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Abstract: The purpose of this paper is to expldia pattern of fill factors observed in the
Fractional Quantum Hall Effect (FQHE) to be restad to odd-integer denominators as well as
the sole even-integer denominator of 2. The methtmluse the mathematics of gauge theory to
fully develop Dirac monopoles without strings asgmrally taught by Wu and Yang, while
accounting for topological orientation-entanglemeahd related “twistor” relationships
between spinors and their environment in the playsipace of spacetime. We find that the odd-
integer denominators are permitted and the eveeget denominators excluded if FQHE only
displays electrons of identical orientation-entaargknt “version,” i.e., only electrons separated
by 4r not 2r. We also find that the even-integer denominafo as permitted if entangled
electrons can pair into boson states, and thab#tler even-integer denominators are excluded
because bosons are not subject to the same Exalgtabistics as are fermions. Because this
proposed relation between the Dirac monopoles amel FQHE presupposes an electric /
magnetic duality near OK, and because magnetic mpoles are certainly not observed at higher
temperatures, we also find how to break this dyayimmetry with the consequence that the low-
temperature Dirac monopoles are replaced by a “thal residue” at higher temperatures. We
conclude that the observed FQHE fill factor pattezan be fundamentally explained using
nothing other than the mathematics of gauge th@&oryiew of orientation, entanglement and
twist, with proper breaking of the low-temperatetectric / magnetic duality. An unanticipated
bonus is that the quantum topology emerging frosdhalysis appears to map precisely to the
electronic orbital structure of atoms. This prowdée basis for proposed experiments to closely
observe the FQHE quasiparticles to seek correlaiom the angular momentum observed in
atomic electron shells, and to boson spin states.

PACS: 11.15.-073.43.Cd; 14.80.Hv; 65.
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1. Introduction: Wu and Y ang and the Dirac Monopole without Strings

The Fractional Quantum Hall Effect (FQHE) obserwedwo-dimensional systems of
electrons at low temperatures in superconductingenads subjected to large perpendicular
magnetic fields is characterized by observed fjlllactorsv =n/l, wheren and| are each
integers, but wherkis anodd integer onlywith the exception thatmay also be the even integer
2. In other words, the apparent pattern, widehortsga and studied in the literature,lissn/|
with n=+1,+2,+3.. andl =1,2,3,5,7,9,11., see, e.g., [1], [2], [3], [4], [5], [6] generalland
for the even denominator 2, see, e.g., [6], [7]V¥erl/ 2, [8] for v=3/2, [9] for v=5/2 and
[10] for v=7/2. Two questions arise from this effect: why are ¢ienominators in the filling
factor odd but not even (including the quantizatbrvhole unit charges with denominated),
and why is the even denominatel an apparent exception? We show that this pattiefilling
factor denominators has a fundamental explanatased) on using the mathematics of W{l)
gauge theory to develop the Dirac Quantization @mrd(DQC) for Dirac-Wu-Yang (DWY)
monopoles, in view of how orientation-entanglem@iE) applies to fermion spinors but not to
bosons, and also in view of a “twisting” associateth orientation-entanglement which appears
to have been underreported in the literature. Althregway, we demonstrate have the electric /
magnetic duality symmetry of Dirac monopoles dogstenear OK, and how that symmetry is
broken at higher temperatures leaving in its seedthermal residue” possible responsible in a
fundamental way for the very existence of heatgner nature.

In 1931 Dirac [11] discovered that the existentmagnetic monopoles would imply that
the electric charge must be quantized. While ahapgantization had been known for several
decades based on the experimental work of Thompsdhand Millikan [13], Dirac was
apparently the first to lay out a possible thecstimperative for this quantization. Using a
hypothesized solenoid of singularly-thin width knoas the Dirac string to shunt magnetic field
lines out to mathematical infinity, Dirac estabbshthat a magnetic charge strengtivould be
related to the electric charge strengtlaccording toeu =277n, wheren is an integer. This
became known as the Dirac Quantization ConditioQ@) This electric charge strength is the
same one which, at low probe energies, is relatetthé¢ running “fine structure” coupling via
4my =€ [hcO1/137.03¢, see, e.g., Witten’s [14], pages 27 and 28. Susaly, Wu and
Yang used gauge potentials, which are locally-rmitglobally-exact, to obtain the exact same
DQC without strings [15], [16]. Their approachcisncisely summarized by Zee on pages 220-
221 of [17] and will be briefly reviewed here, basa it provides the methodological basis for
understanding the pattern of filling factors observor the FQHE. Throughout we shall use the
natural units ofh =c =1.

Using the differential one formA= A,d)(‘ for the electromagnetic gauge field a.k.a.
vector potential and the differential two-fornfr =5 F dx* OdX = dA=0, AdX0O d%, a

magnetic charge may bedefinedas the total net magnetic flupqsgﬁs F passing through a

closed two-dimensional surfa& which for convenience and symmetry we may takbéda
sphere. Differential exterior calculus in spacetigeometry teaches that the exterior derivative
of an exterior derivative is zerdg=0, which means that the three-form equatithh= ddA=0.

