent structure,w

and w are the binary operations of addition and multiplication, w is the w-ordering
relation, and 0w and 1w are two distinguished elements of the domain such that
s0w w 1w but note that

w0w w 1w  0w w 1w  A, 6.4. 2

i.e. sentence w0w w 1w  0w w 1w holds in w.
And it is complete in the sense that every w-nonempty set w-bounded from above has

a w-least w-upper bound. We consider now the standard inconsistent w-reals as

w-inconsistent structure

w,w ,w ,w ,w , ||w, 0w, 1w, 6.4. 3

where, in addition to the information in (6.4.1), we have added the absolute value ||w
that defines the metric on w. Of course,||w is definable in terms of the other entities in
(6.4.1), but it makes things a bit easier to include it explicitly in the specification.
The structure w has an associated simple language w  ww that can be used to

describe the kind of properties of w that are preserved under the #w-embedding:

#w : w 
#ww. 6.4. 4

The elementary formulas of ww are expressions of the form:
(i) t1 w t2 w t3,(ii) t1 w t2 w t3,(iii) |t1 |w w t2, (iv) t1 w t2, (v) t1 w t2, (vi) t1 w X,
where t1, t2, t3 are either the constants 0w or 1w or a variable for an arbitrary
number r w w, and X is a variable for a w-subset A w w.
From the elementary formulas we generate the class of all formulas or
expressions of ww using the propositional connectives:,,s,s ,w,w ,
and the inconsistent number quantifiers: xx w w,xx w w by the rules:
(vii) If  and  are formulas of ww, then

  ,  , s ,s, w ,w
are formulas of ww,and the consistent or inconsistent number quantifiers
xx w w,xx w w are formulas of ww.
(viii) If  is a formula of ww and x is a consistent or inconsistent number variable,
then x,x are formulas of ww.
The language ww is basically a first-order inconsistent language; i.e., we allow



number quantification but not set quantification.
We give a few examples: in the language ww we can write down conditions which
express that w is a w-inconsistent linear w-ordering:
(1) w-transitive xyzx w y  y w z s x w z,
(2) w1-transitive xyzx w1 y  y w1 z s x w1 z,

(3) w-reflexive xsx w x,
(4) xyx w y s sy w x,
(5) w1-linear xyx w y  x w y  y w xx w1 y  x w1 y  y w1 x

A formula  of ww is in general of the form

  X1, . . . ,Xm,x1, . . . ,xq, 6.4. 5

where x1, . . . ,xq are the free consistent and inconsistent number variables of , i.e.,
variables not bound by a quantifier , and X1, . . . ,Xm are the (free) consistent and
inconsistent set variables of . Every formula in ww has an standard interpretation

in
the structure w;e.g., (i) let X be the formula

X  y y w X s z z w  0w  y1|y w y1 |w w z s y1 w X 6.4. 6

and let A w w, then A expresses the fact that A is open in w;
(ii) let 1X be the formula

X  y y w X s z z w  0w  y1|y w y1 |w w z s y1 w X 6.4. 7

and let A w w, then A expresses the fact that A is open in w;
Remark.6.4.1. Note that w-inconsistent algebraic structure w mentioned above is a
w-complete w-ordered field.

VI.4.2.The properties of w-inconsistent w-ordered field Fw

Definition 6.4.1.A w-inconsistent field is a nonempty w-inconsistent set Fw containing
at least 2 elements along side the two binary operations of w-addition,
fw : Fw w Fw  Fw such that fw x,y w x w y and w-multiplication fw x,y w x w y
that satisfy all of the axioms below.
I.Basic properties of w-inconsistent w-equality
1. x w Fwx w x  x w1 x.

2.
3.x,y w Fwx w y s y w x.
4.
5.For any function fx1, . . . ,xn : Fw w . . .w Fw  Fw, if x1 w y1, . . . ,xn w yn then
fx1, . . . ,xn w fy1, . . . ,yn.
6.
II.Axioms for w-addition
Field axiom for w-addition 1. The operation of w-addition is closed, that is
xyx w y w Fw.
Field axiom for w-addition 2. The operation of w-addition is w-commutative, that is
xyx w y w y w x (w-commutativity of w-addition).
Field axiom for w-addition 3. The operation of addition is associative, that is
xyzx w y w z w x w y w z (Associativity of addition).
Field axiom for w-addition 4. The operation of w-addition has the w-additive w-identity



w-element of 0w such that
xx w 0w w x (Existence of an w-additive w-identity).
III.Axioms for w-multiplication
Field axiom for w-multiplication 1. The operation of w-multiplication is closed, that is
xyx w y w Fw.
Field axiom for w-multiplication 2. The operation of w-multiplication is w-commutative,
that is
xy x w y  y w x (w-commutativity of w-multiplication).
Field axiom for w-multiplication 3 The operation of multiplication is associative, that is
xyz x w y w z s x s y s z (w-associativity of w-multiplication).
Field axiom for w-multiplication 4 The operation of w-multiplication has the

w-multiplicative
w-identity element of 1w such that
x 1w w x w x (Existence of an w-multiplicative w-identity).
Field axiom for w-multiplication 5 The operation of multiplication has the

w-multiplicative
w-inverse w-element of 1w/x such that
xx s 0w x w 1w/x s 1s (Existence of a multiplicative inverse).
IV.Field axiom for w-distributivity
The operation of w-multiplication is w-distributive over w-addition, that is
xyzx s y s z s x s y s x s z (Distributive law).
V.Order Axioms
1. Either x w y or x w y or y w x or x w1 y or (w-trichotemy)

2. x w y if and only if x w z w y w z (w-addition law)
3. If zw 0w, then x w z w y w z if and only if x w y.
If c w 0w, then x w c w y w c if and only if y s x (Multiplication Law)
4.If x w y and y w z, then x w z (w-transitivity)

VI.4.3.The w-upper and w-lower bounds in w-inconsistent
case.
Definition 6.4.2.If A w w is a w-set of w-inconsistent real numbers, then:
(i) a w  is an strong w-upper bound for A if

xx w A x w a , 6.4. 8

and we shall denote this relation by SUw ,so aSUwA meant that a is an strong
w-upper
bound of A;
(ii) b is the least strong w-upper bound or strong w-supremum (wS-supA) for A if b is

an strong w-upper bound, and moreover

b w a 6.4. 9

whenever a is any strong w-upper bound for A,and we shall denote this relation by
LwSUw ,so bLwSUwA meant that b is least strong w-upper bound of A.
Remark.6.4.2. One similarly defines strong w-lower bound and greatest strong

w-lower
bound or strong w-infinum (wS-infA) for A by replacing w by w .



Definition 6.4.3.If A w w is a w-set of w-inconsistent real numbers, then:
(i) a w w is an strong w-lower bound for A if

xx w Aa w x 6.4. 10

for all x s A,
and we shall denote this relation by SLw ,so aSLwA meant that a is an strong

w-lower
bound of A;
(ii) b is the gratest strong w-lower bound or strong w-infinum (wS-infA) for A if b is
an strong w-lower bound, and moreover

a w b 6.4. 11

whenever a is any strong w-lower bound
for A,and we shall denote this relation by GwSLw ,so bGwSLwA meant that b is

gratest
strong w-lower bound of A.
Remark.6.4.3.We rewrite now the inequality (6.4.8) in the following equivalent form

xx w A s a w x . 6.4. 12

From the statement (6.4.12) by using logical postulate sA s wA we obtain

xx w A w a w x . 6.4. 13

Note that by using (6.4.13) one obtains more weakened conditions then required
above
in Definition 6.4.2-6.4.3.
Definition 6.4.4.If A w w is a w-set of w-inconsistent real numbers, then:
(i) a w  is an weak w-upper bound for A if

xx w A w a w x , 6.4. 12

and we shall denote this relation by WUw ,so aWUwA meant that a is an weak
w-upper
bound of A;
(ii) b is the least weak w-upper bound or weak w-supremum (wW-supA) for A if b is

an weak w-upper bound, and moreover

w a w b 6.4. 13

whenever a is any weak w-upper bound for A,and we shall denote this relation by
LwWUw ,so bLwWUwA meant that b is least weak w-upper bound of A.
Remark.6.4.4. One similarly defines weak w-lower bound and greatest weak w-lower
bound or weak w-infinum (wW-infA) for A by replacing w by w .
Definition 6.4.5.If A w w is a w-set of w-inconsistent real numbers, then:

(i) a w w is an strong w-lower bound for A if

xx w Aa w x 6.4. 14

for all x s A,
and we shall denote this relation by SLw ,so aSLwA meant that a is an strong

w-lower
bound of A;



(ii) b is the gratest strong w-lower bound or strong w-infinum (wS-infA) for A if b is
an strong w-lower bound, and moreover

a w b 6.4. 11

VI.4.4.w-complete w-inconsistent w-ordered field.

VI.3.3.The properties of w-inconsistent naturals w

Remark.6.3.1. The w-inconsistent structure w has an consistent substructure
w

s w
s w

w
s ,w

s ,w
s ,w

s ,w
s , ||w

s , 0w
s , 1w

s , 6.3. 

denoted below by w
s or by w

con. The structure w
s has an associated simple language

w
s  w

s w
s  that can be used to describe the kind of properties of w

s that are
preserved under the #w-embedding:

#w : w
s  #ww

s w
s #ww. 6.3. 

The elementary formulas of w
s w

s  are expressions of the form:
(i) t1 w

s t2 w
s t3,(ii) t1 w

s t2 w
s t3,(iii) |t1 |w

s w
s t2, (iv) t1 w

s t2, (v) t1 w
s t2, (vi) t1 w

s X,
where t1, t2, t3 are either the constants 0w

s or 1w
s or a variable for an arbitrary number

r w
s w

s , and X is a variable for a w-consistent w-subset A w
s w

s .From the elementary
formulas we generate the class of all formulas or expressions of ww using the
propositional connectives:,,s,s ,w,w ,and the w-consistent number

quantifiers:
xx w

s w,xx w
s w

s  by the rules:
(vii) If  and  are formulas of w

s w
s , then

  ,  , s ,s, w ,w
are formulas of w

s w
s ,and the w-consistent number quantifiers

xx w
s w,xx w

s w
s  are formulas of w

s w
s .

(viii) If  is a formula of w
s w

s  and x is a w-consistent number variable,
then x,x are formulas of w

s w
s .

The language w
s w

s  is basically a first-order w-consistent language; i.e., we allow
number quantification but not set quantification.
We give a few examples: in the language w

s w
s  we can write down conditions which

express that w
s is a w-consistent linear w-ordering:

We give a few examples: in the language w
s w

s  we can write down conditions which
express that w

s is a strongly consistent linear ordering:
(1) s-w-transitive xyzx w

s y  y w
s z s x w

s z



(2) s-w-irreflexive xsx w
s x

(3) s-w-linear xyx w
s y  x w

s y  y w
s x

A formula  of w
s w

s  is in general of the form

  X1, . . . ,Xm,x1, . . . ,xq, 6.3. 6

where x1, . . . ,xq are the free consistent number variables of , i.e., variables not
bound by a quantifier , and X1, . . . ,Xm are the (free) consistent set variables
of . Every formula in w

s  has an standard interpretation in the structure w
s ;e.g.,

let
X be the formula

X  y y w
s X s z z w

s 0w
s  y1|y w

s y1 |w
s w

s z s y1 w
s X 6.3. 7

and let A w
s w

s , then A expresses the fact that A is open in w
s ;

The properties of w-consistent w-ordered fields
Definition 6.2.. A w-consistent field is a nonempty w-consistent set Fw

s containing at
least
2 elements alongside the two binary operations of addition, fws : F w

s F  F such that
fws x,y w

s x w
s y and multiplication fws x,y w

s x w
s y that satisfy all of the axioms

below.
I.Basic Properties of w-Consistent Equality
1. x w

s Fx w
s x.

2.x,y w
s Fx w

s y s y w
s x.

3.For any w-consistent function fx1, . . . ,xn : F w
s . . .s F  F, if x1 w

s y1, . . . ,xn w
s yn

then fx1, . . . ,xn w
s fy1, . . . ,yn.

,

Theorem 6.3.1. (Generalized Loś Theorem) Let m,q  X1, . . . ,Xm,x1, . . . ,xq be a
formula of ww.
(I) Assume that m,q is not of the form   w.Then for any A1, . . . ,Am w  and

fcon
1 , . . . , fcon

q w
#w :

 A1, . . . ,Am, fw
1 , . . . , fw

q s

s  w w| A1, . . . ,Am, f 1, . . . , f q w w.
6.3. 6



(II) Assume that m,q is of the form   w.Then for any A1, . . . ,Am w w and

fcon
1 , . . . , fcon

q w
#ww :

1 A1, . . . ,Am, fw
1 , . . . , fw

q s

s  w w| A1, . . . ,Am, f 1, . . . , f q w1 
w.

6.3. 7

Proof.(I)The proof is by induction on the number of logical symbols in . If  has no
logical symbols, it is an elementary formula of the form (i)-(vi),and (6.3.6) then reduces

to
one
of (), (), ( ) ,( ) , or (). If  contains logical symbols, then  is of the form
  ,  , s ,s, w ,w,xx w w,xx w w.The verification

of
(6.3.6) is, by induction, in each case reduced to an elementary property of the

inconsistent
w-ultrafilter w.For example, if   1  2, (6.3.6) follows from the finite

w-intersection
property of the inconsistent w-ultrafilter w. The case   s1 uses in an essential
way that w is an inconsistent w-ultrafilter namely, that

w\w,s w w s  w
s w 6.3. 7

and

w\w,s w1 
w s  w1

s w s  w
s w, 6.3. 8

we remind that sa  wa s sa  a.
The case   w immediately from definition

w A1, . . . ,Am, fw
1 , . . . , fw

q s

s  w w| A1, . . . ,Am, f 1, . . . , f q w
w w.

6.3. 9

Quantifiers offer no special difficulties.For example, if   x1 and let  have one
free
variable; we shall prove

fw  s  w w|f w w, 6.3. 10

where fw  is of the form x1x, fw .Now fw  is true in #ww iff there is some
gw w

#ww such that 1gw, fw  is true in #ww.By the induction hypothesis this
means that

 w |1g, f w w. 6.3. 11

But if 1g, f is true in w, then x1x, f is also true in w,i.e.,

 w w|1g, f w  w w|x1x, f. 6.3. 12

From (6.3.12) and the property (3) of inconsistent w-filters it follows that

 w w|f w w. 6.3. 13

In order to prove the converse, assume that:  w   |f w w.For each

such that  w  we choose some  w  such that 1, f is true in w. Let



g w w
w

be a w-function g : w  w such that g w  for all  w  and
g w  otherwise,where  is some arbitrary w-element of .Then we have:

  w|1g, f w w. 6.3. 14

Hence by the induction hypothesis we have 1gcon , fcon  is true in #ww, i.e., we have
fw   x1x, fw  is true in #ww.Thus A1, . . . ,Am, r1, . . . , rn holds in w iff
#wA1, . . . , #wAm, #wr1, . . . , #wrn holds in #ww.

(II) The case   w immediately from definition

 A1, . . . ,Am, fw
1 , . . . , fw

q s

 A1, . . . ,Am, fw
1 , . . . , fw

q  w A1, . . . ,Am, fw
1 , . . . , fw

q s

s  w w| A1, . . . ,Am, f 1, . . . , f q w w 

  w w| A1, . . . ,Am, f 1, . . . , f q w
w w .

6.3. 15

Quantifiers offer no special difficulties.For example, if   x1,where 1    w
and let  have one free variable; we shall prove

fw  s

 w w|f w w    w w|f w
w w ,

6.3. 16

where fw  is of the form x1x, fw .Now fw  is true in #ww iff there is some
gw w

#ww such that gw, fw  is true in #ww.By the induction hypothesis this
means that

 w |g, f w w   w |g, f w
w w . 6.3. 17

and therefore

 w |g, f w w   w |wg, f w w . 6.3. 18

Remind that (6.3.18) means that 1g, f is true in w,i.e.,both g, f and
wg, f is true in w

But if both g, f and wg, f is true in w, then both xx, f and
xwx, f is also true in w,i.e.,

 w w|g, f w  w w|xx, f. 6.3. 19

and

 w w|wg, f w  w w|xwx, f. 6.3. 20

From (6.3.19)-(6.3.20) and the property (3) of inconsistent w-filters it follows that

 w w|f w w 6.3. 13

and

 w w|wf w w 6.3. 13

In order to prove the converse, assume that:  w   |f w w.For each

such that  w  we choose some  w  such that 1, f is true in w. Let
g w w

w

be a w-function g : w  w such that g w  for all  w  and
g w  otherwise,where  is some arbitrary w-element of .Then we have:

  w|1g, f w w. 6.3. 14



VI.3.2.The Generalized Transfer Principle
Theorem 6.3.1.(Transfer principle).Let X1, . . . ,Xm,x1, . . . ,xq be a formula of

w. Then for any A1, . . . ,Am w  and r1, . . . , rn w w, A1, . . . ,Am, r1, . . . , rn holds
in w

iff   A1, . . . , Am, r1, . . . , rn holds in ,i.e.,

A1, . . . ,Am, r1, . . . , rn s A1, . . . , Am, r1, . . . , rn. 6.2. 23

Proof.From (6.2.16) we get at once

A1, . . . , Am, r1, . . . , rn s   |A1, . . . ,Am, r1, . . . , rn s con 6.2. 24

But the set   |A1, . . . ,Am, r1, . . . , rn is equal to  con if  is true of

We consider now the w0-consistent w0-reals w0 as a structure

w0 ,w0 ,w0 ,w0 , ||w0
, 0w0 , 1w0, 6.2. 17

The structure w0 has an associated simple language w0  that can be used to
describe
the kind of properties of  that are preserved in wekly consistent sense
under the embedding:

#w0 : w0 
#w0. 6.2. 18

Theorem 6.2.2. (Generalized Los Theorem) Let X1, . . . ,Xm,x1, . . . ,xq be a formula
of

w0 . Then for any A1, . . . ,Am s w0 and fw0
1 , . . . , fw0

q w0
#w0

 A1, . . . ,Am, fw0
1 , . . . , fw0

q s

s  w0 
w0 |A1, . . . ,Am, f 1, . . . , f q w0 

w0 .