Thus, via Gauss / Stokeﬂ:jo = ﬂ dF = <ﬁ> F = . In classical electrodynamics prior to Dirac,
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this was taken to mean that the magnetic charg® But a close consideration of gauge
symmetry, which is locally but not globally exaigtl|s a different story:

When a spin ¥z fermion wavefunction (which we slyherally regard as that of the
electron) undergoes a local gauge (really, phasejstormationy(x) — ¢'(X) = *"®yw( %, the
gauge field one-form transforms under Wf1as

A A=A+e” dé/ ie (1.1)

More generally for larger non-abelian gauge growfih gauge potentia and chargey, this
transformation isG - G'=U"(G+ d) U/ ig whereU is a unitary matrixU'u =1. If we

representk in polar coordinateér,¢,6?) in the three-dimensional space of physical spaeets
F=(u/4m)dcosfdg, then because F=dA and dd=0, we can deduce that

A=(ul4m)cosfdg. However,dg is indeterminate on the north and south poleschvis an

inherent feature of three-dimensional space agherenon-commuting rotational properties of
this space when represented by SO(3) or its dogbhering SU(2). To remove this
indeterminacy and create a smooth geometric irdejfave may define north and south

coordinate patches over A, =(u/4m)(cosf-1dg and A =(u/4m)(cosf+ 1dg,
respectively. But at places where these patchedapy these gauge potentials are not the same,
and specifically, their difference i8s — A, = (/,1/ 27T) dg, or written slightly differently:

A~ A= A= A+(ul2m) d. (1.2)

So comparing this with (1.1), to unite the two paE we may regardh = A, as a gauge-
transformed statey, of A, for which the gauge transformation is simply:

Lemnge=£ o (1.3)
ie 2r

We simply note for the moment th@ = A, which yields (1.3) is actually a commonly-made

assumptiorthat the north and south gauge field patchesrdiféen one another by no more than
a gauge transformation and so are not observabtindi, in order to yield a smooth unbroken
geometric relationship between the north and spatbhes.Whether the physics we observe in
the natural world agrees with this assumption isse@parate question. In section 9 a
reexamination of this assumption will have impotteonsequences for relating physics near OK
with physics at other, higher temperatures.

This differential equation (1.3) foh and ¢ in relation toe andu is solved by:

exp(in) = exp{ieu ¢ j (1.4)
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as can be seen simply by pluggig§ from (1.4) into the left hand side of (1.3) andueing.
This relates the azimuth angée which is one of the three spacetime coordinateshe local

gauge (phase) angle, and thereby connects rotations througghn physical space to rotations
through A in the gauge space in a manner that we shall xgéoe in detail.

In polar coordinates, the azimutigs=0 and ¢ =257 in (1.4) describe exactly the same

orientation (but not entanglement) on the surfaceSf So to make sense of (1.4) at like-
orientations, substituting =0 and ¢ = 257 into (1.4) and equating the two terms followingsth

substitution, we must have:
exp(in) = exdiex 00 = E exfiepyO). (1.5)

Specifically, this means thwxp(ie,u) =1. Mathematically, the general solution for an emum
of this form is exp(i 2m) = 1 for any integern =0,+1,+ 2+ 3.., which is infinitely degenerate
but quantized. As a result, the solution to (is5)

N =eu=2mn. (1.6)

This, of course, is the Dirac Quantization Conditi@dQC), which we see may also
specified in relation to the gauge (phase) paramg&taevhich is seen to be an quantized integer
multiple of 277." It will be immediately apparent that this equatizas an electric / magnetic
duality symmetry undee - g interchange. And it will be equally apparent tifatnagnetic
charges do exist in nature, they do not seem agebfto have ever been observed. So
understanding if there is some real, observableipbyto be found from the monopole in (1.6)
and their derivation is an undertaking of substdmtiterest.

Further, (1.6) with simple rearrangement tells lugt tthe electric charge is quantized
according to:

e= n2—”= nq=A, a.7)
H H

where then=1 “unit” (u) of electric charge i, =277/ i, defined a2/ times the inverse of the

magnetic charge. The customary interpretatioreefn(Zﬂ/y) in (1.7), ever since Dirac first

found this relationship, is the conditional statetridatif this magnetic charge “existdfienthe
electric charge is quantized in units @f. It is important to keep in mind that the coneccd

" It should be noted that when we used the localeang)x) = $, =0 and ¢(x) =@, +21 in (1.4), the implicit choice

of ¢,=0 had no special physical significance. We couldehased any othep<g, <27 or indeed anyg,
whatsoever and still ended up with the exact saQ€ (1.6);¢, =0 was merely the easiest mathematical choice.
This means the DQC (1.6) is invariant under lo@alge symmetry, as it must be to have possible galysieaning.
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this conditional is not true: the observed quatitraof electric charge doe®ot imply that the
magnetic charges do exist. In fact, as best &sasvn, this DWY magnetic chargehasnot
been observed to date, while the firmly-establisgedntization of electric charge is explained
not on the basis of these DWY magnetic charges,obuthe basis of the charge generators

Q=Y/2+ I® which emerge in Yang-Mills gauge theory followitite electroweak symmetry
breaking ofSU(2),, x U(1), down toU (1),,,. So if this DWY monopole “exists,” it would have

to “exist” under some very specialized set of pbgskiconditions and it would of course be
desirable to know what those conditions might be.

We may finally go back to the original definitiqmsqj} F and isolatex in (1.6), thus:

@F:yzz—ﬂn:nyuzﬁ, (1.8)
e e

where we also define an=1 unit of magnetic chargg/, =2m/e, similarly quantized. By
appropriate local gauge transformation, and spetdifi by choosingh=0 which is the same as
choosing the phase angle=0, the nonzero surface integral can be made to Iva[gsF =0.

But this does not invalidate (1.7) and (1.8) noesld prevent us from seeking to draw physical
conclusions from these. It simply means the® with no monopoles and no electric charges is

one of the permitted states. Again, the meaninth®fvhole range of charges= neg, for n#0

has been physically-interpreted ever since Dirascaliered this, as suggesting that the
“existence” of a magnetic charge would imply electtharge quantization, with the further
understanding that the converse is not true.

This is how Wu and Yang obtain Dirac monopoles téedDQC without strings.

2. Quantum Topology and Orientation-Entanglement-Twist (OET): the
Observable Distinctness of Smilar Geometric Orientations

If we define a reduced gauge angle=A\/ 2, then by (1.6) this reduce#k=n is a
guantum number which states the number of “windirtgsough the complex gauge / phase

space contained in the operat@"™ =cosA (x)+isin\ k)= a+ bi of the local gauge
transformationy/(x) — ¢'(x) = ¢"¥w(%. But in the DQC,A =n also becomes the charge
quantum numben, and so (1.7) may be rewritten as- /€ = ne. Therefore, every gauge
transformation/\ - A +2/ adding an angle o277 also adds one unit of electric and magnetic
charge. This is the first indication of a conceptchallenge which will occupy of fair share of
attention in this paper and lead us to undertaftetailed study ofuantum topologyvhich will

in turn reveal some unanticipated insights aboetdbserved electronic structure of atoms. Let
us now introduce this challenge.

If these DWY monopoles were to exist under some alised set of physical conditions,
then the electric charge would be quantizexk 7€ = ng, and this quantum numbef =n
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would of course have to be a physical observalite.geometry however, angles measuring
rotation which differ from one another &7, such as\ =0, 27, 47,67 .., aretrigonometrically
indistinguishable Indeed, we already used this indistinguishabiit 0 and 277 to write (1.5)

and then derive (1.6). Consequently, if we draang y axes on a sheet of paper and then draw a
vector starting at the origin which points along t#x axis, we cannot state looking at the paper
whether the angle between that vector and the xiax®, or is2/7 or 477 or 677 or any other
multiple of 277. It can beany of these, because these ardralistinguishableorientations So

A =0,1,2,3,4.. is not ageometricobservable. But if the DWY monopoles were to exisder

some physical conditions, then tie =n in e=#+¢€ = ng would have to be observable. If we

observed one unit of charge, we would know that 277. Observing two units of charge we
would know thatA =477, and so on. Thus comes the questt@mw can/A=A/27=n be an
observable when it is a charge quantum number buba an observable when it represents the
number of geometric “windings”?

Answering this and analogous questions which viadirfly arise about the azimuth angle
¢ in three-dimensional physical space, will requie to develop theuantum topologyof
Orientation-Entanglement (OE) and Twist, which @®ted in Misner, Thorne and Wheeler's
(MTW) widely regarded review of OE at section 4©f§18]. What we shall find is effectively
this: in geometry as distinct fromopology orientationsin the set of angleg\ =27m manifest
no observable features to distinguish them from amether. Orientation differences between
these angles are not observablenss not a geometric observable. Entanglement, kevwyas
an aspect oftopology which tracks the relationship between a vectorbj@ot”) and its
“environment” via sets of connecting “threads.” ®WhOE is considered, orientations which
differ from one another by2r are observably-different, because they have opposite
entanglementsThis is also verbalized by stating that theyehapposite “versions.” But vectors
rotated by angles in the sgt— ¢' =@ +47m still manifest no observable features to distisgui
them from one another, because they all have time saentations and entanglementnce
entangled by rotations in integer multiples 477, the vector can be restored to its initial
disentangled state without any reverse-directiopdir rotations, via various “disentangling”
manipulations of the threads. So vectors rotateti¢se angles are all said to have the same OE
versions. So the question posed in the last paphghas a partial answer whereby angles
differing by 2/7 can be observably distinct, but still remains soheed as to angles differing by
arr.

The 477 distinctness question is answered fully, by adthispect of OE which appears to
have been widely overlooked or at least underdg@eelon the literature, and that is twist: When
one carefully studies OE, then depending upon ho& “disentangles” the “threads” following
any rotation of the “object” through some multiple4rz, it is possible to completely restore OE
by disentangling the threads from one another, sydit have observable “twists” remain in
individual threadswvhich twists were not there at the starOnce these twists are considered,
every angle in the sek =47m is observably distindrom every other angle in this set, because
the number of twists that can observed after dasegling a4/ rotation is different from the
number of twists that can be observed after disgiteg an 8/7 rotation, and these differ from
the number of twists that can be observed aftemtigngling each of 427,167, 207 .. rotation.