 A1, . . . ,Am, fw0
1 , . . . , fw0

q  w A1, . . . ,Am, fw0
1 , . . . , fw0

q s

6.2. 16



Remark.6.2.2.

VI.3.The #w-transfer.
VI.3.1.The #w-embedding
We consider the inconsistent w-reals as a structure

w,w ,w ,w , ||, 0w, 1w, 6.2. 

(II)The #w-embedding of (6.1.10) sends 0w to #w0w w 0inc
w  0w and 1w to #w1 w

1inc
w  1w. We must lift the operations and relations of  to #w.

Definition 6.3.1.We get the clue from (6.1.6), which tells us when two elements finc
w

and ginc
w , of #w are weakly w-equal in a weak paraconsistent sense iff :

finc
w w ginc

w w fw w gw 6.3. 1

e.g.,

finc
w w ginc

w w  w w |f w w gw w inc. 6.3. 2

Remark.6.3.1.

Definition 6.3.2.Two elements finc
w and ginc

w , of #w are w-equivalent in a weak
inconsistent sense :

In a similar way we extend  to #w by setting for arbitrary finc
w ,and ginc

w ,in #w:

finc
w w ginc

w   w  inc |f w w gw w inc. 6.3. 2

With this definition of w in #w we easily show that the extended domain #w is linearly
w-ordered w-inconsistent field. As an example we verify w-transitivity of w in #w. Let
finc
w w ginc

w , and ginc
w w hinc

w ,i.e.,

D1
w w  w  inc |fw w gw w inc,

D2
w w  w  inc |gw w hw w inc

6.3. 3

By the finite intersection property (ii),[see Definition 6.1.1.(ii)]w D1
w w D2

w w inc. If
 w D1 w D2, then f w g and gw w hw; hence by transitivity of  in ,

fw w gw  gw w hw w0 fw w hw. 6.3. 4

Thus

w0 D1 w D2 w  w  inc |fw w hw 6.3. 5

The closure property (3) then tells us that:

w0 finc
w w hinc

w 6.3. 6

VI.4.The #wn transfer and #wn-embedding



VI.5. The Extendent Paralogical Universe.

VI.5.1. The inconsistent superstructures over universal set.
Definition 6.5.1. The superstructure over inconsistent set, or inconsistent universe

Sinc, denoted by VwSinc,Vw0Sinc,Vw1Sinc,etc. is defined by the following canonical
recursion:

V1
wSinc w Sinc,

Vn1
w Sinc w Vn

wSinc w X|X w Vn
wSinc

w
,

VwSinc w w-
n

VnSinc.
6.5. 1

V1
w0Sinc w0 S

inc,

Vn1
w0 Sinc w0 Vn

w0Sinc w0 X|X w0 Vn
w0Sinc

w0
,

Vw0Sinc w w0-
n

Vn
w0Sinc.

6.5. 2

V1
wmSinc wm Sinc,

Vn1
wm Sinc w0 Vn

wmSinc w0 X|X wm Vn
wmSinc

w0
,

VwmSinc w wm-
n

Vn
wmSinc,

m  1,2, . . . .

6.5. 3

The extended inconsistent nonstandard universe of paraconsistent nonstandard
analysis will be obtained by postulating: the extensions #w  , #w0  , #wn  , and
postulating the embeddings

#w : VwSinc    Vw#wSinc,
#w : Vw0Sinc    Vw0#w0Sinc,
#w : VwnSinc    Vwn#wnSinc.

6.5. 4

We shall now extend the construction of the inconsistent ultrafilter to demonstrate that
will have properties similar to the embedding #w :   #w constructed in Subsections
6.1-6.4.
Remark.6.5.1.First of all we assume the following principle.EXTENSION PRINCIPLE.
(i) #w is a proper w-inconsistent extension of  and #wr w r for all r  ,
(ii) #w0 is a proper w-consistent extension of  and #w0 r w0 r for all r  ,
(iii) #wn is a proper wn-consistent extension of  and #wn r wn r for all r  ,n  .

VI.5.2. The Bounded Paralogical Ultrapowers.

VI.5.2.1. The Bounded Consistent Ultrapowers.
Remind the following definitions.



Definition 6.5.2. A sequence A  Av v of elements of VScon  VScon   is

bounded if there is a fixed n  1 such that each Av  VnScon  .
Remark.6.5.2.
Definition 6.5.3.Two bounded sequences A and B are equivalent with respect to the

free
consistent ultrafilter , in symbols A~B, iff

v  |Av  Bv  . 6.5. 5

We let A denote the equivalence class of A and define the bounded ultrapower by

VScon/  A|A is a bounded VScon-sequence . 6.5. 6

Definition 6.5.4.We define the membership relation  in the ultrapower by

A  B iff v  |Av  Bv  . 6.5. 7

There is a natural proper embedding

i : VScon  VScon/ 6.5. 8

namely let iA  A, the equivalence class corresponding to the constant sequence
A A.

VI.5.2.2. The Bounded Paralogical w-Ultrapowers.
Definition 6.5.5. (i) A w-sequence A  Av vw w of w-elements of VwSinc

w  w

is w-bounded if there is a fixed n1 such that each Av w Vn
wSinc

w  w.
Remark.6.5.3.
Definition 6.5.6.Let w be a free w-ultrafilter onw.Two w-bounded w-sequences Aw

and Bw are w-equivalent with respect to the free inconsistent ultrafilter w, in symbols

Aw w
w Bw iff i w w|Av w Bv w w. 6.5. 9

Definition 6.5.7.We let Aw
w denote the w-equivalence class of A and define the

w-bounded w-ultrapower by

VwSincw/w w Aw
w |Aw is a w-bounded VwSinc-sequence

w
6.5. 10

There is a natural proper embedding

iw : VSinc  VwSincw/w 6.5. 11

namely let iwAw w Aw, the equivalence class corresponding to the constant
w-sequence Aww Aw.

Definition 6.5.8.We define the w-membership relation w in the w-ultrapower by

Aw
w w Bw

w iff i w w|Av w Bv w w, 6.5. 12

VI.5.2.3. The Bounded Paralogical w0-Ultrapowers.
Definition 6.5.9.A w0-sequence Aw0  Av vw0 w0 of w0-elements of Vw0Sinc

w0  w0 is w0-bounded if there is a fixed n  1 such that each Av w0 Vn
w0Sinc

w0  w0.
Remark.6.5.4.
Definition 6.5.10.Let w0 be a free w0-ultrafilter onw0 .Two w0-bounded

w0-sequences Aw0 and Bw0 are w0-equivalent with respect to the free w0-consistent
ultrafilter w0 , in



symbols

Aw0 w0
w0 Bw0 iff i w0 w0 |Av w0 Bv w0 

w0 . 6.5. 13

Definition 6.5.11.We let Aw0
w0 denote the w0-equivalence class of A and define the

w0-bounded w0-ultrapower by

Vw0Sincw0 /w0 w0 Aw0
w0 |Aw0 is a w-bounded Vw0Sinc-sequence 6.5. 14

There is a natural proper w0-embedding

iw0 : Vw0Sinc  Vw0Sincw0 /w0 , 6.5. 15

namely let iw0Aw0   Aw0 , the w0-equivalence class corresponding to the constant
w0-sequence Aw0  Aw0

.

Definition 6.5.12.We define the w0-membership relation w0 in the w0-ultrapower by

Aw0
w0 w0 Bw0

w0 iff v w0 w0 |Av w0 Bv w0 
w0 . 6.5. 16

VI.5.2.4. The Bounded Paralogical wn-Ultrapowers.
Definition 6.5.13.A wn-sequence A  Av vwn wn of wn-elements of VwnSinc

w  w

is wn-bounded if there is a fixed n  1 such that each Av wn Vn
wnSinc.

Remark.6.5.5.
Definition 6.5.14.Let wn be a free wn-ultrafilter onwn .Two wn-bounded

wn-sequences A and B are wn-equivalent with respect to the free inconsistent ultrafilter
wn , in symbols A wn

wn B, iff i wn wn |Av wn Bv wn wn .
Definition 6.5.15.We let Awn

wn denote the wn-equivalence class of A and define the
wn-bounded wn-ultrapower by

VwnSincwn /wn wn Awn
wn |A is a wn-bounded VwnSinc-sequence . 6.5. 17

There is a natural proper wn-embedding

iwn : VwnSinc  VwnSincwn /wn , 6.5. 18

n   namely let iwnA wn Awn , the wn-equivalence class corresponding to the
constant wn-sequence Awn  Awn

.

Definition 6.5.16.we define the wn-membership relation wn in the wn-ultrapower by

Awn
wn wn Bwn

wn iff v wn wn |Av w0 Bv wn wn . 6.5. 19

VI.5.3.The embedding VwSincw /w into Vw#wSinc,etc.

VI.5.3.1.Сlassical embedding VScon/con into VScon
Let us consider now the classical embedding VScon/ into VScon.Remind that

Scon   is the bounded ultrapower VScon/.
Remark.6.5.6.Note that in classical case the bounded ultrapower VScon/ alwais

will
not be the same as the full superstructure VScon  
Remind the construction of canonical embedding

j : VScon/  VScon 6.5. 20

such that: (i) j is the identity on Scon   and (ii) if A  Scon then

jA  jB|B  A. 6.5. 21



This means that the relation  in the ultrapower is mapped into the ordinary
membership
relation in VScon.The embedding j is constructed in stages. Let

VkScon/  A|A is a sequence from VkScon 6.5. 22

Then the bounded ultrapower is the union of the chain
  

Scon  V1Scon/ . . .VkScon/ . . . 6.5. 23

and we can define j by induction. For k  1, the embedding j must be the identity. If
A  Vk1Scon/ and A 

Scon we simply set jA  jB|B  A

This
makes sense: if B  Ait follows from (6.5.7 ) that v  |Bv  VkScon  , i.e.,
B  VkScon/,which means that jB is defined at a previous stage of the

inductive
construction.Combining i and j we get a model of the extended nonstandard univers

VScon/ VScon

i





VScon

6.5. 24

where #wA w jwiwA, for any A w VwScon.Here VwScon   and Vw#wSinc are
connected by a classical transfer principle.
Theorem 6.5.1.(TRANSFER PRINCIPLE) Let A1, . . . ,An  VScon.Any VScon

statement  that is true of A1, . . . ,An in VScon is true of A1, . . . , An in VScon .
Proof.In the ultrapower model there are three structures involved,VScon,VScon/
and VScon.Given any VScon formula X,Y (see Remark.6.5.7),we have

explained
how to interpret it in the three structures.Notice that Lo s theorem, 1.1.3, immediately
extends to the bounded ultrapower VScon/ by exactly the same proof;
i.e., for any A,B  VScon/ we have

i A,B iff   |A,B  ,

from which transfer follows between VScon and VScon/ exactly as in 1.1.4.
But Principle 1.2.4 asserts transfer between VScon and VScon. And in order to

prove
this we need to replace the equivalence (i) by

ii jA, jB iff   |A,B  .

But this is a rather immediate extension which follows from the fact that every element
of,
say, jA in VScon is of the form jA

  for some A
  VScon/;see the

construction of the j-map above.And once we have (1 1) the Transfer Principle 1.2.4
follows by the same argument as in 1.1.4.

Remark.6.5.7.The structure Scon   has an associated elementary language Scon,
which we used to give the necessary precision to the transfer principle. We need a
similar formal tool to state the extended transfer principle.The language VScon will



be an extension of the language Scon  Scon  .

VI.5.3.2.The w-embedding VwSincw /w into Vw#wSinc
Let #wSinc be the (w-bounded) w-ultrapower VwSincw/w.
Remark.6.5.8.Note that in contrast with a classical case VwSincw/w not alwais will

not
be the same as the full w-superstructure Vw#wSinc.
We shall now construct an w-embedding

jw : VwSincw/w  Vw#wSinc 6.5. 25

such that: (i) jw is the w-identity on #wSinc and (ii) if Aw
w w

w #wSinc, then

jwAw
w  w jwBw

w |Bw
w w Aw

w
w
. 6.5. 26

This means that the relation w in the w-ultrapower is mapped into the ordinary
w-membership relation in Vw#wSinc.The w-embedding jw is constructed in stages. Let

Vk
wSincw/w w Aw

w | A is a w-sequence from Vk
wSinc

w
. 6.5. 27

Then the bounded w-ultrapower is the w-union of the w-chain
#wSinc w V1

wSincw/w w . . .w Vk
wSincw/w w . . . , 6.5. 28

and we can define jw by induction. For k  1, jw must be the w-identity. If
Aw

w w Vk1
w Sincw/w and Aw

w w
w #wSinc we simply set

jwAw
w  w jwBw

w |Bw
w w Aw

w
w
This makes sense: if Bw

w w Aw
w it follows from

(6.5.12 ) that v w w|Bv w Vk
wSinc

w
w w, i.e.,Bw

w w Vk
wSincw/w,which

means that jwBw
w  is defined at a previous stage of the inductive construction.

Combining iw and jw we get a model of the extended w-inconsistent nonstandard
universe

VwSincw/w Vw#wSinc

iw


#w

w


VwSinc

6.5. 29

where #wA w jwiwA, for any A w VwSinc.Here VwSinc   and Vw#wSinc are
connected by w-inconsistent transfer principle.

VI.5.3.3.The embedding Vw0Sincw0 /w0 into Vw0#w0Sinc
Let #w0Sinc be the (w0-bounded) w0-ultrapower Vw0Sincw0 /w0 .
Remark.6.5.9.Note that in contrast with a classical case Vw0Sincw0 /w0 not alwais

will
not be the same as the full w0-superstructure Vw0#w0Sinc.
We shall now construct an w0-embedding

jw0 : Vw0Sincw0 /w0  Vw0#w0Sinc 6.5. 30

such that: (i) jw0 is the w0-identity on #w0Sinc and (ii) if Aw0
w0 w0

w #w0Sinc, then



jw0Aw0
w0  w0 jw0Bw0

w0 |Bw0
w0 w0 Aw0

w0

w0
. 6.5. 31

This means that the relation w0 in the w0-ultrapower is mapped into the ordinary
w0-membership relation in Vw0#w0Sinc.The w0-embedding jw0 is constructed in stages.
Let

Vk
w0Sincw0 /w0 w0 Aw0

w0 | A is a w0-sequence from Vk
w0Sinc

w0
. 6.5. 32

Then the bounded w0-ultrapower is the w0-union of the w0-chain
#w0Sinc w0 V1

w0Sincw0 /w0 w0 . . .w0 Vk
w0Sincw0 /w0 w0 . . . , 6.5. 33

and we can define jw0 by induction. For k  1, jw0 must be the w0-identity. If
Aw0

w0 w0 Vk1
w0 Sincw0 /w0 and Aw0

w0 w0
w #w0Sinc we simply set

jwAw0
w0  w0 jwBw0

w0 |Bw0
w0 w Aw0

w0

w
This makes sense: if Bw0

w0 w0 Aw0
w0 it

follows from (6.5.16) that v w0 w0 |Bv w0 Vk
w0Sinc

w0
w0 

w0 , i.e.,

Bw0
w0 w0 Vk

w0Sincw0 /w0 , which means that jw0Bw0
w0  is defined at a previous stage of

the inductive construction.
Combining iw0 and jw0 we get a model of the extended w0-consistent nonstandard

universe

Vw0Sincw0 /w0 Vw0#w0Sinc

iw0


#w0

w0



Vw0Sinc

6.5. 34

where #w0A w0 jw0iw0A, for any A w0 V
w0Sinc.Here Vw0Sinc and Vw0#w0Sinc are

connected by w0-consistent transfer principle.