Thus, upon considering Orientation-EntanglementstWOET), every single angle in the set
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N\ =2rm is observably topologically distindtom every other angle in this same set. Soainis
the basis of OE&T that each of the quantized states=/A€ = ne gains the possibility of

being physically observable, because each of tlgdesnn the set/A =27m is observably
topologically distinct.

A totally unanticipated bonus from this analysiswever, when it is applied to the
azimuth angleg in the three-dimensional physical space of spaxstis that the topological
rotations and twists based on OET following-4v' rotation of the “object” through an integer
number of double windingd'=0,1,2,3.., can be summarized using quantum numbers

designated ak,m.,s,, with I'=0,1,2,3.. and—l <m, <+l ands, =%, wherel’ is the number

of double rotations,m, and s, are the possible numbers of double twists afteertaingling
depending upon the disentangling procedure usedlfren+ and — signs represent the right or
left handedness of these twists in reference tatie of twist defined as +z. This topological
summary of OET — and this is the bonus — m&@tly, on a one-to-one basigith the angular
momentum quantum numbeksn,, s, observed in the electronic structure of atomsis Exact
mapping raises the prospect that atomic structamel €ven nuclear structure because protons
and neutrons, albeit composite, are also fermiiiesdlectrons and form similar shell structures
in the nucleus) can be explained strictly on thsidaf quantum topology. If this were to be
possible, then the quantum numbeérs,, s, with | <n and-I <m, <+l ands, =+3 would no
longer just be electronic state rules with fundatakeorigins unknown, but would kepological
mandates from physical spacdf such a connection can be empirically confidne and the
FQHE experiments to be proposed here are interodéd éxactly that — this would take us a step
closer to the ultimate fulfilment of Wheeler's geetrodynamic program [19], [20] in the spirit
of Einstein [21] and Weyl [22], [23], [24], of e&ligshing that the entirety of the observed natural
world is no more and no less than a manifestatibrspacetime geometry and spacetime

topology.

Now, it is time to return to the Dirac QuantizatiGondition.

3. The Fractional DenominatorsIndicated by Dirac-Wu-Yang (DWY): are
they Somehow Related to the Fractional Quantum Hall Effect (FQHE)?

If we closely study the derivation by Wu and Yaunmarized in section 1, we see that
there are some additional quantum states indidaegchave not yet been considered. Referring
to (1.5), not only dap =0 and ¢ = 27 describe exactly the samdentation(sans entanglement

and twist) in thephysical spacebut so too dog =47, ¢ =677, ¢ =87, etc. So starting with
¢ =2m and considering all positive (right-handed abol tz-axis) rotations which we
summarize byg =271 using a positive integer=1,2,3,4,5,6., if we proceed solely on the

basis of geometric orientation and do not concemselves with entanglement or twist, we may
now extend (1.5) to:

exp(in) = 1= ex{iey )= expieuOp= expey)3d expuD)4 efigu)5s  digu0) €(3.1)
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Each of the above is a separate relationship oféreral formexp(ie,u[l]) =1, where

1=1,2,3,4,5,6.=¢ /Z is an integenot the samas then already in use and corresponds to
the number of azimuth windings. At the same tiagenoted after (1.5), the general solution for
an equation of this form iexp(i 2m)=1 with this integern=0,+1+2%3.., as before.

Comparing exp(iexd) =1 with exp(i 2m) =1 means that more generallgu=27m i.e.
ey =2m(nl ), or restated, also usiny = 27m from (1.6), that:

e=——=—¢g=veg=——, (32)

where we may define a “filling factor”

v

Iﬂ; N=0+1+2+3..; |=¢ /2r= 1,2,3,4,5,6. (3.3)

This electric charge is both quantizadd fractionalized Likewise, for the magnetic charge
defined as in section 1,

ﬂ:__:_/'[u :Vluu = (34)

n2mxT n A
|l e | |

D |

is also quantized and fractionalized. If we deftneeduced azimutlg =¢/2r=1, then with
the reduced gauge angfe = A /27 =n as before, we can rewrite this fill factor (3.3) a

V:n:ﬁ—ﬁ- A=0,£1%+2+3...; ¢ = 1,2,3,4,5,6. (3.5)

| ¢ ¢
This is simply to ratio of gauge-space windingphgysical-space windings, and equivalently, the
ratio of the gauge angle to the spatial azimutHeang

The conditional statement we may make based omltbge is the following:If these
DWY monopoles exist under some specialized sethgsipal conditionsthennot only are the

electric and magnetic charges quantized, but eaithotielectric charges, or magnetic charge
MU, is alsofractionalizedinto v = n[ﬂl/ I) quantized fractions1/I of itself. As with (1.6), see

the related footnote, this relationship is locajguge invariant. More generally, what we now
see that thaU(1)em gauge theory itselinexorably implies thaif these DWY monopoles exist
under some specific set of physical conditioimgn electric charge is quantizednd electric
charge is also fractionalizedIn other words, based on the Dirac-Wu-Yang asion, the DQC

is really a DQFC, Dirac Quantizati@md FractionalizationCondition.