VI.5.3.4.The embedding VwnSincwn /wn into Vwn#wnSinc.
Let #wnSinc be the (wn-bounded) wn-ultrapower VwnSincwn /wn .
Remark.6.5.10.Note that in contrast with a classical case VwnSincwn /wn not alwais

will
not be the same as the full wn-superstructure Vwn#wnSinc.
We shall now construct an wn-embedding

jwn : VwnSincwn /wn  Vwn#wnSinc 6.5. 35

such that: (i) jwn is the wn-identity on #wnSinc and (ii) if Awn
wn wn

w #wnSinc, then

jwnAwn
wn  wn jwnBwn

wn |Bwn
wn wn Awn

wn

wn
. 6.5. 36

This means that the relation wn in the wn-ultrapower is mapped into the ordinary
wn-membership relation in Vwn#wnSinc.The wn-embedding jwn is constructed in stages.
Let

Vk
wnSincwn /wn wn Awn

wn | A is a wn-sequence from Vk
wnSinc

wn
. 6.5. 37

Then the bounded wn-ultrapower is the wn-union of the wn-chain
#wnSinc wn V1

wnSincwn /wn w . . .w Vk
wnSincwn /wn wn . . . , 6.5. 38

and we can define jwn by induction. For k  1, jwn must be the wn-identity. If
Awn

wn w0 Vk1
w0 Sincw0 /w0 and Awn

wn w0
w #w0Sinc we simply set

jwAw0
w0  w0 jwBwn

wn |Bwn
wn w Awn

wn

w
This makes sense: if Bwn

wn w Awn
wn it



follows from (6.5.19) that v wn wn |Bv w0 Vk
wnSinc

wn
wn wn , i.e.,

Bwn
wn w Vk

wnSincwn /wn , which means that jwnBwn
wn  is defined at a previous stage of

the inductive construction.
Combining iwn and jwn we get a model of the extended w0-consistent nonstandard

universe

VwnSincwn /wn Vwn#wnSinc

iwn


#wn

w0



VwnSinc

6.5. 

where #wnA wn jwniwnA, for any A wn V
wnSinc.Here VwnSinc and Vwn#wnSinc are

connected by wn-inconsistent transfer principle.

VI.6.The Paralogical Transfer Principle

VI.6.1.The restricted inconsistent language
The structure Sinc  w has an associated elementary language Sinc  w, which

we used to give the necessary precision to the transfer principle. We need a similar
formal tool to state the extended transfer principle.The language VwSinc will be an

extension of the language Sinc  Sinc  w. We add to our stock of elementary

formulas [see (i)-(vi) in Section 1.11 expressions of the form

X s Y,X w Y,X w0 Y,X wn Y, . . . 6.6. 1

and

X s Y,X w Y,X w0 Y,X wn Y, . . . 6.6. 2

We keep the logical symbols of Sinc,but in addition to the number quantifiers we add

bounded set quantifiers

XX s Y,XX w Y,XX w0 Y,XX wn Y, . . .

XX s Y,XX w Y,XX w0 Y,XX wn Y, . . .
6.6. 3

Formulas  of VwSinc are then constructed in exactly the same way as formulas of

Sinc. A formula  of of VwSinc can be interpreted in a natural way in any of the

structures VwSinc, VwSincw/w, and Vw#wSinc; note that in VwSinc and Vw#wSinc

we have the standard interpretation of the w symbol, in VwSincw/w we use w as
introduced in (6.5.8) to interpret w-membership. Given any formula X1, . . . ,Xn with
X1, . . . ,Xn as the only free set parameters, and given sets A1, . . . ,An w VwSinc,we mean
by A1, . . . ,An the statement about VwSinc obtained by giving the variables X1, . . . ,Xn

the values A1, . . . ,An, respectively. In a similar way we interpret #wA1, . . . , #wAn as a
condition about Vw#wSinc obtained by giving each Xk the value #wAk w jwiwAk.
Theorem 6.6.1.(TRANSFER PRINCIPLE) (i) Let A1, . . . ,An w VwSinc.Any

VwSinc

statement  that is true of A1, . . . ,An in VwSinc is true of #wA1, . . . , #wAn in Vw#wSinc .

(ii) Let A1, . . . ,An w0 V
w0Sinc.Any Vw0Sinc statement  that is true of A1, . . . ,An in

Vw0Sinc is true of #w0A1, . . . , #w0An in Vw0#w0Sinc.

(iii) Let A1, . . . ,An wn V
wnSinc.Any VwnSinc statement  that is true of A1, . . . ,An in



VwnSinc is true of #wnA1, . . . , #wnAn in Vwn#wnSinc.

Remark 6.6.1.Let A  
 then A  V2.The canonical embedding

 : V

 V

maps V2 to a set V2  V.Will A belong to this set: V2 ? It well known
that
is not necessarily except if A  B for some B  V2, i.e. then A  V2.
We thus want to prove that

A A  
B  A  

  A  
V2 . 6.6. 4

As it stands, (6.6.4) is not an V formula. However, it is equivalent to

A A  
B r  A r  

  A  
V2 . 6.6. 5

This is genuine VwSinc; i.e., we have only bounded set quantifiers.Now (6.6.5) is

a condition B, , V2, which by transfer is true in V iff the corresponding
B,,V2 is true in V. But the latter condition is trivially true. Thus we have
shown that if a subset of  is an element of some B in V, then it is already an
element of the -image of V2.
Remind the following definition.
Definition 6.6.1.Let A  V, then
(i) A is called -standard if A  B for some B  V,
(ii) A is called -internal if A  B for some B  V, and
(iii) A is called -external if A is not -internal.
Remark6.6.2.It well known that every -standard set is -internal and that every

element
of an -internal set is -internal.
Definition 6.6.2.Let A w Vw#ww, then:
(i) A is called w-standard if A w

#wB for some B w Vww,
(ii) A is called w-internal if A w

#wB for some B w Vww, and
(iii) A is called w-external if A is not w-internal.
Definition 6.6.3.Let A w Vw#ww, then:
(i) A is called weakly w-standard or w1-standard if A w1

#wB for some B w Vww,

(ii) A is called weakly w-internal or w1-internal if A w1
#wB for some B w Vww,

and
(iii) A is called w1-external if A is not w1-internal.

Definition 6.6.4.Let A w0 V
w0

#w0w0 , then:

(i) A is called w0-standard if A w0

#w0B for some B w0 V
w0 w0 ,

(ii) A is called w0-internal if A w0

#w0B for some B w0 V
w0 w0 , and

(iii) A is called w0-external if A is not w0-internal.

Definition 6.6.5.Let A w0 V
w0

#w0w0 , then:

(i) A is called weakly w0-standard or w0
w -standard if

A w0

#w0B  A w0
w #w0B for some B w0 V

w0 w0 ,

(ii) A is called weakly w0-internal or w0
w -internal if

A w0

#w0B  A w0
w #w0B for some B w0 V

w0 w0 , and

(iii) A is called w0
w -external if A is not w0

w -internal.



Definition 6.6.6.Let A wn V
wn

#wnwn ,n  1,2, . . . , then:

(i) A is called weakly wn-standard or wn
w -standard if

A wn

#w0

B  A wn
w

#w0

B for some B wn V
wnwn ,

(ii) A is called wn-internal if A wn

#w0B for some B wn V
wnwn , and

(iii) A is called wn-external if A is not wn-internal.
Definition 6.6.7.Assume now that for any A w Vw#ww:
(i) A is w1-standard or (ii) A is w1-internal,
then superstructure Vw#ww is called purely w1-internal and we abbreviate

V1-Int
w #ww.

Definition 6.6.8.Assume now that for any A w0 V
w0

#w0w :

(i) A is w0
w -standard or (ii) A is w0

w -internal,

then superstructure Vw0
#w0w0 is called purely w0

w -internal

and we abbreviate Vw0
w -Int

w0 #w0w0 .

Definition 6.6.9.Assume now that for any A wn V
wn

#wnwn :

(i) A is wn
w -standard or (ii) A is wn

w -internal,

then superstructure Vwn
#wnwn is called purely wn

w -internal

and we abbreviate Vwn
w -Int

wn #wnwn .

Remark.6.6.3.We remind now the details of the description the
-internal sets in the consistent model. Let A be -internal; thus A  Vk1 for some
k  1. This means that A will be of the form A  jA, for some A.By the
By the construction of j, one then gets

A  
Vk1 iff jA  jiVk1,

iff A  iVk1,

where i is the embedding of V into the ultrapower. The definition of  then
gives

A  
Vk1 iff v  |Av  Vk1  ,

where Av v is the bounded sequence defining A. Thus the -internal sets are
precisely the objects we obtain by starting with an arbitrary bounded sequence

Avand

the standard objects are obtained by starting from a constant sequence Av.

Remark.6.6.4.Because of their importance we will describe in detail the
w-internal sets in the models. Let A be w-internal; thus A w

#wVk1
w Sw

inc
w  w for

some k  1. This means that A will be of the form A w jwAw
w , for some Aw

w .By the
construction of jw, we then get

A w
#wVk1

w Sw
inc

w  w iff jwAw
w  w jw iw Vk1

w Sw
inc

w  w ,

iff Aw
w w iw Vk1

w Sw
inc

w  w ,

where iw is the w-embedding of Vww into the w-ultrapower. The definition of w

then
gives



A w
#wVk1

w Sw
inc

w  w iff v w w| w w,

where Av vw  is the bounded w-sequence defining A. Thus the w-internal sets are

precisely the objects we obtain by starting with an arbitrary bounded sequence Avw 

and the standard objects are obtained by starting from a constant sequence Avw .

Remark.6.6.5.
Remind the following Theorem.
Theorem 6.6.2.(i) Every nonempty -internal subset of  has a least element.
(ii) Every nonempty -internal subset of  with an upper bound has a -least upper
bound.
Proof.We prove (i), so let A   be internal. Then A  V; see (6.6.5). We can
express the fact that an internal subset of  has a least element by the condition

 

X X  
V2 X    X  

  X has a  -least element ,
6.6. 6

where the condition: X has a -least element, in detail is

xx  Xyy  X  y  x. 6.6. 7

Finally we have a condition

  X X  
V2

X    X  
  xx  Xyy  X  y  x .

6.6. 8

We thus have a condition ,V2 such that ,V2 is true in V. By
-transfer condition , V2 is true in V proving (i).
Remark.6.6.6.It follows from Theorem 6.6.2(i) that:
(1) \ is -external since there is no -least element in \ : if x  \ then also
x  1  \.
(2) We also see that  is external; thus   V2\V2
(3) From Theorem 6.6.2(ii) it follows that  as a subset of  is -external.
(4) Note that Theorem 6.6.2 is valid only for -internal sets; the positive infinitesimals

in
 is bounded but has no least upper bound.
Theorem 6.6.3.(i) If A is -internal and   A, then A contains some infinite natural
number, i.e., an element of \.
(ii) If A is internal and every infinite n  

 belongs to A, then A contains some
standard
n  .
(iii) If an internal set A contains every positive infinitesimal, then A contains some

positive
standard real r  .
(iv) If an internal set A contains every standard positive real, then A contains some
positive infinitesimal.

Remark 6.6.7.Let A w
#ww then A w V2

w#ww.The canonical embedding

#w : Vww
#w
 V#ww maps V2

ww to a set #wV2
ww w Vw#ww.Will A w-belong to

this set: #wV2
ww ? That is not necessarily except if A  #wB for some B w V2

ww, i.e.



then A  #wV2.We thus want to prove that

A A w
#wB  A w

#ww s A w
#wV2

ww . 6.6. 9

As it stands, (6.6.4) is not an Vww formula. However, it is equivalent to

A A w
#wB r w A r w

#ww  A w
#wV2w . 6.6. 10

This is genuine Vww; i.e., we have only bounded set quantifiers.Now (6.6.5) is a
condition #wB, #w, #wV2

ww, which by transfer is true in V#ww iff the corresponding
B,w,V2

ww is true in Vww. But the latter condition is trivially true. Thus we have
shown that if a subset of #ww is an element of some #wB in Vw#ww, then it is already
an element of the w-image of V2

ww.

The following Theorem very similar to Theorem 6.6.2.
Theorem 6.6.4.(i) Every nonempty w-internal subset of #ww has a w -least element.
(ii) Every nonempty w-internal subset of #ww with an w -upper bound has a w -least
upper bound.
Proof.We prove (i), so let A w

#ww be w-internal. Then A  #wVww; see (6.6.5).
We
can express the fact that an internal subset of #ww has a least element by the

condition

 

X X w
#wV2w 

X w w
w  X w

#ww s X has a w -least w-element ,

6.6. 11

where the condition: X has a w -least w-element, in detail is

xx w Xyy w X s wy w x. 6.6. 12

Finally we have a condition

  X X w
#wV2

ww 

X w   X w
#ww s xx w Xyy w X s wy w x .

6.6. 13

We thus have a condition w,V2w such that w,V2
ww is true in Vww. By

#w-transfer condition #ww, #wV2
ww is true in Vw#ww proving (i).



VII. Set theory HST
# .

VII.1.Axiomatical system HST
# ,as inconsistent

generalization of Hrbacek set theory HST.

In this chapter we introduces HST
# , inconsistent generalization of Hrbacek set theory

HST and describes the basic structure of the HST
# set universe. Syntactically, HST

# is
a theory in the sts-s -stw-w -language, which contains: (1) a binary consistent predicate
of strong or consistent membership s and consistent unary predicate of strong or
consistent standardness sts (and strong or consistent equality s of course) as the
consistent primary notions and (2) a binary inconsistent predicate of weak or
inconsistent membership w and inconsistent unary predicate of weak or inconsistent
standardness stw (and weak or inconsistent equality w of course) as the inconsistent
primary notions. Formula x w y reads: x weakly belongs to y, or x is an weak element of
y, with the usual set theoretic understanding of inconsistent membership. The formula
stwx reads: x is a weakly standard, its meaning will be explained below. A
sts-s -stw-w -formula is a formula of the sts-s -stw-w -language. An w -formula is a
formula of the w -language having w as the only atomic predicate. Thus an
w -formula is a stw-w -formula in which the standardness predicate does not occur.
w -formulas are also called weak internal formulas, in opposition to weak external
formulas, i.e., those stw-w -formulas containing stw.

VII.2. The universe of HST
#

Inconsistent set theory HST
# deals with eight major types of sets: (i) strongly external

or s-external,(ii) strongly internal or s-internal, (iii) strongly standard or s-standard, (iv)
strongly well-founded or s-well-founded,(v) weakly external or w-external,(vi) weakly
internal or w-internal, (vii) weakly well-founded or w-well-founded.
First of all, strongly standard sets are those consistent sets x which satisfy stsx and

weakly standard sets are those inconsistent sets x which satisfy stwx.Strongly internal
sets are those consistent sets y which satisfy intsy, where intsy is the formula
stsxy s x  xstsx  y s x (saying: y strongly belongs to a strongly standard set),
weakly internal sets are those inconsistent sets y which satisfy intwy, where intwy is the
formula stwxy w x (saying: y weakly belongs to a weakly standard set). Thus,
i Ss  x : stsxs is the class of all consistent standard sets,
ii Is  y : intsys  y : stsxy s xs is the class of all consistent internal sets,
iii Sw  x : stwxw is the class of all inconsistent standard sets,
iv Iw  y : intwyw  y : stwxy w xw is the class of all inconsistent internal sets,
v S#  Ss s Sw  x : stsxs s x : stwxw is the class of all consistent and

inconsistent standard sets,
vi I#  Is s Iw  y : intsys s y : intwyw is the class of all consistent and

inconsistent internal sets.
The class Is is the source of some typical objects of consistent "nonstandard”

mathematics like consistent hyperintegers and consistent hyperreals, the class Iw is the
source of some typical objects of inconsistent "nonstandard” mathematics like



inconsistent hyperintegers and inconsistent hyperreals [],

Blanket agreement 1.1. Thus, internal sets are precisely all sets which are elements
of consistent or inconsistent standard sets. This understanding of the notion of internality
and the associated notions like I#,sts ,stw,st#  sts  stw,sts ,st#  sts  stw is
default throughout this paper. All exceptions (e.g., when IST

# is considered) will be
explicitly indicated.
External sets consistent and inconsistent, are simply all sets in the nonstandard

universe of HST
# . We shall use H

# to denote the class of all consistent and inconsistent
external sets. Thus, H

# is the "universe of discourse", the universe of all sets considered
by the theory, including the classWF

# of all well-founded sets. WF
# will satisfy all

axioms of ZFC
# . The class S# of all standard sets {determined by the predicate st, as

above) will be shown to be s -w -isomorphic toWF
# . In a sense, S# is an "isomorphic

expansion" of WF
# into H

# . Given that S# is not transitive, I# arises naturally as the class
of all elements of sets in S#. It is viewed as an elementary extension of S# {in s -w -
language), and thereby also of WF

# . Finally, H
# is a comprehensive universe in which

all these classes coexist in a reasonable common set theoretic structure, with
s -w having the natural meaning in all mentioned universes.

VI.3. The axioms of the external inconsistent universe.

This group includes the ZFC
# Extensionality, Pair, Union, Infinity axioms and the

schemata of Separation and Collection (therefore also Replacement, which is a
consequence of Collection, as usual) for all sts-s stw-w -formulas or for all st#-# -
formulas for short.

VI.4. Axioms for standard and internal sets

Notation 4.1. (1).Let quantifiers sts ,sts ,stw and stw be shortcuts meaning: there
exists a
strongly standard..., for all strongly standard,there exists a weakly standard..., for all
weakly standard, ..., formally:
(i) stsxx means xstsx  x, (ii) stsxx means xstsx  x,
(iii) stwxx means xstwx  x, (iv) stwxx means xstwx  x.
Quantifiers  int and int (meaning there exists an internal ... , for all internal ...) are

introduced similarly. If g, is an E-formula then g,st, the relativization of g to S, is the for-
mula obtained by restriction of all quantifiers in g to the class S, so that all occurrences



of 3 x ... are changed to 3stx ... while all occurrences of V x ... are changed to ystx .... In
other words, g,st says that g is true in S. Rela-tivization g,int, which displays the truth of
an e-formula g in the universe 0, is defined similarly: the quantifiers 3, V change to 3int,
yint. The following axioms specify the behaviour of standard and internal sets.
Notation 4.2.For all sts-s stw-w -formulas or for all st#-# - formulas for short.
ZFC

st# : The collection of all formulas of the form g,st, where g is an e- statement
which is an axiom of ZFC

# . In other words, it is postulated that the universe S# is a ZFC
#

universe. (Note that the ZFC
# axioms are assumed to be formulated as certain closed

# - formulas in this definition.) This is enough to prove the following statement:
Lemma 4.1. (1) Ss  Is, (2) Sw  Iw.
Proof.(1) See [18] Lemma 1.1.3.
(2) Let x w Sw. The formula yx w y is a theorem of ZFC

# , therefore yx w ystw

that is the formula stwyx w y,is true. In other words, x is an element of a standard set,
which means x w Iw.
1.Strong or Consistent Transfer (s-Transfer): ints  sts , where  is an arbitrary
closed s -formula containing only consistent standard sets as parameters.
To be more exact, Consistent Transfer is the collection of all statements of the form
stsx1. . .stsxnintsx1, . . . ,xn  stsx1, . . . ,xn
2.Strong Consistent Transitivity of Is : intsxyy s x  intsy.
3.Consistent Regularity over Is : For any non empty consistent set X there exists
x s X such that x s X s Is. (The full Regularity of ZFC requires x s X  s.)
4.Consistent Standardization: XstwyX s Ss  s Ss). (Such consistent standard

set
Y, unique by Consistent Transfer and Consistent Extensionality, is sometimes

denoted by SsX. )
5.Weak Transfer (w-Transfer): intw  stw, where  is an arbitrary closed
s -w -formula containing only consistent and inconsistent standard sets as
parameters.
To be more exact, Weak Transfer is the collection of all statements of the form
stsx1. . .stsxnstwy1. . .stwymintsx1, . . . ,xn;y1, . . . ,ym  stwx1, . . . ,xn;y1, . . . ,ym
6.Weak Transitivity of Iw : intsxyy w x  intwy.
7.Weak Regularity over Iw : For any non empty consistent set X there exists x w X
such that x w X w Iw. (The full Regularity of ZFC requires x w X  w.)
8.Strictly Weak Regularity (Strictly w-Regularity): For any non empty inconsistent
set X there exists x w X such that x w X w w  x w X w w.
9.Weak Standardization (w-Standardization): XstwYX w Sw w Y w Sw.
9.Weak Standardization: XstwyX w Sw  w Sw). (Such consistent standard set Y,

unique by Consistent Transfer and Consistent Extensionality, is sometimes denoted by
SwX. )
Such inconsistent standard set Y, w-unique by w-Transfer and weak Extensionality,
is sometimes denoted by SwX.
Remark 4.1. (i) w-Transfer can be considered as saying that: Iw, the universe of all

inconsistent internal sets, is an elementary extension of Sw in the s -w -language. It fo
llows, by ZFC

# stw, that the class Iw of all inconsistent internal sets satifies ZFC
# (in the

s -w -language ), in fact, we can replace ZFC
# stw by ZFC

#  intw, with relativization to
Iw, in the list of HST

# axioms. See also Theorem 1.3.9 below.



(ii) w-Transitivity of Iw postulates that: inconsistent internal sets to form the basement
of the s -w -structure of the universe H

# . This axiom is very important since it implies
that some set operations in Iw retain their sense in the whole universe H

# .
(iii) w-Regularity over Iw organizes the HST

# set universe H
# in general case as a sort

of hierarchy over the internal universe Iw, in the same way as the w-Regularity axiom
organizes the universe in the von Neumann w-hierarchy over the w-empty set w in
ZFC

# .
(iv) Strictly w-Regularity organizes the HST

# set universe H
# in the von Neumann

w-hierarchy over the w-empty set w,but in a strictly inconsistent sense only.
(v) w-Standardization postulates that H

# does not contain collections of standard sets
other than those of the form S w Sw for inconsistent standard set S.
Remark 4.2. It well known that the ZFC Regularity fails in H  Hs : the set of all

nonstandard Is-natural numbers does not contain an s -minimal element, (see for
example [18], Exercise 1.2. 15(3)). In contrast with a classical case, ZFC

# w-Regularity
valid in H

# , but in a strictly inconsistent sense only. For example the set of all
nonstandard Iw-natural contain an inconsistent w -minimal element, see [22]-[23].

VII.5. Well-founded inconsistent sets.
Now we can introduce the last principal class: well-founded inconsistent sets. Recall

the following notions from general inconsistent set theory.
Definition 5.1. (i) A binary weak relation w on inconsistent set or inconsistent class X

is a strictly well-founded if any nonempty set Y w X contains consistent w -minimal
w-element x w Y, that is there exists x w Y such that no y w Y satisfies y w x.
(ii) A binary weak relation w on inconsistent set or inconsistent class X is weakly well-

founded (or w-well-founded) if:
(1) w is not a strictly well-founded and
(2) any nonempty set Y w X contains a w -minimal w-element x w Y, that is there

exists y w Y satisfies: y w x  x w y, i.e. y w x  y w x.
(iii) Inconsistent set or inconsistent class X is w-transitive if any x w X satisfies

x w X, i.e., weak elements of weak elements of X are weak elements of X.
(iv) Inconsistent set or inconsistent class X is w-complete if we have y w X whenever
y w x w X, that is a weak subsets of weak elements of X are weak elements of X.
(v) Inconsistent set x is a strictly well-founded if there is a w-transitive set X such that

x w X and the restriction w  X is a strictly well-founded weak relation.
(vi) Inconsistent set x is w-well-founded if there is a w-transitive set X such that x w X

and the restriction w  X is a w-well-founded weak relation.
Remark 5.1. It is known that all sets are well-founded in ZFC by the Regularity axiom.
This is not the case in HST : the set  of all Is-natural numbers is ill-founded [18].

Remark 5.2. In contrast with a classical case, all inconsistent sets are w-well-founded
in HST

# by the Strictly w-Regularity axiom. For example, the set #   inc of all
Iw-natural numbers is w-well-founded by the Strictly Weak Regularity axiom.
Definition 5.2.(HST

# ). (i) Let s-wfwx mean that x is a strictly well-founded. We put
s-WFw w x : s-wfwxw, the class of all strictly well-founded inconsistent sets and
(ii) let w-wfwx mean that x is a w-well-founded. We put w-WFw w x : w-wfwxw, the
class of all w-well-founded inconsistent sets.



Notation 5.1.We introduce quantifiers s-wfw,s-wfw,w-wfw and w-wfw (meaning: there is
a well-founded ... , for any well-founded ... ) and the relativization (1) s-wfw to s-WFw, (2)
w-wfw to w-WFw similarly to sts ,sts ,sts ,stw,stw,stw in §VII.1.3. In other words, s-wfw

says that gj is true in WIF. The main property of the classes s-WFw and w-WFw in HST
#

is that it admits a definable w -isomorphism w #w onto the class S of all standard
sets.

PART III.

I.Introduction

I.1.Carleson’s theorem and generalizations in dimention
N  1.
L.Carleson’s celebrated theorem of 1965 [25] asserts the pointwise convergence of

the
partial Fourier sums of square integrable functions. The Fourier transform has a
formulation on each of the Euclidean groups , and Τ.Carleson’s original proof

worked
on Τ.bFefferman’s proof translates very easily to  . Máté [26] extended Carleson’s

proof
to .Each of the statements of the theorem can be stated in terms of a maximal

Fourier
multiplier theorem [27]. Inequalities for such operators can be transferred between

these
three Euclidean groups, and was done P. Auscher and M.J. Carro [28]. But Carleson’s
original proof and another proofs very long and very complicated. We give a very short

and
very “simple” proof of this fact. Our proof uses PNSA technique only, developed in part

I,
and does not uses complicated technical formations unavoidable by the using of

purely
standard approach to the present problems. In contradiction to Carleson’s method,

which
is based on profound properties of trigonometric series, the proposed approach is

quite
general and allows to research a wide class of analogous problems for the general
orthogonal series. Let us suppose that there are general orthogonal series in space

2
  d,d  1,2. . .




n0


cnfnx,cnn0

n  l2, fn  2,n  .




f ix  f jxd Nx  ij.
1.1. 1

We shall say that a sequence fnn0
n or series (1.1.1) admit LC-property if series

(1.1.1)
converges a.e. It is well known that a general orthogonal series does not admit
LC-property [29-30].
Definition 1.1.1. We shall say that for orthogonal series (1.1.1) LC-property holds iff
series (1.1.1) converges a.e. on a set .
A problem corresponding to LC-property is still open for many orthogonal series,
as example for the series by Jakoby’s polynomial. In the present work we shall obtain

a
general sufficient condition guaranteeing the LC-property for series (1.1).
Definition 1.1.2. We shall say that orthogonal series (1.1.1) in a space L2 is a

strongly paraorthogonal series, iff the following condition is satisfies

#w 
#w

#wf ix 
#wf jx d Nx w #wij,

i, j w
#w,

#wf ix w
#wL2#w, i w

#w.

1.1. 2

Here

#wij w 1w  i w j; #wij w 0w  i w j

and
#wij w 1w  i w j; #ij w 0w  i w j.

1.1. 3

I.2.Carleson’s theorem and generalizations in dimentions
N  2.
Carleson’s results are trivially transferred on N -harmonic Fourier series, for the case

of convergence by cubes, but in the case of arbitral convergence Carleson methods
does not works and,in general,the problem for N -harmonic Fourier series is still open.
Particularly,this problem is open for the case of the spherical sum EMfx,x  N :



EMfx  2N 
n2M

fn  expinx

n  N

n  i1
N ni2 .

1.2. 1

In 1971 R. Cooke proved Cantor-Lebesque theorem in two dimentions [30]: if

k
lim 

|n |2k

cn expinx  0 1.2. 2

a.e. on Τ2, then

k
lim 

|n |2k

|cn |2  0. 1.2. 3

I.3.The uniqueness problem of the trigonometric expansion
in dimention N  1.Cantor-Lebesque theorem in
dimention N  1.

The uniqueness problem of the trigonometric expansion in dimention N  1 can be
stated as follows. Suppose the series

a0

2


n1



an cosnx  bn sinnx 1.3. 1. 

converges to zero for every x  ,, does it follow that an  bn  0 for all n ? The
answer is not obvious, but was found to be affirmative by Cantor in 1870.

Theorem 1.3.1. (Cantor’s uniqueness theorem). If the series (2.3.1)
converges everywhere to zero, then an  bn  0 for all n  .

Let us briefly discuss the proof of Theorem 1.3.1. The first who systematically studied
everywhere convergent trigonometric series was Riemann, in his habilitation thesis
(1854). He had the idea to introduce the function

Fx  a0

4
x2 

n1


an cosnx  bn sinnx

n2

1.3. 2

obtained by formally integrating an everywhere convergent series (1.3.1) twice. Riemann
assumed that the coefficients an, bn are bounded, in which case the series (1.3.2)
converges uniformly and hence Fx is a continuous function on  (note that Fx is not
periodic if a0  0). He then proved that the Schwartz second derivative

D2Fx 
Fx  h  2Fx  Fx  h

h2
1.3. 3



exists, and is equal to (1.3.1).Cantor proved that the coefficients an,bn are tending to
zero (and in particular, they are bounded). If we now assume that
(1.3.1) converges everywhere to zero, then D2Fx  0. It is then possible to
prove that Fx is linear,which quite easily implies that an  bn  0. For more
details see [6,chapt.I].
Let us consider the uniqueness problem for a trigonometric expansion which
converges almost everywhere. That is, suppose a function fx admits a
trigonometric expansion such that (1.3.1) holds for almost every x. Is the
expansion unique? Equivalently, suppose that (1.3.1) converges to zero for
almost every x,does it follow that an  bn  0 for all n?
Lebesgue developed his theory of measure and integration in the years 1902-1906. In

the following years it became common to consider sets of
measure zero “negligible”.
Theorem 2.3.2.(Cantor-Lebesgue).If an cosnx  bn sinnx  0 for all x

in some set E of one-dimensional positive measure, then
an,bn  0.

Proof. By Egorov’s theorem we may assume that unx  an cosnx  bn sinnx
tends to 0 uniformly on some set E of positive measure. Consider the
equations unx  an cosnx  bn sinnx and uny  an cosny  bn sinny as a linear
system with unknowns an,bn.The determinant of this system is sinny  x.
Since E has positive measure, the set Ĕ  y  x|x,y  E contains some
interval , (see [41], Lemma 3.37, p. 46), therefore for any sufficiently
large n there exist x,y  E such that y  x  

2n . For such x,y we have

sinny  x  1, hence the above system determines an,bn uniquely,
an  unx sinny  uny sinnx;bn  unycosnx  unxcosny.Therefore

|an|, |bn| 
n
lim 2

xE

sup |unx|  0, and so Theorem 2.3.2 is proved.

Theorem 2.3.3.(Menshov).There exists a non-zero series (2.3.1) which
converges to zero for almost every x.

Lemma (Menshov).There exists continuous function Fx such that:
(1) Fx  const on 0,2;
(2) Fx  c for all x in some set P of Lebesgue measure zero;
(3) the equality

n
lim  Fcosn  xd  0 2.3. 4

is satisfied uniformly on 0,2.

Proof. (a) We define a set P in the following way.From the interval 0,2



we remove a central open interval such that there remain two closed
intervals of equal length .From each of these two intervals we remove
again a central interval such that there remain 4 closed intervals of length
2
3 . Continuing this process, on the k-th step there remain 2k closed

intervals of length 2
k1

.

(b) Supose that i, 1  i  2k  1 is any one of the intervals which was deleted
from the interval 0,2 in the k-th step of the above procedure.

I.4.The uniqueness problem of the trigonometric expansion
in dimentions N  1.Cantor-Lebesque theorem in

dimentions N  2.
Let N  0,1N  N be the N dimensional torus.Let fnxn be a real or complex

valued system of functions that are in

L2 N  fx| f : N  ; 
TN

fx
2
dNx   .

1.4. 1

The inner products ,  : L2 N  L2 N   in L2 N is

fn, fm    fnx, fmxdNx
1.4. 2

where the bar denotes complex conjugate.If satisfy

fn, fm   0 if n  m,

fn, fm   1 if n  m,

n,m  

1.4. 3

we call the system fnxn orthonormal (ON).Given an ON system and

a function fx on N it is often possible to represent f x  L2 N as an
infite linear combination of the elements of the system.
Definition 1.4.1.If the linear combination,n anfnx be everywhere

pointwise convergent to the value f x, i.e.

x  N : fx 
n
lim n anfnx, 1.4. 4

3.2.2.If the linear combination,n anfnx be o.e. pointwise convergent to the value

f x, i.e.



x  N\E

E  0 :

fx 
n
lim n anfnx,

1.4. 5

In 1971 R.Cooke proved Cantor-Lebesque theorem in two dimentions [31]:

Chapter II.Analysis on #w1w1 .

II.1.Paraordered fields.

II.1.1.Designations
Remind that n stands for n1  n10,where 0    w, 1  n  .
Designations 2.1.1.In this section we will be write for short x w

n
y instead

x w yn,n  1,2, . . . ;and we will write for short x wn y instead x w yn,n  1,2, . . .

Remark 2.1.1. Thus we will be write

x w1 y

instead

x w y  wx w y

2.1. 1

etc. and we will be write

x w
1

y

instead

x w y  wx w y

2.1. 2

etc. and we will be write

x w
1

y

instead

x w
1

y  x w1 y.

2.1. 3



Remark 2.0.2. In this section, we will be distinguish:
(1) the relations:
(i) strong (consistent) equality denoted by  s ,
(ii) weak equality denoted by  w ,
(iii) weak (inconsistent) equalities denoted by
 w1 , . . . ,  wn , . . . ,n  1,2, . . .

(2) (i) strong (consistent) inequality denoted by  s ,
(ii) weak inequality denoted by  w ,
(iii) weak (inconsistent) inequalities denoted by
 w1 , . . . ,  wn , . . . ,n  1,2, . . . .

(iv) weak (inconsistent) inequalities denoted by
 w1 , . . . ,  wn , . . . ,n  1,2, . . . .

Designations 2.1.2. (I) We will be write for short:
(i)  s

s  instead s s ,
(ii)  s

w  instead w s ,
(iii)  w

s  instead s w ,
(iv)  w

w  instead w w ,
(II) We will be write for short:

(i) x w0 y instead x s y  x w y  wx w
1

y ,

(ii) x w1 y instead x s y  x w y  x w1 y  wx w
2

y ,

(iii) x wn y instead x s y  x w y . . .x wn y  wx w
n1

y ,

n  1,2,
(iv) x w y instead x s y  x w0 y 0n

x wn y,

Remark 2.1.3.(i) Note that in general case sx w y  y w x, i.e. in general case

x w y s sy w x. 2.1. 4

We often will be write for short: x w
s y instead sx w y.