For a single rotation through = 277 where¢ =1 =1, (3.2) and (3.5) become:
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eu =2mn=2m =N\, (3.6)

which is identical to (1.6) and so recovers thealiddirac Quantization Condition without
fractionalized charges, as a special case. Ifusdr specialize this to a single windirfg =1
a.k.a./\ =2 in the gauge space, then:

S (3.7)
7,

which is the unit of electric charge for which, msted in the introduction [14)4/mr =€° in
natural units. The conditional statement we cakertmsed on this specializationgae= 277 and

N\ =27 is thatif these DWY monopoles exist under some specialigedfsphysical conditions,
thenthe special case in whigh= 277 and /A =2/ has an electric charge equal to that of a single

electron. So theg =-A =1 electric charge state of a DWY monopole with ajldrnwinding in
both the three-dimensional physical space andwedimensional gauge space is the same as
the state of a single electron with chaeye 277/ =+ 4mr .

This has a consequence of immediate interesta dingle windingg =27 about the
azimuth vyields the equatiore:(er/,u)n: ng which describes the quantization of an

unfractionalized electron, then according to (3égch additional winding aboup will
fractionalize the charge in proportion to/ ¢ . If we consider orientatioand entanglement
then not all of these states can be disentanglétie only electron states which can be
disentangled are those which differ frapn= 277 by a 4/7 rotation, i.e., for whichp = 277+ 47 .
Consequently, the set of DWY electric and magnehiarge states which can be disentangled is
restricted to those in which the fractional denaaton ¢ =1+ 2 =1,3,5,7.. is an odd integer

All of the even-integer charge states are entangfigigts which cannot be disentangled.

The conditional statement we can now make basdtiisrobservation, is the following:
If the DWY monopoles exist under certain physicaldions, then the set of electric and
magnetic charge states which can exist disentangled stai@e given by:

Ve——o=—=—; A=0,x1+2+3..,; ¢=% P= 1,3,57,9..1= 0,1,2,3,, (3.8)

that is, they are fractionalized such that thetfoa@al denominatorg =1+ 2 =1,3,5,7,9. isan
odd integer With the exception of the even denominator 2 oélthe observed states of the
FQHE also have odd denominators. So the refinemhéms conditional statement is thi:the
DWY monopoles exist under certain physical condgidhenthe set of disentangled electric
charges is precisely the same as what is obsemvibe IFQHE, except fog = 2.

This raises the central questions to be studiethénpaper and eventually answered
affirmatively with some proposed avenues for experital validation or contradiction: Are the
odd-integer denominators observed in FQHE a phystomsequence of the odd-integer
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fractionalization ofdisentanglecelectric and magnetic charge states in (3.8)? , Asmthe even
FQHE denominator of 2 also a physical consequeh¢8.8) based on what would beg =2

entangledstate in (3.8)? Finally, does (3.8) also provatleexplanation for why all other even
denominators areot observed in FQHE?

4, Three Questionsto Consider: Observable Topological Distinctness of
Angleswith 4zt Orientation Separation, Three-Dimensional DWY U(1)en
Gauge Analysis versus Two-Dimensional FQHE Electronic Configurations,
and Low-Temperature Electric/ Magnetic Duality Symmetry Breaking

For the fractionalization in (3.5) of Dirac-Wu-Ygmonopoles based on Ug})gauge
theory — or the odd-integer fractionalization (3a8suming the even integgr =2 can also be
understood — to specify a valid connection betwiberfractionalized DWY charge states and the
fractionalized quasiparticle states of FQHE foumdhie empirical data [1], [2], [3], [4], [5], [6],
[7], [8], [9], [10], there are at least three quass which would need to be answered:

The first question arises because in geometry alsmrsideration of topology, angles
which differ from one another by277 orientations are geometrically, trigonometrically
indistinguishable. This applies to the azimuth argl just as it applied to the gauge angleas
discussed in section 2. If we take into accoupblkogical orientatiorand entanglemeniOE),
then angles which differ b2/7 do become topologically distinct and thus havepbssibility to
be observably distinct because they have oppostenglements. But angles differing ldyr
appear to remain indistinct because they havedime dopological orientation and entanglement.

Now, because the fractional denominators in FQHEeanpirically observed, this means
that if the denominatorg =1+2 a.k.a. ¢ =27+41 in (3.8) was to actually be the odd

denominator of the FQHEhen ¢ =277+ 471 would have to be observable. But even with OE
considered, angles in the sgt= 277+ 471 are indistinct from one another. So we now asK th
same question about the azimuth angle1+ 2 =1,3,5,7.. that we asked in section 2 about the
gauge angleA-=n: If ¢ =1+ 2 was to be the odd-fractional FQHE denominator g an

observable, how could this be an observable aE@t¢E denominator yet not be an observable
when it represents the number of azimuth windiggs 1+ 21 of states with identical OE?