(ii) For any x and y such that sx w y  y w x we will be write for short:

x w
s y 2.1. 5

instead x w y, i.e.we will be write x w
s y iff

sx w y s y w x. 2.1. 6

We often will be write for short: x w
s y instead sx w

s y.
(iii) Note that in general case wx w y  y w x, i.e. in general case the statement
wx w y does not imply provability of the statement y w x and therefore in general
case

wx w y s y w x. 2.1. 7

We often will be write for short: x w
w y instead wx w y

(iv) For any x and y such that wx w y  y w x we will be write for short:

x w
w y 2.1. 8

instead x w y, i.e.we will be write x w
w y iff

wx w y s y w x. 2.1. 9

We often will be write for short: x w
w y instead wx w

w y.



(v) x w y  wx w y s wsy w x  wy w x or x w
1

y s w x w
1

y

in general case, i.e.
Designations 2.1.3. (I) We will be write for short:
(ii) x w1 y instead x w y  x w1 y etc.

Designations 2.1.4. We will be write for short:

(i) x w0 y instead x s y  x w y  wx w
1

y ,

(ii) x w1 y instead x s y  x w y  x w1 y  wx w
2

y ,

(iii) x wn y instead x s y  x w y . . .x wn y  wx w
n1

y ,

n  1,2, .
Designations 2.1.5. We will be write for short:
(i) x w0 y instead x s y  x w y  sx w

1
y,

(ii) x w1 y instead x s y  x w y  x w1 y  sx w
2

y,

(iii) x wn y instead x s y  x w y . . .x wn y  sx w
n1

y, n  1,2, .

Designations 2.1.6. We will be write for short:
(i) x w0 y instead x s y  x w y  sx w

1
y,

(ii) x w1 y instead x s y  x w y  x w1 y  sx w
2

y,

(iii) x wn y instead x s y  x w y . . .x wn y  sx w
n1

y, n  1,2, .

Designations 2.1.7. We will be write for short:
(i) x w0 y instead x s y  x w y  sx w

1
y,

(ii) x w1 y instead x s y  x w y  x w1 y  sx w
2

y,

(iii) x wn y instead x s y  x w y . . .x wn y  sx w
n1

y, n  1,2, .

Remark 2.1.4.(i) Note that in general case sx w0 y  y w0 x, i.e. in general

case

x w0 y s sy w0 x. 2.0. 10

We often will be write for short: x w0
s y instead sx w0 y.

(ii) For any x and y such that sx w0 y  y w0 x we will be write for short:

x w0
s y 2.0. 11

instead x w0 y, i.e.we will be write x w0
s y iff

sx w0 y s y w0 x. 2.0. 12

We often will be write for short: x w0
s y instead s x w0

s y .

(iii) Note that in general case wx w0 y  y w0 x, i.e. in general case the

statement
wx w0 y does not imply provability of the statement y w0 x and therefore in

general case

wx w0 y s y w0 x. 2.1. 13

We often will be write for short: x w0
w y instead wx w0 y

(iv) For any x and y such that wx w0 y  y w0 x we will be write for short:

x w0
w y 2.1. 14



instead x w0 y, i.e.we will be write x w0
w y iff

wx w y s y w x. 2.1. 15

We often will be write for short: x w0
w y instead w x w0

w y .

Remark 2.0.5.(i) Note that in general case sx w0 y  y w0 x, i.e. in general

case

x w0 y s sy w0 x. 2.0. 10

We often will be write for short: x w0
s y instead sx w0 y.

(ii) For any x and y such that sx w0 y  y w0 x we will be write for short:

x w0
s y 2.1. 11

Proposition 2.1.1. (i) x w0 y or y w0 x but not x w0 y and y w0 x

simultaneously,
(ii) x w1 y or y w1 x but not x w1 y and y w1 x simultaneously,

(iii) x wn y or y wn x but not x wn y and y wn x simultaneously,n  1,2, .

Proof.Immetiately from definitions.

II.1.2.Basics about paraordered fields.
In this section we will define the notion of paraordered field, which is simply a field in

the algebraic sens together with a total order which has a compatible behavior with the
operations of the field.
Definition 2.1.1.A w-consistent field (w-field) is a w-set w (w-set w) together with
two binary operations w (addition), w (product) which satisfy the following axioms:
1

w (i) x,yx,y w w s x w y w w, (ii) x,yx,y w w s x w y w w.
2

w (i) x,y, zx,y, z w w s x w y w z w x w y w z,
(ii) x,y, zx,y, z w w s x w y w z w x w y w z.

3
w (i) x,yx,y w w s x w y w y w x,
(ii) x,yx,y w w s x w y w y w x.

4
w There exists a w-unique w-element 0w w w such that
x w wx w 0w  w x.

5
w There exists a w-unique w-element 1w w w such that
x w wx w 1w  w x.

6
w xx w wyy w wx w y w 0w .

7
w x,y, zx,y, z w w s x w y w z w x w z w y w z.

Definition 2.1.2 (w-ordered w-field). An w-ordered w-field is a w-field w such that a
binary
predicate w is defined on the set w-w, such that w- satisfies the following axioms :
1

w x,y w w one and only one of the following holds :
(i) x w y, (ii) x w y, (iii) x w

w y, (iv) x w
w y, (v) y w x, (vi) y w

w x.
2

w (i) x w y s sy w x, (ii) x w y w y w x, (iii) x w y s y w x
3

w x,y, zx,y, z w wx w y  sy w z s x w z.
4

w x,y, zx,y, z w wx w y s x w z w y w z.
5

w x,y, zx,y, z w wx w y  0w w z s x w z w y w z.



Designation 2.1.1.A w-field w,w ,w  which is an w-ordered w-field for w will be
noted w,w ,w ,w .
Definition 2.1.2.We say that an element x w w is a w-positive element if xw  0w.

We
denote w

 the set of all w-positive elements.
Remark 2.1.1.

Definition 2.1.3.The following function ||w : w  w
 w 0ww is called w-absolute

value
and can always be defined on any w-ordered w-field.

|x|w w
w-maxw x,x s x w

s 0w  x w
w 0w

0w s x w 0w

2.1. 12

Proposition 2.1.1.

Definition 2.1.1.A w-field is an w1-inconsistent set order one w (w-set w) together
with
two binary operations w (addition), w (product) which satisfy the following axioms:
(1

w) (i) x,yx,y w
s w s x w y w

s w, (ii) x,yx,y w
s w s x w y w

s w

(iii) x,yx,y w1 w s x w y w1 w, (iv) x,yx,y w w1 s x w y w1 w

( w is closed at least in paraconsistent sense order one under addition and product)
(2

w) (i) x,y, zx,y, z w w s x w y w z w1 x w y w z,

(ii) x,y, zx,y, z w w s x w y w z w1 x w y w z,

(the binary operations are associative in paraconsistent sense order one)
(3

w) (i) x,yx,y w w s x w y w1 y w x,

(3
w) (ii) x,yx,y w w s x w y w1 y w x

(the binary operations are commutative in paraconsistent sense order one)
(4

w) There exists a w-unique w-element 0w w w such that
(i) x w w

II.2.Limits continuity, and the derivative
Any consistent sequence ann is a map a :    and, as such, has an

paraconsistent extension to a map #wa : #w  #w. For any n  #w we write an#w  #wan
. We use ann #w or an

#wn #w to denote the extended paraconsistent w-sequence.

For any elements a,a  #w we shall write a w a to mean that the difference a w a



is infinitesimal at least in inconsistent sense.
PROPOSITION 2.2.1.(i) limn an  a iff a

#w w a for all   #w\.
(ii) limn an  a a#w w a for all   #w\.
Remark 2.2.1. (i) Here the left-hand side of the equivalence in statement (i) has its
standard meaning inside V. The right-hand side is a statement about the weacly
consistent extended universe V#w.
(ii) (i) Here the left-hand side of the implication in statement (ii) has its standard

meaning
inside V. The right-hand side is a statement about the paraconsistent extended
universe V#w.
Proof. (i) If llimn an  a , then given any   0 there is some n   such that the
following statement is true in V :

mm  m  n  |a  am |   2.1. 1

By w-transfer the statement

m m  #w m  n  a  am#w   2.1. 2

is true in V#w. If   #w\, then a  a#w   is true in V#w. Since

this is true for all standard   0, it means that the difference a
#w w a, is

w-infinitesimal, i.e., a
#w w a.

We present bellow two versions of the proof of the converse of the statement (i):
(ii)

Definition 2.2.1.Let xnn be a sequence xnn  .A w0-hypersequence

xnnw0 
#w0 that is a mapping #w0xnn  : #w0  #w0 .

Definition 2.2.2. Let xnn be a sequence xnn  .A w1-hypersequence

xnnw1 #w1 that is a mapping #w1 xnn  : #w1  #w1 .

Definition 2.2.3.A w0-hypersequence xnnw0 
#w0 is:

(i) w0-increasing (or non-w0-decreasing) if xn w0 xn1 for all n w0 
#w0 ;

(ii) w0-decreasing (or non-w0-increasing) if xn1 w0 xn for all n w0 
#w0 ;

(iii) strictly w0-increasing if xn w0 xn1 for all n w0 
#w0 ;

(iv) strictly w0-decreasing if xn1 w0 xn for all n w0 
#w0 .

Definition 2.2.4. A w1-hypersequence xnnw1 #w1 is:

(i) w1-increasing (or non-w1-decreasing) if xn w1 xn1 for all n w1 
#w1 ;

(ii) w1-decreasing (or non-w1-increasing) if xn1 w1 xn for all n w1 
#w1 ;

(iii) strictly w1-increasing if xn w1 xn1 for all n w1 
#w1 ;

(iv) strictly w1-decreasing if xn1 w1 xn for all n w1 
#w1 .

Definition 2.1.5. A w0-hypersequence is:
(i) w0-monotone if it is either w0-increasing or w0-decreasing;
(ii) strictly w0-monotone if it is either strictly w0-increasing or w0-strictly
w0-decreasing.
Definition 2.1.6.A w1-hypersequence is:



(i) w1-monotone if it is either w1-increasing or w1-decreasing;
(ii) strictly w1-monotone if it is either strictly w1-increasing or strictly

w1-decreasing.

Definition 2.1.7.We call x w0 
#w0 the w0-limit of the w0-hypersequence

xnnw0 
#w0 if the following condition holds:for each hyperreal number  w0 

#w0 ,

 w0  0w0 , there exists a hypernatural number N w0 
#w0 such that, for every

hypernatural number n w0  N, we have |xn w0 x|w0 w0 .The

w0-hypersequence xnnw0 
#w0 is said to w0-converge to or tend to the w0-limit

x,
written xn w0 x or

nw0

w0- lim xn w0 x.Symbolically, this is:

w0  0w0  

N N w0 
#w0 n n w0 

#w0 nw0  N s |xn w0 x|w0 w0  .
2.1. 3

Remark 2.1.2. For w0-hypersequences xnnw0 
#w0 w0 

#w0 it is also convenient

to define the notions xn w0 
#w0and xn w0 w0 

#w0 as n w0 
#w0 .

Definition 2.1.8.If xnnw0 
#w0 w0 

#w0 then xn w0 
#w0as n w0 

#w0

if for every positive hyperreal number M w0 
#w0 there exists an hyperinteger

N w0 
#w0 such that n w0  N s xn w0  M (xn w0 w0 M), we

sayxnnw0 
#w0

has w0-limit #w0 (w0 
#w0 ) and write w0-limn

#w0 xn w0 
#w0 (w0 

#w0 ).

Definition 2.1.9.We call x w1 
#w1 the w1-limit of the w1-hypersequence

xnnw1 
#w1 if the following condition holds:for each hyperreal number  w1 

#w1 ,

 w1  0w1 , there exists a hypernatural number N w1 
#w1 such that, for every

hypernatural number n w1  N, we have |xn w1 x|w1 w1 .The

w1-hypersequence xnnw1 
#w1 is said to w1-converge to or tend to the w1-limit

x,
written xn w1 x or

nw1

lim xn w1 x.Symbolically, this is:

w1  0w1  

N N w1 
#w1 n n w1 

#w1 nw1  N s |xn w1 x|w1 w1  .

Remark 2.1.3. For w1-hypersequences xnnw1 
#w1 w1 

#w1 it is also

convenient
to define the notions xn w1 

#w1and xn w1 w1 
#w1 as n w1 

#w1 .

Definition 2.1.10. If xnnw1 
#w1 w1 

#w1 then xn w1 
#w1 #w1 as

n w1 
#w1 if for every positive hyperreal number M w1 

#w1 there exists an

hyperinteger N w1 
#w1 such that n w1  N s xn w1  M (xn w1 w1 M),

we sayxnnw1 
#w1has w0-limit #w1 (w1 

#w1 ) and write



w1-limn
#w1 xn w1 

#w1 (w1 
#w1 ).

Theorem 2.2.1. (i) Every w0-internal w0-hyperbounded w0-monotone

w0-hypersequence in #w0 has a w0-limit in #w0 .
(ii) Every w0-external w0-hyperbounded strictly w0-monotone w0-hypersequence

in #w0 has a w0-limit in #w0 .

Proof: Suppose xnnw0 
#w0 w0 

#w0and xnnw0 
#w0 is w0-increasing (if

xnnw0 
#w0 is w0-decreasing,the argument is analogous). Since the set

w0-
n

xnnw0 
#w0of w0-hyperreals is w0-hyperbounded above, it has a least

w0-hyperupper bound in #w0 , x, say. We claim that xn w0 x as n w0 
#w0 . In

order
to see this, note that xn w0 x for all n w0 #w0 ; but if  w0  0w0 then xk

w0  x w0  for some k, as otherwise x w0  would be an upper bound. Choose

such
k  k.Since xk w0

 x w0 , then xn w0
 x w0  for all nw0  k as the

sequence
is increasing.Hence x w0  w0 xn w0 x for all nw0  k.Thus x w0 xn w0

w0 

for nw0  k, and so xn w0 x since  w0  0w0 is arbitrary.

(ii) Let d

#w0be Dedekind completion of #w0 .Suppose xnnw0 
#w0 w0 

#w0and

xnnw0 
#w0 is strictly w0-increasing (if xnnw0 

#w0 is strictly w0-decreasing,the

argument is analogous). Since the set w0-
n

xnnw0 
#w0of w0-hyperreals is

w0-hyperbounded above, it has a least w0-hyperupper bound in d

#w0 , x, say.
Assume

that x  #a,a  #w0 ,where #a is image a in d

#w0 ,see [46].In this case argument is
the same as above.Assume now that x  #a,a a  #w0 , i.e. x is absorbtion number

in

d

#w0 .We claim that again xn w0 x as n w0 
#w0 . In order to see this, note that

xn w0 x for all n w0 #w0 ; but if  w0  0w0 then xk w0
 x w0  for some k, as

otherwise x w0  would be an upper bound. Choose such

Theorem 2.1.2.

Theorem 2.2.3.(Comparison Test)
(i) If 0w0 w0 xn w0 yn for all n w0  N w0 

#w0 ,and yn w0 0 as n w0 
#w0 ,

then xn w0 0 as n w0 
#w0 .

(ii) If xn w0 yn for all n w0  N w0 
#w0 ,xn w0 x as n w0 

#w0and yn w0 y

as
n w0 

#w0 , then x w0 y.

(iii) In particular, if xn w0 a for all n w0  N w0 
#w0and xn w0 x as

n w0 
#w0 , then x w0 a.



.

II.3.Cauchy w0-hypersequences and
w1-hypersequences.
II.3.1.Cauchy w0-hypersequences.
Defnition 2.3.1. A w0-metric space X;dw0 is a set X together with a distance

function dw0 : X w0 X  #w0such that for all x,y, z w0 X the following hold:

1.dw0x,y w0  0w0 ,dw0x,y w0 0w0 s x w0 y (positivity),

2. dw0x,y w0 dw0y,x (symmetry),

3. dw0x,y w0 dw0x, z w0 dw0z,y (triangle inequality).

We denote the corresponding metric space by X;dw0, to indicate that

a metric space is determined by both the set X and the metric dw0 .

Definition 2.3.2. Let xnw0
 xnnw0 

#w0 w0 X where X;dw0 is a w0-metric

space. Then xnw0
is a Cauchy w0-hypersequence if for every  w0  0w0 there

exists an hyperinteger N w0 #w0 such that

m,n w0
 N sdw0xm,xn w1  2.3. 1

We sometimes write this as dw0xm,xn w0 0w0as m,n w0 
#w0 .

.

II.3.2.Cauchy w1-hypersequences.
Defnition 2.3.1. A w1-metric space X;dw1 is a set X together with a distance

function dw1 : X w1 X  #w1such that for all x,y, z w1 X the following hold:

1.dw1x,y w1  0w1 ,dw1x,y w1 0w1 s x w1 y (w1-positivity),

2. dw1x,y w1 dw1y,x (w1-symmetry),

3. dw1x,y w1 dw1x, z w1 dw1z,y (triangle w1-inequality).

We denote the corresponding metric space by X;dw1, to indicate that

a metric space is determined by both the set X and the metric dw1 .