As we shall show in the next two sections, wheerdgtion and entanglement are very
carefully analyzed, then depending upon the disgfitag procedure employed, there can also be
seen an observablgwist” of the “threads” which connect an “object” to fesnvironment”
which twist did not exist at the outset. Therefoegen following disentangling, similarly-
entangled angles in the sgt =1+2 can become topologically distinct from one anather

Consequently, these observable twists make it plessior ¢ =27+47 and thus the

denominator in (3.8) to be a topological observabiéoreover, unexpectedly, it turns out that
the pattern of this twist-resultant topologicaltulistness precisely mirrors the pattern of orbital
and spin angular momentum observed in the electrstniicture of atoms. Specifically, writing

24 =1+3, we find that With|€> representing spinor eigenstatésielates precisely to the
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Casimir operator of the orbital angular momentuni.iné) =1 (I +1)|¢) and < relates precisely
to Casimir operator of spis=1 in S?|&)=s(s+1)|§). And as shown in (3.6) and (3.7), the

¢ =2 ak.a.;¢ =5 =s state withl =0 has the electric charge of an unfractionalizedtsbe.

So when orientation-entanglement and twist areaikidered, there is no observability problem
with A =n or with ¢ =1+ 2 in v =#A/¢ in (3.8) because each &t and ¢ is a topological
observable. Using “twistors” as an element of sfiate topology was originally proposed by
Penrose [25] and subsequently advanced by othelieding Witten in [26], and will become a
central feature of the development here.

The second question arises because the Dirac-Wig-¥Yeeoretical argument based on
U(1)em gauge theory is developed within the three-dinmrai physical space of spacetime
geometry, and is understood to apply to systengdeatrons, protons, and neutrons for which no
fractionally charged particles and no Dirac-Wu-Yamggnetic monopoles have ever been
observed. But at the level of analysis where thasgparticle language applies, the system is
fundamentally two-dimensional, because the supewcing materials used together with the
ultra-low temperatures and large perpendicular reagrields applied to stimulate the observed
FQHE, combine in some fashion to substantially reenane degree of spatial freedom from the
electrons and so restrict the electrons to two espdimmensions while also giving rise to
superconductivity. And in some way that needsaabderstood, these all synergistically coact
to produce thd, 2,3,5,7,9.. denominator pattern which is observed. Becaudhisfapparent

difference between the three-dimensional space icddcBNVu-Yang and the two-dimensional
restricted space of FQHE, one might take dhariori view that there is no connection between
Dirac-Wu-Yang and FQHE. So at the very leasthdré is some hidden, not-yet-understood
connection between these two fundamentally-differemvironments of Dirac-Wu-Yang and
FQHE, it is important for such a connection to beetully developed and understood.

The third question that arises stems simply frommdhservational data that insofar as is
known, magnetic monopoles have never been observgd. if the DWY monopoles are
responsible for FQHE which would means that thesaapoles do exist near OK, then it would
be important to understand how this low-temperatiwality symmetry between U(L) electric
and magnetic charges becomes broken at higher tatopes. As to this third question, we must
keep in mind that while the high energies of Grdunified Theories (GUT) have certain
symmetries which are broken at lower energiespepldaw temperaturesiear absolute zero are
also thought to cause displays of certain symnsetiehich become broken at higher
temperatures, see, e.g., Volovok’s [27]. Thisdiguestion can also be posed in relation to the
second by asking whether by tightly constraining #lectrons to two rather than three
dimensions, and extracting virtually all of theg&t energy leaving them only with their Fermi
energies, we are forcing the electrons in supemettods near OK into some highly-constrained
topological condition which forces them to revdait entanglements and to display an electric
and magnetic monopole symmetry and a charge fragtzation which they otherwise can keep
hidden from observation at all higher temperatures.

Now, to address the first of these three questismesembark in the next two sections
upon a detailed study of topological orientatiomaaglement and twist.
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5. Twist: The Missing I ngredient from Orientation-Entanglement
Analysis, and how thismay lead to a Topological Under standing of
Quantization

Spinors, which includes electrons, reverse sigonug spatial rotation through an angle
@ by an odd multiple oR77. Specifically, as Misner, Thorne and Wheeler (MTp@int out in

one of the most widely-regarded discussions oftthpsc in [18] at section 41.5, the spin matrix
of a rotationR=cos(¢ /I -i(nl&) si{g /2 (see MTW [41.48]) reverses sign upon a rotation

through an odd multiple o277, as does the sign of a spinor under. &' =Ré (MTW [41.50]).

This sign reversal does not, however, appear in ttaesformation law for a vector,
X - X'= RXR (MTW [41.49)).

Misner, Thorne and Wheeler provide a visual, msmopic, intuitive, essentially-
topological understanding for this result by coesidg the orientation and entanglement of an
object relative to its surrounding environment, daese while orientation is restored unde27a
rotation, it takes ad/r rotation to restore the object’s state of entameglet, i.e., to restore the
complete “version” of the object. They do, howeasrpage 1148 of [18], make the statement:

“Whether there is also a detectable difference ha physics . . . for two
inequivalent versions of an object is not known.”

This question of whether MTW Orientation-Entangl@tm@E) brings about detectable physics
in physics will be the focus of the next two seetipand in some ways, the remainder of this
paper. In these next two sections, we shall fimat ©OE with Twist provides a topological
understanding of the observed electronic struatiegomic shells, and provides the basis for the
physical reduced angles a.k.a. winding numbershengets7A=n and ¢ =1+ 2 in the fill

factor v=A/4¢ in (3.8) to be physical observables. We shalb asow how ultra-low

temperatures constraining electrons in supercoondutd two dimensions may be represented in
terms of constraints on OE and Twist, which willghas figure out how to break the electric /
magnetic duality at higher temperatures.