Definition 2.3.2. Let xnw1
 xnnw1 

#w1 w1 X where X;dw1 is a w1-metric

space. Then xnw1
is a Cauchy w0-hypersequence if for every  w0  0w0 there

exists
an hyperinteger N w0 #w0 such that

m,n w0
 N sdw0xm,xn w1  2.3. 1

We sometimes write this as dw0xm,xn w0 0w0as m,n w0 
#w0 .

.



II.4.w0-Limits and w1-Limits of Functions
.

II.4.1.w0-Limits of Functions
Definition 2.4.1.Let f : A  Y,A w0 X, where X;dw0 and Y is a w0-metric

spaces,
and let a be a w0-limit point of A. Suppose

xnw0
w0 A\w0aw0

 xn w0 a s fxn w0 b. 2.4. 1

Then we say f has w0-limit b at a and write

w0-
xnw0

a, xw0 A
lim fx w0 b 2.4. 2

or

w0- xnw0
a

lim fx w0 b, 2.4. 3

where in the last notation the intended domain A is understood from the context.
Definition 2.4.2.

.

II.4.2.w1-Limits of w1-Functions

II.5.w0-Continuity at a point
Definition 2.5.1.Let f : A  Y,A w0 X, where X;dw0 and Y is a w0-metric

spaces,
and let a w0 A. Then f is w0-continuous at a if a is an w0-isolated point of A, or if

a is a w0-limit point of A and

w0-
xnw0

a, xw0 A
lim fx w0 fa. 2.5. 1

Definition 2.5.2.If f is w0-continuous at every a w0 A then we say f is

w0-continuous.
The set of all such w0-continuous w0-functions is denoted by Cw0A,Y.

Example 2.5.1. Define

fx w0

x  w0- sinx
w0 1w0 if sx w0 0w0 

if x w0 0w0

2.5. 2

f is w0-continuous everywhere on #w0 .



.

II.6.Uniform w0-convergence of functions

II.6.1.Uniform w0-convergence of functions
Definition 2.6.1. Let f, fn : S  Y for every n w0 #w0 , where S is any set and

Y;dw0 is a w0-metric space. If fnx w0 fx for all x w0 S then fnx w0 fx

pointwise on S.

Definition 2.6.2. Let f, fn : S  Y for every n w0 #w0 , where S is any set and

Y;dw0 is a w0-metric space.If for every  w0  0w0 there exists N w0 #w0

such
that n w0  N s dw0fnx, fx w0  for all x w0 S then we say fnx w0 fx

uniformly on S and write fnx w0 fx.

.

II.6.2.Uniform w1-convergence of functions

II.7.Uniform w0-convergence and w0-continuity

.

II.8.The w0-derivative of w0-internal function of one
variable
Definition 2.8.1.For each w0-function f : #w0  #w0 , we define its w0-derived

function f w0 : #w0  #w0by setting, for every point p w0 
#w0

f w0 p 
xw0

p

w0 - lim
fx w0 fp

x w0 p
2.8. 1

if this w0-limit exists.If the w0-limit in (2.8.2) exists, we call it the w0-derivative of f
at p. If, in addition, this w0-limit is w0-finite or w0-hyper finite, we say that f is

w0-differentiable at p. If this holds for each p w0 B w0 #w0 , we say that f has a

w0-derivative (respectively, is w0-differentiable) on B, and we call the function f w0

the
w0-derivative of f on B. If the limit in (2.8.2) is one sided (with x w0 p or x w0 p),

we call it a one-sided (left or right) w0-derivative at p, denoted f
w0or f

w0 .

Definition 2.8.2.Given any w0-internal function f int  f #w0 : #w0  #w0 ,where f :
  ,we define its n-th w0-derived function (or w0-derived function of order

n w0 
#w0 ),denoted f

nw0 : #w0  #w0 , by transfer:

f int
0w0 w0 f

#w0 , f int
1w0 w0 f 1

#w0 ., . . . , f int
nw0 w0 f n

#w0 . 2.8. 2

Definition 2.8.3.We say that f int has n w0-derivatives at a point p iff the w0-limits



II.9.The w0-integral.

II.9.1.The w0-Internal w0-integral.
In this section we deal with w0-internal function f int  f #w0 where f :   ,defined on

a w0-finite interval a,b #w0 . A w0-hyper finite internal partition of a,b #w0 is a
w0-hyper finite set of w0-subintervals

x0w0
,x1w0

#w0 , x1w0
,x2w0

#w0 , . . . , xNw0 1w0
,xN

#w0 , 2.9. 1

where N w0 
#w0 and where xnnw0 0w0

N is an w0-internal w0-sequence such that

a w0 x0w0
w0 x1w0

w0 x2w0
w0 . . .w0 xN w0 b 2.9. 2

Thus, any w0-internal set of N w0 1w0 points satisfying (2.9.2) defines an

w0-internal partition Pw0N of a,b
#w0 , which we denote by

Pw0N w0 x0w0
,x1w0

, . . . ,xN
w0

. 2.9. 3

The points x0w0
,x1w0

, . . . ,xN are the partition points of Pw0  Pw0N. The largest of

the lengths of the w0-subintervals (3.1.1) is the norm of Pw0 , written as Pw0; thus,

Pw0 w0 1w0 iw0 N
max x i w0 x iw0 1w0

, 2.9. 4

where RHS of (2.9.4) is defined by w0-transfer.

If Pw0 and Pw0
 are partitions of a,b#w0 , then Pw0

 is a refinement of Pw0 if every

partition point of Pw0 is also a partition point of Pw0
 ; that is, if Pw0

 is obtained by

inserting additional points between those of Pw0 .

Definition 2.9.1.If w0-internal f is defined on a,b#w0 , then w0-internal w0-hyper
finite w0-sum

w0
N  w0-

jw0 1w0

N
fc j w0 x j w0 x jw0 1w0

, 2.9. 5

where x jw0 1w0
w0 c j w0 x j, 1w0 w0 j w0 N and where c jjw0 1w0

N is any

w0-internal w0-hyper finite sequence, is a Riemann w0-hyper finite w0-sum of f
over
the partition Pw0N. We will say more simply that w0

N is a Riemann w0-hyper finite

w0-sum of f over a,b#w0 .

II.9.2.The w1-External w1-integral.



In this section we deal with w0-internal function f int  f #w0 where f :   ,defined on

a w0-finite interval a,b #w0 . A w0-hyper finite internal partition of a,b #w0 is a
w0-hyper finite set of w0-subintervals

x0w0
,x1w0

#w0 , x1w0
,x2w0

#w0 , . . . , xNw0 1w0
,xN

#w0 , 2.9. 1

.

Chapter III.Analysis on #w1w1 .

II.8.Internal and external series in #wn of
wn-hyperreals.

II.8.1.Internal series in #w0 of w0-hyperreals.
Definition 2.8.1. We call w0-series in ₣#w0 (which means #w0or #w0 ) any pair

f #w0 ,g #w0  of w0-hypersequences, where f #w0 : #w0  ₣#w0 is w0-internal

mapping which defines the general terms of the w0-series, also noted xn #w0
f #w0 n

and
g : #w0  ₣#w0 represents the sequence of partial w0-internal w0-hyperfinite sums

sn, i.e.

sn #w0
w0-

i0

n

xn #w0
g #w0 n. 2.8. 1

Instead of f #w0 ,g #w0 , the w0-series in ₣#w0 is frequently marked as an
w0-hyperinfinite sum

w0- 
n0


#w0

xn 2.8. 2

Definition 2.8.2. We say that the w0-series f
#w0 ,g #w0  is w0-convergent to

s w0 
#w0 , respectively s is the sum of the w0-series, iff the w0-hypersequence

snnw0 
#w0 , of partial sums, w0-converges to s, and we note

w0- 
n0


#w0

xn w0 w0- limn
#w0 sn w0 s. 2.8. 3

Theorem 2.8.1.(The general Cauchy’s criterion). The w0-series (2.8.2) is

w0-convergent iff for any  w0  0w0 we can find n0 w0 #w0 such that

w0- 
nw0 1w0

nw0 p

xn w0  2.8. 4



holds for all n w0  n0 and arbitrary p w0 #w0 .

Proof.The assertion of the theorem reformulates in terms of  and n0 the fact that a
w0-series (2.8.2) is w0-convergent iff the hypersequence snnw0 

#w0 of partial

sums is w0-fundamental. This is valid in both #w0and #w0 .

Theorem 2.8.2. If w0-series (2.8.2) is convergent, then xn w0 0
#w

0 as

n w0 
#w0 .

Proof. Take p  1 in the (2.8.4) above.

Example 2.8.1.In order to get the complete answer about the w0-convergence of the

w0- hyperinfinite geometric series w0-
n0


#w0

zn we consider two cases:

(i) If |z|w0 w0 1
#w

0 , then zn w0 0
#w

0 , and consequently sn w0 s, where

sn w0 w0- 
iw0 0

#w
0

iw0 nw0 1
#w

0

zn w0

1 w0 z
n

1 w0 z
w0

1
1 w0 z

w0 s. 2.8. 5

(ii) If |z|w0 w0
 1

#w
0 , then the series is w0-divergent because the general term is

not

tending to zero 0
#w

0 (as the above Theorem 2.8.2 states).
Theorem 2.8.3. (The 1st criterion of comparison) Let

II.8.2.w1-Internal and w1-external series in 
#w1 of

w1-hyperreals.

II.9.wn-Internal and wn-External series of wn-functions

II.9.1.w0-Internal series of w0-functions
Definition 2.9.1. Let D w0 

#w0 be a fixed domain, and let

 D,#w0  #w0
D
be the set of all w0-functions f : D  #w0 .Any w0-function

F : #w0   D,#w0 is called w0-hypersequence of (w0-hyperreal) w0-functions.

Most frequently it is marked by mentioning the terms fnnw0 
#w0 or fn, where fn

w0 Fn, and n is an arbitrary w0-hypernatural number.

Definition 2.9.2.We say that a number x w0 D is a point of w0-convergence of fn

if the numerical sequence fnxnw0 
#w0 is w0-convergent. The set of all such points



forms the set (or domain) of w0-convergence, denoted w0-Dc. The resulting function,

say  : w0-Dc  #w0 , expressed at any x w0 Dc by

x w0 w0-
n

#w0

lim fnx 2.9. 1

is called w0-limit of the given w0-sequences of w0-functions. Alternatively we say
that  is the (point-wise) w0-limit of fn, fn p-tends to  and we abreviate


p
w0 w0-

n
#w0

lim fn. 2.9. 2

Remark 2.9.1. The notions of series of functions, partial sums, infinite sum, domain of
convergence, etc., are similarly defined in  D,#w0 .

Definition 2.9.3.A functional w0-series is a series

w0- 
n0


#w0

unx 2.9. 3

where each term of the series unx is a w0-function on an interval I.

We can also de ne pointwise w0-convergence for functional w0-series:

Definition 2.9.4.The functional w0-series (2.9.3) is pointwise w0-convergent for
each x w0 I if the w0-limit

w0- 
n0


#w0

unx w0 w0-
N

#w0

lim 
n0

N

unx 2.9. 4

exists for each x w0 I.

’

II.2.THE INTEGRAL.

Let f : I   be a positive continuous function, where I is some interval in . Let
a,b  I and let x be a positive real. The Riemann sum is defined as


a

b

fxx  
i0

n1
fx ix  fxnb  nx, 2. 2.1

where n is the largest integer such that a  nx and where

x0  a,x1  a  x, . . . ,xn, a  nx. 2. 2.2

Remark 2.2.1.Note that it may happen that nx  b  n  1x. [Since f is positive
and continuous we have formed the Riemann sum as the sum of the rectangles over
each subinterval with height equal to the value of fx at the left end of the base of the
rectangle.]The Riemann sum (2.2.1) for fixed a,b is a function of x. By extension and
transfer this function is also defined for positive w-infinitesimals d#wx. We get a
corresponding hyperfinite sum




a

b

fxd#wx, 2.2. 3

where the number n  #w\ in Eq.(2.2.1) is now an w-infinite number.
Remark 2.2.2.Note that the Riemann sum given by Eq.(2.2.3) is a finite w-hyperreal

number; thus it has a w-standard part.
Definition 2.2.1.Let a,b  I and let d#wx be a positive w-infinitesimal. The

definiteinte integral of f from a to b with respect to d#wx is the w-standard part of the
Riemann sum,


a

b

fxdx  w-st 
a

b

#w fxd#wx . 2.2. 4

Remark 2.2.3.Note that this definition depends upon the choice of infinitesimal dx. But
it can be immediately proved that if dx and du are two positive w-infinitesimals, then


a

b

fxdx  
a

b

fudu. 2.2. 5

Note that the x in fx and u in fu are dummy variables; the d#wx and the d#wu are
not.
Notation.2.2.1.

Remark 2.2.It may be convenient to let the internal space by the
#w-transform or by the #w-transform in general case of a classical standard measure
space. For instance,if ,, is the standard Lebesgue space on , our internal

starting
point could be the w-internal measure space #w, #w, #w and w-internal measure
space #w, #w, #w.Here #w and #w is finitely, hence finitely, hence hyperfinitely,
additive on the w-internal algebra #wand w-internal algebra #w correspondingly.Of
course -additivity is lost in the transition. However, it is restored
by passing to the associated Loeb space.By transfer we can write down integrals


A

#w fxd#wx

A w #w
2.2. 5

and


A

#wfxd#wx

A w
#w,

2.2. 5

which however must be handled with some care: no countable manipulations are
allowed.



Chapter III.

III.1.Riemann’s non differentiable function.
According to Weierstrass [32],in a talk to the Royal Academy of Sciences in Berlin on

18 July 1872, Riemann introduced the function:

x 
n1


sinn2x

n2 .
3.1. 1

in order to warn that continuous functions need not have a derivative.Not succeeding
in verifying that x is nowhere differentiable, Weierstrass proved this property instead
for the series

Wx 
n1



bn cosant, 0  b  1,0  a. 3.1. 2

This appeared first in print in Du-Bois-Reymond [33]. According to Butzer and Stark
[34], there are no other known sources which confirm Riemann’s role in the story.Hardy
[35,pp.322-323] proved that Riemann’s function x is not differentiable in any irrational
point x   and also x is not differentiable in a some class of rational point x  
.Gerver [36] succeeded in 1970 in showing that at every rational point r  p/q with p and
q both odd, x is differentiable, and has derivative equal to 1/2 at r. Furthermore he
showed that at all other rational points the function is not differentiable. Other,shorter
proofs were given by Smith [37], Quefelec [38], Mohr [39], Itatsu [40], Luther [41] and
Holschneider and Tchamitchian [42]. For previous reviews on Riemann’s function, see
Neuenschwander [43] and Segal [44]; the literature list of [34] contains many further
references abaut the
Riemann’s function x. In paper [45] Gerver introduced the function:

G3,x 
n1


expin3x

n
.

3.1. 3

For reals 2    4,in [45] directed analyze the behavior,near the points y 
p
q of

(3.1.3).considered as a function of x ,and expand this series into a constant term, a

term on the order of quantity z1x  x  p
q

1
3 , a term linear in z2x  x  p

q a

“chirp" term on the order of quantity z2x  x  p
q

21
4 , and an error term on the

order z2x  x  p
q


2 . At every such rational point, the left and right derivatives are

either both finite (and equal) or both infinite, in contrast with the quadratic series, where
the derivative is often finite on one side and infinite on the other. However, in the cubic
series, again in contrast with the quadratic case, the chirp term generally has a different
set of frequencies and amplitudes on the right and left sides. Finally, in [45] was shown
that almost every irrational point can be closely approximated, in a suitable Diophantine



sense, by rational points where the cubic series has an infinite derivative. This implies
that when

  97  1
4

 2.212. . . , 3.1. 4

both the real and imaginary parts of the cubic series are differentiable almost nowhere.
At the same time it is necessary to note that in spite of a big progress obtained in the
considered studies area, any general absence criterions of the finite almost everywhere
derivate for absolutely convergent trigonometrical series was not obtained. In [22]-[23],
using the methods of paralogical nonstandard analysis, was obtained the general
criterion of the absence almost everywhere finite derivative for the following continuous
function x;1n,2n :

x;1n,2n 
n1


expi  x  1n

2n
,

1 :   ,2 :   ,


n1


1

|2n|
 .

3.1. 5

It is shown in [22]-[23] that under condition


n1


1n
2n

2

 
3.1. 6

function x;1n,2n does not have a finite derivate on a quantity of a positive
measure. Particularly we shall reinforce the foregoing Gerver’s result by showing that
inequality (3.1.4) is possible to change by inequality   4, at least for a quantity of
points of a positive measure.

.

III.2.Non standard proof of the non-differentiability of the
Riemann function x.
Non-differentiable Riemann function x is defined by

x 
n1


sinn2x

n2 , 3.2. 1

see subsection III.1.
Theorem 3.2.1. x is not a.e. differentiable on 0,.
Proof. See Remark 3.2.1 etc.
Remark 3.2.1.Remind that there exist imbeding

j #w1
:   w1 

#w1 3.2. 2

and there exist imbeding



j #w1
:   w1 

#w1 3.2. 3

such that

j #w1
  w1

 #w1
 #w1

#w1 3.2. 4

and

j #w1
  w1

 #w1
 #w1

#w1 3.2. 5

correspondingly.
Notation.3.2.1.(i) We will use the following notation j #w

1
n  n #w1

,n   and

j #w1
x  #w

1
x #w

1
,x  , j #w1

x  y  #w
1

x #w
1

 #w
1

y #w
1

,

j #w1
  #w

1
 #w

1
, etc.

(ii) we often letter for short: simply n instead n#w1
,simply x instead x#w1

,

simply x  y instead x #w
1

 #w
1

y #w
1

, etc.

(iii) We will use the following notation f #w1 ,#w1 ,#w1
, . . . instead #w1 f, #w1 ,

#w1  , j #w1
T1 w

1
Tw

1

1 etc.

(iv) we let for short j #w1
sinn2x w

1
sin #w1

n#w1
2 x , where x  #w1

Tw
1

1 , etc.

Definition 3.2.1.We define now a w 1-function  #w1
: Tw

1

1  w1
Tw

1

1 :

 #w1
j #w1

x w
1

j #w1
x w

1

j #w1

n1


sinn2x

n2 w
1


nw

1
w

1
1w

1

w
1 sin #w1 n#w1

2 x

n#w1
2 ,

x  #w1
Tw

1

1

3.2. 6

Definition 3.2.2.We define now a w 1-function  #w1

 : T1#w1  w1
T1#w1 :

 #w1

 x w
1

w
1

Ext-w 1- 
n  w

1
1 w

1

M cn  #w
1

sin#w
1 n2  #w

1
x

n2 , 3.2. 7

where M w1 
#w1 \ w1  #w1

and

cn  w
1

1 #w
1

iff n  w
1
 #w1

0 w
1

iff n  w
1
#w1 \ w1  #w1

3.2. 8

Remark 3.2.3.Note that for any x  #w1
Tw

1

1 :

 #w1
x  #w1

 #w1

 x. 3.2. 9



Remark 3.2.4.We assume now that a Riemann function x is differentiable almost
everywhere in the sense of the Lebesgue measure d  d, i.e., a.e. the derivative

x
exists and finite,i.e., x such that a.e. x   and

a.e. : x  x  . 3.2. 10

Remark 3.2.4.Therefore (i) from Eq.(3.2.9) by w 1-transfer it follows that a

w 1-function  #w1

 x is #w
1
-differentiable #w

1
-almost everywhere on T1#w1 in the

sense of the w 1-transfered Lebesgue measure d#w1  d#w1. (ii) By

w 1-transfer

from (3.2.10) we obtain

w 1-a.e. :
d#w1

d#w1x
 #w1

 x  #w1
#w1 x, 3.2. 11

where

w 1-a.e. : 
#w1 x  #w1

#w1 3.2. 12

From Eqs.(3.2.7)-(3.2.8) by w 1-differentiation one obtains

d#w1

d#w1x
 #w1

 x w
1

w
1

d#w1

d#w1x
Ext-w 1- 

n  w
1

1 w
1

M cn  #w
1

sin#w
1 n2  #w

1
x

n2

w
1

Ext-w 1- 
n  w

1
1 w

1

M
d#w1

d#w1x

cn  #w
1

sin#w
1 n2  #w

1
x

n2

w
1

w
1

Ext-w 1- 
n  w

1
1 w

1

M

cn  #w
1

cos#w1 n2  #w
1

x .

3.2. 13

Thus finally we obtain

x w
1

d#w1

d#w1x
 #w1

 x w
1

w
1

Ext-w 1- 
n  w

1
1 w

1

M

cn #w1
 #w

1
cos#w1 n2  #w

1
x .

3.2. 14

Remark 3.2.5. Note that a w 1-function x is not w 1-a.e. w 1-finite on T1#w1 , i.e.

s w 1-a.e. : x  #w1
#w1 x w

1
T1#w1 3.2. 15

In order to proof (3.2.15) we calculate now the w 1-integral


,

w
1

x w
1
xd#w1x.



From Eq.(3.2.14) one obtains

x w
1
x w

1

w
1

Ext-w 1- 
n #w1

 w
1

1 w
1

M


m #w1

 w
1

1 w
1

M

cn #w1
 #w

1
cm #w1

w
1

w
1

cos#w1 n #w1

2  #w
1

x w
1

cos#w1 m #w1

2  #w
1

x .

3.2. 16

From Eq.(3.2.16) by w 1-integratiion one obtains


,

w
1

x w
1
xd#w1x w

1

w
1

Ext-w 1- 
n #w1

 w
1

1 w
1

M


m #w1

 w
1

1 w
1

M

cn  #w
1

cm w
1

w
1


0,

w
1

cos#w1 n2  #w
1

x w
1

cos#w1 m2  #w
1

x d#w1x.

3.2. 17

where by d#w1x we denote #w1- transfered standard Lebesgue measure dx on

0,.
Note that


,

w
1

cos#w1 n2  #w
1

x w
1

cos#w1 n2  #w
1

x d#w1x w
1

w
1

3.2. 18

and


,

w
1

cos#w1 n2  #w
1

x w
1

cos#w1 m2  #w
1

x d#w1x w
1

0w
1

3.2. 19

iff s n #w1
w

1
m #w1

.Then from Eq.(3.2.17) and Eqs.(3.2.18)-(3.2.19) one obtains


,

w
1

x w
1
xd#w1x w

1

w
1

w
1

Ext-w 1- 
n  w

1
1 w

1

M

cn w
1

w
1

w
1
,

3.2. 20

where

  w
1

Ext-w 1- 
n  w

1
1 w

1

M

cn 3.2. 21

and therefore


,

w
1

x w
1
xd#w1x w

1
w

1
w

1
. 3.2. 22



Remark 3.2.6. Note that obviously  w
1
#w1 \w1fin

#w1and therefore (3.2.15)

holds.
But (3.2.15) contradicts with (3.2.11). This contradiction finalized the proof.

III.3.Non standard proof of the non-differentiability of the
Generalized Riemann function x;1n,2n.
Theorem 3.3.1. Let x;1n,2n be the continuous function

x;1n,2n 
n1


expi  x  1n

2n
, 3.3. 1

where 1 :   , 1 :    and the following conditions holds:
(i) nm1n  1m  n  m,

(ii)
n1


1

|2n|
  and

(iii)


n1


1n
2n

2

 . 3.3. 2

Then a function x;1n,2n does not have a finite derivative on a set
  , of
a positive Lebesgue measure   0.
Proof. Similarly to proof of the Theorem 3.3.1.
Definition 3.3.1.We define now a w 1-function

 #w1
x;1n,2n : Tw

1

1  w1
Tw

1

1 :

 #w1
x;1n,2n w

1
j #w1

x;1n,2n w
1

j #w1

n1


sin1n  x

2n
w

1


nw

1
w

1
1w

1

w
1 sin #w1 1w

1
nw

1
w

1
x

2w
1

nw
1

,

1w
1

nw
1

w
1

j #w1
1n,

2w
1

nw
1

w
1

j #w1
2n.

3.3. 3

Definition 3.3.2.We define now a w 1-function  #w1

 : T1#w1  w1
T1#w1 :

 #w1

 x;1n,2n w
1

w
1

Ext-w 1- 
n  w

1
1 w

1

M cn  #w
1

sin#w
1 1

w
1 n w

1
x

2

w
1 n

,
3.3. 4

where M w1 
#w1 \ w1  #w1

and



cn  w
1

1 #w
1

iff n  w
1
 #w1

0 w
1

iff n  w
1
#w1 \ w1  #w1

3.3. 5

Remark 3.3.1.Note that for any x  #w1
Tw

1

1 :

 #w1
x;1n,2n  #w1

 #w1

 x;1n,2n. 3.3. 6

Remark 3.3.2.We assume now that a Generalized Riemann function
x;1n,2n is
differentiable almost everywhere in the sense of the Lebesgue measure d  d, i.e.,
a.e. on T1 the derivative x;1n,2n exists and finite,i.e., x such that a.e.
x   and

a.e. : x;1n,2n  x  . 3.3. 7

Remark 3.3.3.Therefore (i) from Eq.(3.3.6) by w 1-transfer it follows that a

w 1-function  #w1

 x;1n,2n is #w
1
-differentiable #w

1
-almost everywhere on

T1#w1 in the sense of the w 1-transfered Lebesgue measure d#w1  d#w1. (ii) By

w 1-transfer from (3.3.7) we obtain

w 1-a.e. :
d#w1

d#w1x
 #w1

 x;1n,2n  #w1
#w1 x, 3.3. 8

where

w 1-a.e. : 
#w1 x  #w1

#w1 3.3. 9

From Eqs.(3.3.4)-(3.3.5) by w 1-differentiation one obtains

d#w1

d#w1x
 #w1

 x;1n,2n w
1

w
1

d#w1

d#w1x
Ext-w 1- 

n  w
1

1 w
1

M cn  #w
1

sin#w
1 1

w
1 n w

1
x

2

#w
1 n

w
1

Ext-w 1- 
n  w

1
1 w

1

M
d#w1

d#w1x

cn  #w
1

sin#w
1 1

w
1 n w

1
x

2

#w
1 n

w
1

w
1

Ext-w 1- 
n  w

1
1 w

1

M

cn  #w
1

1

w
1 n

2

#w
1 n

 #w
1

 #w
1

cos#w1 1

w
1 n w

1
x .

3.3. 10

Thus finally we obtain



x;1n,2n w
1

d#w1

d#w1x
 #w1

 x;1n,2n w
1

w
1

Ext-w 1- 
n  w

1
1 w

1

M

cn  #w
1

1

w
1 n

2

#w
1 n

 #w
1

 #w
1

cos#w1 1

w
1 n w

1
x .

3.3. 11

Remark 3.3.4. Note that a w 1-function x;1n,2n is not w 1-a.e. w 1-finite on

T1#w1 , i.e.

s w 1-a.e. : x;1n,2n  #w1
#w1 x w

1
T1#w1 3.3. 12

In order to proof (3.2.12) we calculate now the w 1-integral


,

w
1

x;1n,2n w
1
x;1n,2n d#w1x. 3.3. 13

From Eq.(3.2.11) one obtains

x;1n,2n w
1
x;1n,2n w

1

w
1

Ext-w 1- 
n #w1

 w
1

1 w
1

M


m #w1

 w
1

1 w
1

M

cn  #w
1

cm w
1

w
1

1

w
1 n

2

#w
1 n

w
1

1

w
1 m

2

#w
1 m

w
1

w
1

cos#w1 1

w
1 n w

1
x w

1
cos#w1 1

w
1 m w

1
x .

3.2. 16

IV.1.Non standard proof of the Carleson’s theorem.
Let us consider Fourier series in space 2T1


n0


cn expinx, 4.1. 1

where T1  ,, such that


n0


|cn |2  . 4.1. 2

Remark 4.1.1.Note that in this section we will be consider more general trigonometric
series such that




k1


ck expixnkx, 4.1. 3

where T1  ,, nk   if k   and


k1


|ck |2  , 4.1. 4

or


k1


cnkx expixnkx, 4.1. 5

where T1  ,, nk   if k   and


k1


|cnkxk  |

2   4.1. 6

kxk  T1

(I) Now we go to prove that under the condition (4.1.6) the following statement holds:
for any sequence pk a.e. on Τ1

pk,k
lim 

k1

pk

cnkx expixnkx
2

 . 4.1. 7

(1) In contrary with (4.1.7) we assume now that : a.e. on Τ1


k1


cnkx expixnkx

2

 . 4.1. 8

Let x  Τ1be a real number and there exists a sequence nkxk such that

mq,q
lim 

k1

mq

cnkx expixnkx
2

 . 4.1. 9

Remark 4.1.2.Let x  Τ1be a real number. Note that a sequence nkxk mentioned
above in Eq.(4.1.7) in general case is not unique and there exists infinite set of the
sequences nk

l xk, l  1,2, . . .such that for any l  

mq,q
lim 

k1

mq

cnkl x expixnk
l x

2

 . 4.1. 10

Remark 4.1.3.Note that any sequence nk
l xk, l  1,2, . . . mentioned above in

Eq.(4.1.8) depend on number x  Τ1 and we will be denoted such sequences nk
l k

by
nk

l xk or by nkxk,mkxk,rkxk etc.

Remark 4.1.4.Note that from (4.1.7) it follows that : a.e. on Τ1

mq
lim 

k0

mq

cnkx expixnkx
2

 , 4.1. 11

where mq  ,q  .From (4.1.11) by #w1- transfer it follows that : #w1- a.e. on

Τ#w1
1  Τ1

#w1



#w1-Ext 
kw1 0w1

M

c
nk
#w1

x

#w1 exp ix #w1
nk
#w1 x

2

#w1

#w1-Ext 
k1w1 0w1

M

#w1-Ext 
k2w1 0w1

M

c
nk1

#w1
x

#w1 c
nk2

#w1
x

#w1 #w1

exp ix #w1
nk1
#w1 x #w1

exp ix #w1
nk2
#w1 x #w1

#w1
NMx,

4.1. 12

where M w1 
#w1 \w1 and

NMx w1 
#w1 \#w1

, 4.1. 13

where #w1-sequence

nk
#w1 x

k#w1


#w1
4.1. 14

is obtained by using #w1- transfer from the standard sequence nkxk, i.e.

nk
#w1 x

kw1 
#w1

w1 nkxk
#w1 . 4.1. 15

Remark 4.1.5. We introduce now w1-inconsistent hyperintegers nk
# corresponding to

trigonometric series (4.1.5) by the following way


xw1 Τ#

1

nk
# w1

w nk
#w1 x . 4.1. 16

Note that for any w1-inconsistent hyperintegers nk
# and mk

# the following property
holds

nk
# w1

mk
#  x nk

# w1

w nk
#w1 x  mk

# w1

w nk
#w1 x . 4.1. 17

Notation 4.1.1. We often abbreviate for short

nk,x
# #w1

w nk
#w1 x, 4.1. 18

where x w1 Τ#
1, instead (4.1.16).

Definition 4.1.1. For any w1-inconsistent hyperinteger nk
# we define a w1-set

Valnk
#

by

x nk
#w1 x w1 Valnk

#  nk,x
# #w1

w nk
#w1 x . 4.1. 19

Note that for any w1-inconsistent hyperintegers nk
# and mk

# the following property
holds

nk
# w1

mk
#  Valnk

# w1
Valmk

#. 4.1. 20

Definition 4.1.2.For any w1-inconsistent hyperintegers nk
# and mk

# we define now the
relation nk

# w1
mk

# :

nk
# w1

mk
#  Valnk

# w1
Valmk

#. 4.1. 21



Remark 4.1.6.(i) The vector w1-addition nk
# #w1

mk
# of w1-inconsistent

hyperintegers
nk

# and mk
# is defined by


xw1 Τ#

1

nk
# w1 mk

# w1

w nk
#w1 x w1 mk

#w1 x 4.1. 22

or

x w1 Τ#
1 nk,x

# w1 mk,x
# w1

w nk
#w1 x w1 mk

#w1 x 4.1. 23

(ii) The vector w1-multiplication on scalar  takes any scalar  #w1
#w1or

 w1 
#w1 and any w1-inconsistent hyperinteger nk

# and gives w1-inconsistent

hyperreal number or nonstandard complex number defined by


xw1 Τ#

1

 w1 nk
# #w1

w  w1 nk
#w1 x . 4.1. 24

or

xx w1 Τ#
1 nk,x

# w1 mk,x
# w1

w nk
#w1 x w1 mk

#w1 x 4.1. 25

(iv) Note that the following properties holds:
(a) w1-associativity of vector w1-addition:
nk

# w1 mk
# w1 kk

# w1 nk
# w1 mk

# w1 kk
#,

(b) w1-associativity of vector w1-multiplication:

nk
# #w1

mk
# w1

mk
# #w1

nk
# #w1

mk
# #w1

kk
# ,

(c) w1-commutativity of vector w1-addition:
nk

# w1 mk
# w1 mk

# w1 nk
#,

(d) w1-commutativity of vector w1-multiplication:
nk

# w1 mk
# w1 mk

# w1 nk
#,

(c) inverse elements of vector w1-addition: nk
# w1 w1 nk

# w1 0w1

(d) compatibility of vector w1-multiplication on scalars , w1
#w1 with

multiplication
in field #w1 :
 w1 nk

# w1  w1 mk
# w1  w1  w1 n w1 mk

#.

Definition 4.1.6. Let # be a w1-set of the all w1-inconsistent hyperintegers nk
#

with binary operations w1 ,w1 ,etc. defined above.The tuple #,w1 ,w1 is an

inconsistent #w1 -algebra and we will be denoted this algebra by #.
Remark 4.1.7. We introduce now w1-inconsistent complex nonstandard numbers ck

#

corresponding to trigonometric series (4.1.5) by the following way


xw1 Τ#

1

cnk#
# w1

w c
nk
#w1

x

#w1 . 4.1. 26

Notation 4.1.2. We often abbreviate for short ck
# instead notation cnk#

# , i.e.

ck
#  cnk#

# . 4.1. 27

Remark 4.1.8. Note that for any w1-inconsistent numbers ck1
# and ck2

# the following



property holds

ck1
# w1

ck2
#  x ck1

# w1

w nk1
#w1 x  ck2

# w1

w nk2
#w1 x . 4.1. 28

Notation 4.1.3. We often abbreviate for short

ck,x
# #w1

w ck
#w1 x, 4.1. 29

where x w1 Τ#
1, instead (4.1.28).