Ross in [28] “hypothesize[s] that the OE relatiom® important to physics [and]
represent the deep relationship between any padicmaterial body and its environment.” He
proceeds to show (reference renumbered) “that irBcmagnetic monopoles do not satisfy the
OE relationship” and “hypothesize[s] that this e treason they have never been seen despite
extensive searches . . . and despite having aataod elegant theory underlying them . . . going
back to the more natural symmetry of Maxwell's @gures with magnetic monopole sources
present. ” He then states that “[s]ince all kngvemticles satisfy the OE relations and we show
that Dirac magnetic monopoles which have not beem slo not satisfy these relationships, it is
hoped that this paper will stimulate further workk the OE relations themselves and their
topological role in physics.” This further work tdme OE relationships is precisely the subject of
the present development, and will lead us to undedsthe fractional quasiparticles of FQHE as
electron states which obtain their observabilitye do topologically distinct OET states, and
which obtain their observed angular momentum inmadoshells based on the twisting which
remains after the OET threads are disentangled.

11
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Figure 31.6 of MTW'’s [18] which is also postedioel at [29], shows a spherical “object
connected to its surroundings by elastic threadslfideed, it is these “threads” and various
configurations of these “threads” which most dikediustrate the “deep relationship between
any particle or material body and its environmengntioned by [28]. It is also these “threads”
themselves which will be the focus of the presestussion. As is well-understood, it is always
possible following a 720° rotation or integer mpikis thereof of an object connected to its
environment with “untwisted threads,” to remove aitanglement from the connections of that
object to its environment. But of particular imggorce, as we shall now develop here, the
sequences of disentangling the “threads” from oraher arenot unique Depending upon the
sequence chosen, even after disentangling,“threads” may still each maintain individual
twists or they may have all twisting removed and havenbeturned to an untwisted state. The
surprise is that this twisting maps precisely ® skructure of electronic shells in atoms.

To simplify this development without any loss affarmation, rather than use the
spherical “object” and the spherical “environmeatid the “threads” employed in Figure 31.6 of
[18], let us employ a first “bar” or “stick” whiclhepresents the “environment” and a second
“bar” or “stick” which represents the “object,” aral pair of “ribbons” which represent the
connections of this “object” to its “environment. These two ways of representing OE do
topologically map into one another as is shownWwaloFigure 1, which is why we can use the
“bars and ribbons” as an alternative way of représg Figure 31.6 of [18].

o\

= =>

[N——S |

(a) (b) ()
Figure 1: Topological Deformation of Figure 31.6[d8] (MTW) into a “Bar and Ribbon”
Configuration

Specifically, to verify this topological mapping weh means that Figure 1(c) belongs to
the same homotopy group as Figure 1(a), one mayveta the OE system shown in drawing 1
from Figure 31.6 of [18], replicated in Figure 1@)ove. To maintain points of reference, we
label the north N and south H hemispheres of thecblas shown above, which hemispheres also
have north and south “thread” connections to thearenment. Then, as shown in Figure 1(b)
above, one may topologically deform the object ttshing it in into a vertical elongation,
while relocating the threads to the right along tloetheastern and southeastern regions of the
environment which can be snipped on the left sai pll the threads without losing any relevant
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information about the topology. Then, one can tdies entire Figure 1(b) and rotate it 90°
counterclockwise to arrive at Figure 1(c) above. tHis final step, thenvironmentis simply
represented by a top “bar” or a “stick” at the tfp2(c), theobjectis represented by a bottom
“bar” or a “stick” at the bottom of 2(c) which maains the “north” and “south” labels simply as
a point of reference back to Figure 1(a) (notwdhsing that these are east and west in Figure
1(c)) and now also introduces a directional veaoiimning from north to south, and the north and
souththreadsare merged together into a pair of “ribbons” whiepresent thentanglement
between the object and its environment. It willdppreciated that the ribbons capture the same
topological information as the threads (just thaikhe two lines bounding the ribbon widths as
being two threads and then add a few more threadseiween for good measure, see, for
example, the web animation at [30]). The bendfiermploying “ribbons” (or thick “threads”
with discernable width) rather than thin threadstedtted to being infinitesimally thin is that it
is much easier with a two-sided ribbon to illustrand track any twisting which may occur in
the course of performing OE operations, which élvery central to the ensuing discussion.