Definition 4.1.7. For any w1-inconsistent number ck
# we define a w1-set Valck

# by

x ck
#w1 x w1 Valck

#  ck,x
# #w1

w ck
#w1 x . 4.1. 30

Note that for any w1-inconsistent numbers ck1
# and ck2

# the following property holds

ck1
# w1

ck2
#  Valck1

#  w1
Valck2

# . 4.1. 31

Remark 4.1.9.(i) The vector w1-addition ck1
# #w1

ck2
# of w1-inconsistent numbers ck1

#

and ck2
# is defined by


xw1 Τ#

1

ck1
# #w1

ck2
# w1

w ck1
#w1 x #w1

ck2
#w1 x 4.1. 32

or

xx w1 Τ#
1 ck1,x

# #w1
ck2,x
# w1

w ck1
#w1 x #w1

ck2
#w1 x 4.1. 33

(ii) The mixed w1-addition ck1
# #w1

ck2
# of w1-inconsistent numbers ck1

# and ck2
# is

defined by


x,yw1 Τ#

1

ck1
# #w1

ck2
# w1

w ck1
#w1 x #w1

ck2
#w1 y 4.1. 34

or

xyx,y w1 Τ#
1 ck1

# #w1
ck2
# w1

w ck1
#w1 x #w1

ck2
#w1 y 4.1. 35

(iii) Note that the following properties holds:
(a) w1-associativity of vector w1-addition:

ck1
# #w1

ck2
# #w1

ck3
# #w1

ck1
# #w1

ck2
# #w1

ck3
# ,

(b) w1-associativity of vector w1-multiplication:

ck1
# #w1

ck2
# #w1

ck,3
# #w1

ck1
# #w1

ck2
# #w1

ck,3
# ,

(c) w1-commutativity of vector w1-addition:
ck1
# #w1

ck2
# #w1

ck2
# #w1

ck1
# ,

(d) w1-commutativity of vector w1-multiplication:
ck1
# #w1

ck2
# #w1

ck2
# #w1

ck1
# ,

(e) w1-associativity of mixed w1-addition:

ck1
# #w1

ck2
# #w1

ck3
# #w1

ck1
# #w1

ck2
# #w1

ck3
# ,

(f) w1-commutativity of mixed w1-addition:
ck1
# #w1

ck2
# #w1

ck1
# #w1

ck2
# .

Definition 4.1.3.Let zkxk be any sequence of functions zkxk such that
zk : Τ1  .Assume that a #w1-sequence



zk
#w1 x

k#w1


#w1
4.1. 36

is obtained by using #w1- transfer from the standard sequence zkxk, i.e.

zk
#w1 x

kw1 
#w1

w1 zkxk
#w1 . 4.1. 37

We introduce now w1-inconsistent nonstandard complex numbers zk
# corresponding

to
sequence (4.1.37) by the following way


xw1 Τ#

1

zk
# w1

w zk
#w1 x . 4.1. 38

Remark 4.1.8. Note that for any w1-inconsistent numbers ck1
# and ck2

# the following

property holds

zk1
# w1

zk2
#  x zk1

# w1

w zk1
#w1 x  zk2

# w1

w zk2
#w1 x . 4.1. 39

Notation 4.1.4. We often abbreviate for short

zk,x
# #w1

w zk
#w1 x, 4.1. 40

where x w1 Τ#
1, instead (4.1.38).

Definition 4.1.4. For any w1-inconsistent number zk
# we define a w1-set Valzk

# by

x zk
#w1 x w1 Valzk

#  zk,x
# #w1

w zk
#w1 x . 4.1. 41

Note that for any w1-inconsistent numbers zk1
# and zk2

# the following property holds

zk1
# w1

zk2
#  Valzk1

#  w1
Valzk2

# . 4.1. 42

Definition 4.1.5.(i) The vector w1-addition zk1
# #w1

zk2
# of w1-inconsistent numbers

zk1
#

and ck2
# is defined by


xw1 Τ#

1

zk1
# #w1

zk2
# w1

w zk1
#w1 x #w1

zk2
#w1 x 4.1. 43

or

xx w1 Τ#
1 zk1,x

# #w1
zk2,x
# w1

w zk1
#w1 x #w1

zk2
#w1 x 4.1. 44

(ii) The mixed w1-addition zk1
# #w1

zk2
# of w1-inconsistent numbers zk1

# and zk2
# is

defined by


x,yw1 Τ#

1

zk1
# #w1

zk2
# w1

w zk1
#w1 x #w1

zk2
#w1 y 4.1. 45

or

xyx,y w1 Τ#
1 zk1

# #w1
# zk2

# w1

w zk1
#w1 x #w1

zk2
#w1 y 4.1. 46

(iii) Note that the following properties holds:
(a) w1-associativity of vector w1-addition:



zk1
# #w1

zk2
# #w1

zk3
# #w1

zk1
# #w1

zk2
# #w1

zk3
# ,

(b) w1-associativity of vector w1-multiplication:

zk1
# w1

zk2
# w1

zk,3
# w1

zk1
# #w1

zk2
# w1

zk,3
# ,

(c) w1-commutativity of vector w1-addition:
zk1
# w1

zk2
# w1

zk2
# w1

zk1
# ,

(d) w1-commutativity of vector w1-multiplication:
zk1
# w1

zk2
# w1

zk2
# w1

zk1
# ,

(e) w1-associativity of mixed w1-addition:

zk1
# #w1

zk2
# #w1

zk3
# #w1

zk1
# #w1

zk2
# #w1

zk3
# ,

(f) w1-commutativity of mixed w1-addition:
zk1
# w1

zk2
# w1

zk1
# w1

zk2
# .

Definition 4.1.7.
Definition 4.1.8.of Let zk

#
kw1 

#w1 be a w1-sequence of w1-inconsistent

numbers
zk
#,k w1

#w1 ,m w1w1
#w1 .External vector w1-summation of the sequence

zk
#kw1 0w1

may be defined recursively by using external induction principle as

follows:
if m is any w1-hyperinteger, then the recursion schemata reads

#w1-Ext 
kw1 0w1

0w1

zk
# w1

z0w1

# ,

#w1-Ext 
kw1 0w1

m

zk
# w1

#w1-Ext 
kw1 0w1

mw1 1w1

zk
# w1

zm# .
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Propozition 4.1.1.

Definition 4.1.7.

Definition 4.1.8.

#w1- w1
-Ext 

kw1 0w1

M

ck,i
# 4.1. 

#w1  Ext 
kw1 0w1

M

ck,i
# 4.1. 

Definition 4.1.7.
Definition 4.1.8. We define now a function Expu,nk

# : Τ#
1 w1 

#  # by

expiu w1 nk
# w1

w expiu w1 nk,x
#  4.1. 



where u,x w1 Τ#
1,nk

# #w1
# and k w1

#w1 .

Remark 3.3.5. We introduce now a w1-function Mx by the following way

Mx #w1
#w1-Ext 

kw1 0w1

M

cnk#  exp ix #w1
nk

# . 3.3. 16

From Eq.(3.3.8) and Eq.(3.3.10) we obtain

x #w1
#w1-Int 

kw1 0w1

M

cnk# exp ix #w1
nk

# #w2
NMx. 3.3. 12

By #w1- integration From Eq.(3.3.11) we obtain

M #w1
#w1-Ext 

Τ#w1

1

M
2 xd#w1x #w1

#w1-Ext 
Τ#w1

1

#w1-Int 
kw1 0w1

M

cnk# exp ix #w1
nk

#

2

d#w1x #w1

#w1
#w1-Int 

kw0 0w0

M

cnk#
2
,

3.3. 13

where by d#w1x we denote #w1- transfered standard Lebesgue measure dx on

Τ1. From (3.3.2) by #w1- transfer it follows that M w1 
#w1 \

M #w1
#w1-Ext 

kw1 0w1

M

cnk#
2
w1 fin

#w1 , 3.3. 14

i.e. the quantity M alwais is #w1- finite i.e.

s M w1 
#w1 \w1fin

#w1 . 3.3. 15

From RHS of the Eq.(3.3.12) By #w1- integration we obtain

#w1-Ext 
Τ#w1

1

NM
2 xd#w1x #w2

#w2 
Τ#w1

1

#w1-Ext 
kw1 0w1

M

cnk# exp ix #w1
nk

#

2

d#w1x #w1

#w1
#w1-Ext 

kw1 0w1

M

cnk#
2
#w1

M

3.3. 16

But on other hand from Eq.(3.3.8) By #w1- integration we obtain




Τ#w1

1

#w1NMxd
#w1x #w1

#w1 
Τ#w1

1

#w1 #w1-Int 
kw0 0w

M

cnkx
#w1 exp ix #w1

nk
#w1 x d#w1x

w1 
#w1 \w1fin

#w1 .
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Obviously by (3.3.15),Eq.(3.3.16) and Eq.(3.3.17) one obtains a contradiction.

(II) Now we go to prove that: a.e. on Τ1


n
lim 

n0

n

cn expinx  . 3.3. 17

It follows from (I) that


k
lim 

nk0

nk

cnk expinkx 
k
lim 

nk0

nk

cnk expinkx  , 3.3. 18

where nk   iff k  .
We assume now that: a.e. on Τ1


n
lim 

n0

n

cn expinx. 3.3. 19

Let z  Τ1be a real number such that


n
lim 

n0

n

cn expinz. 3.3. 20

Notice that (3.3.20) meant that there exists countable sequence nkzk such that


k
lim 

nk0

nkz

cnkz expiznkz. 3.3. 21

Notice that (3.3.21) meant that there exists z  0 and N   such that


nkznk1z

nkznk2z

cnkz expiznkz  z, 3.3. 22

where nk2z  nk1z  N.

From (3.3.22) by #w1- transfer it follows that : #w1- a.e. on Τ#w1
1  Τ1

#w1

#w1-Ext 
nk1

#w1
x

nk2

#w1
x

c
nk
#w1

x

#w1 exp ix #w1
nk
#w1 x #w1

 #w1 x, 3.3. 23

where nk1
#w1 x w1 

#w1 \ and nk2
#w1 x w1 

#w1 \ and where a sequence

nk
#w1 x

k#w1


#w1

is obtained by using #w1- transfer from sequence nkxk, i.e.

nk
#w1 x

kw1 
#w1

#w1
nkxk

#w1 . 3.3. 24



Remark 3.3.5. We introduce now w1-inconsistent numbers by the following way


xw1 Τ#

1

nk
# #w1

nk
#w1 x . 3.3. 25

Remark 3.3.6. We introduce now a w1-function Mx by the following way

nk1
# ,nk2

# x #w1
#w1-Ext-

nk1
#

nk2
#

cnk#
#w1cnk# exp ix #w1

nk
# . 3.3. 26

From Eq.(3.3.23) and Eq.(3.3.25) we obtain

x #w1
#w1-Ext-

nk1
#

nk2
#

cnk# exp ix #w1
nk

# #w2
#w1 x. 3.3. 12

By #w1- integration From Eq.(3.3.26) we obtain

M #w1
#w1-Ext- 

Τ#w1

1

M
2 xd#w1x #w1


Τ#w1

1

#w1 #w1-Int 
kw1 0w1

M

cnk# exp ix #w1
nk

#

2

d#w1x #w1

#w1
#w1-Int 

kw0 0w0

M

cnk#
2
,

3.3. 13

where by d#w1x we denote #w1- transfered standard Lebesgue measure dx on

Τ1. From (3.3.2) by #w1- transfer it follows that M w1 
#w1 \

M #w1
#w1-Ext 

kw1 0w1

M

cnk#
2
w1 fin

#w1 , 3.3. 14

i.e. the quantity M alwais is #w1- finite i.e.

s M w1 
#w1 \w1fin

#w1 . 3.3. 15

From RHS of the Eq.(3.3.12) By #w1- integration we obtain


Τ#w1

1

#w1NM
2 xd#w1x #w2

#w2 
Τ#w1

1

#w1 #w1-Int 
kw1 0w1

M

cnk# exp ix #w1
nk

#

2

d#w1x #w1

#w1
#w1-Int 

kw1 0w1

M

cnk#
2
#w1

M

3.3. 16

But on other hand from Eq.(3.3.8) By #w1- integration we obtain




Τ#w1

1

#w1NMxd
#w1x #w1

#w1 
Τ#w1

1

#w1 #w1-Int 
kw0 0w

M

cnkx
#w1 exp ix #w1

nk
#w1 x d#w1x

w1 
#w1 \w1fin

#w1 .

3.3. 17

Obviously by (3.3.15),Eq.(3.3.16) and Eq.(3.3.17) one obtains a contradiction.

Apendix 1.Paraconsistent Nonstandard Arithmetic
Designations 1.1. We will be write for short:

(i) x w0 y instead x s y  x w y  sx w
1

y ,

(ii) x w1 y instead x s y  x w0 y  x w1 y  sx w
2

y ,

(iii) x wn y instead x s y  x w0 y . . . x wn y  sx w
n1

y ,

n  1,2, .
Designations 1.2. We will be write for short:
(i) x w0

s y instead sx w0 y, i.e. instead

s x s y  x w y  sx w
1

y ,

(ii) x w1 y instead x s y  x w0 y  x w1 y  sx w
2

y ,

(iii) x wn y instead x s y  x w0 y . . . x wn y  sx w
n1

y ,

n  1,2, .
The Theory PAs

The Theory PAw0

Let w0be a set containing an w0-element 0w0 , and let Sw0 : w0  w0 be a

w0-function satisfying the following postulates:
PAw00 : 0w0 w0 0w0 ,

PAw01 : Sw0x w0
s 0w0 , for all x w0 w0 .

PAw02 : x,y w0 w0Sw0x w0 Sw0y s x w0 y,

PAw03 : Let A be any w0-subset of w0 which contains 0w0 and which is closed

under
Sw0 i.e. Sw0x w0 A for all x w0 A. Then A w0 w0 .

PAw04. y1. . .ykA0w0   xAx s ASw0x

where A is any formula whose free variables are among x,y1,yk.



The Theory PAw1

Let w1be a w1-set containing an w1-element 0w1 , and let Sw1 : w1  w1 be

a
w1-function satisfying the following postulates:
PAw10 : 0w0 w0 0w0 ,

PAw11 : Sw0x w0
s 0w0 , for all x w0 w1

# .

PAw12 : If Sw0x w0 Sw0y then x w0 y, for all x,y w0 w1 .

PAw14.

PAw15.There exists w1-subset w1 w1 w1
# such that the following statement

holds:
any w1-subset X w1 w1has a strong w1-complement w1 \w1

s X in w1 .

Definition 1.1.The condition that X has a strong w1
-least element reads

x x w1
X y w1

Xs y w1
x . 1.2

Definition 1.2.
Remark 1.1.
Theorem 1.1. w1 is a strong well-w1-ordered w1-set.

Proof.We will prove by using strong (or complete) induction.
Let X be a w1-nonempty w1-subset of w1 . Suppose X does not have a w1 -least

element. Then consider the set w1 \w1
s X.

Case 1) w1 \w1
s X w1

w1
. Then X w1

w1 and so 0w1 is a strong w1 -least

element. Contradiction.

Case 2) s w1 \w1
s X w1

w1
. There exists an n w1

w1 \w1
s X such that for all

k w1 n; k w1
w1 \w1

s X.

(Note that n necessarily exists because 0w1 w1
w1 \w1

s X, else 0w1 w1
X and

would
be a w1 - least w1-element of X. )

Since we have supposed that N    X does not have a least element, thus n 2 X.
Using strong induction, we see that for all k  n; k 2 N    X and n 2 N    X. We can

conclude
n 2 N    X for all n 2 N. Thus N    X  N implies X  ?.
This is a contradiction to X being a nonempty subset of N.

Notation 1.1. We often abbreviate for short x w1
y instead

w y w1
x . 1.1

Definition 1.1.The condition that X has a weak w1
-least w1-element reads

x x w1
X y w1

Xw y w1
x . 1.2

or

x x w1
X y w1

X x w1
y . 1.3



Definition 1.1.Assume that the condition that X has a weak w1
-least element is

satisfied and let x be a weak w1
-least w1-element of the X.We will say that x is

inconsistent if the following statement is true

PAw03.The a weak w1-well-ordering principle:

(i) every non-empty w1-set of natural numbers w1-contains a weak w1
-least

element
or in the following equivalent form
(ii) every non-empty w1-set of natural numbers contains a w1

-least w1-element

Remark 1.1.We remind that

y w1
x  s x w1

y . 1.4

Theorem 1.1.
Proof. Assume that (i) and (ii) are both true statements.
Let XP be the w1-set of all natural numbers for which Py is false, i.e.

y w1
XP  sPy. 1.5

If XP is w1-empty set then we are done, so assume that XP is not w1-empty.Then,by
the weak well w1-ordering principle, XP has a weak w1

-least w1-member let’s say

x, i.e.

x x w1
XP y w1

XP x w1
y . 1.6

Since x is the weak w1
-least w1-member of XP it follows that P x w1

1w1
is

true. But this means, by (ii) above, that Px is true. We have a contradiction and so our

assumption that s XP w1
w1

must be wrong.
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