This “bar and ribbon” configuration in Figure 1{s)often used in illustrations of the OE
relationships, see, for example, an online animaab[31]. For the interested reader to follow
the forthcoming development, it is easy and adwsdab construct a physical apparatus
resembling Figure 1(c) by taking two sticks or dswver even pencils, and then gluing or
stapling two ribbons or shoelaces or even rubberd®ao the sticks in the configuration
illustrated. It also helps to color each sideld tibbons differently for monitoring twists. At
the web linkhttps://jayryablon.files.wordpress.com/2014/12/f@jipg the apparatus constructed
by the author for this purpose may be viewed atha upper-left photograph, with the other
photographs showing some states of twist that \aé sbw review.

z S
—
L
Y
____/ @ — @+720°
,/"—_ / --".\
<N >S5 )X N >S
7/ @ (b)

Figure 2: Environmental OE Consequences of Rotaikwgctor through 720°

Starting with the bar and ribbon configurationFagure 1(c), let us first immobilize the
top “environmental” bar. This abstractly “fixedig environment. Let us then rotate the bottom
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bar — which from now on we shall simply call thetbm “vector” — by ag —» ¢ +4m=¢ + 720
right-handed counterclockwise rotation about theaxis through the angl¢ in the x-y plane,
as shown in Figure 2(a) above, to arrive at thdigoration of Figure 2(b) above. We shall wish
to study the relationship of this vector to its korment through the behaviors of the ribbons
under some operations to be elaborated momentdrilysing the word “vector” in the present
context, we are simply referring to the orientataynow in Figure 1(c), not to a “vector” in the
sense of a spin 1 particle. The result of tMgr rotation is shown in Figure 2(b) above.

It is worth keeping in mind that all three x, ydimensions are utilized in this rotating
operation. By rotating the vector throughwe are utilizing the x-y plane, while the ribbcarsl
the environmental bar are situated above this laggalong the z dimension. It is also worth
keeping in mind for later, that for electrons froze two dimensions at low temperature in
superconducting materials in the FQHE environmente degree of spatial freedom is
effectively removed. It is also important to keepnind that this angle is an azimuth angle of

rotation in three space dimensions, just as wastimauth angleg first introduced after (5.1)
when we wrote the electromagnetic field strengtrFas(/JMﬂ)d cosfd¢. So it is appropriate
to try to relate these two angl¢sto one another because physically they mean the #aing.

In Figure 2(b), to provide depth perspective scait be seen what is passing in front of
and behind what else, the wider lines illustrataceach ribbon indicate a passing in front of the
narrower lines illustrated on each ribbon, and oied hash lines are used to illustrate the
opposite face of the ribbon relative to the facewahin Figure 2(a). In Figure 2(b), we reach a
state in which the ribbons are entangled with amgtleer, with the entanglement forming a left-
handed helix in relation to vector pointing verligan the +z direction, as illustrated. And in
addition, each of the two individual ribbons alsotwisted into a left-handed helix (L), as
illustrated. Again, it is helpful for the readerd¢onstruct and use this bar and ribbon apparatus t
see all of this. In addition, both the entangletfezlix and the twist helixes at®ublehelixes,
in the sense that there are two full helix rotagioh—477=-72C, using a convention in which a
right helix has a positive sign and a left helixs lsanegative sign. Certainly, while the original
¢ and the finalg + 4 are indistinguishable geometricallhey are topologically distinct
because their relation to the “environment” as reeshiby the ribbon entanglement and twist is
different. Geometrically, the vector has an idealtiorientation in Figure 2(a) as in 2(b).
Topologically, it is clear that the Figures arefetiént, and the number and handedness of the
helixes is a form of physical encoding which teitsexactly what sort of rotation has occurred to
get into that entangled and twisted state. Theeseomsiderations apply when we rotate the
gauge angleA. However, in the complex gauge space there isactoal third dimension
analogous to the z axis, while fg&@ not only is there a z axis, but this z axis estakls

coordinates in a real observed dimension of phi/space.

Now let’s discuss ways to disentangle these risbone from the other. It must be made
clear that when we talk about disentangling ribbome are talking about disentangling two
ribbons from one another That is a separate matter from removing the téwisom each
individual ribbon. One way to disentangle thebbons is to simply release the¢ vector and
let it “hang” from the environment bar and un-retanalogously to a child’s swing that has had
the seat twisted into Figure 2(b) and then is sedao rotate back under the pull of gravity to its
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ground state of Figure 2(a). Indeed, it is helaiatl physically pertinent think of the unrotated,
untwisted Figure 2(a) as representing a sort obltgpcal “ground state” to which Figure 2(b)
will return if the N> S vector is given freedom to rotate through theplane, i.e., if it keeps its
freedom in all three dimensions. If this is allayeot only will the two ribbons naturally
disentangle, but all twists in each ribbon willalsaturally be removed.

But let us say we doot let the N>S vector rotate any more. Now that it has been
rotated from¢ - ¢ +4s let us suppose that we remove its freedom toedtabugh the x-y

plane. Let us now mandate that the top and botiars are heretofore to remain locked into
immobile alignment with one another with no relatiotations allowed? In other words, let us
now remove the degree of freedom along the y axid kck everything into the two-
dimensional x-z plane. What happens then? Ietharay to return to the “ground state” even
with the two bars locked into immobile alignmentldreedom confined to the two dimensions
of the x-z plane?

This is where disentangling operations are usérgby we can return to a ground state
— or as will be seen at least to a lower energye staising only two dimensions, if we move the
ribbons around the S vector. However, the ability to disentanglehis tway is subject to an
important caveat that there must at least be same minimal freedom to use the y axis to get
the ribbons around the ends of th&N bar and past the bar, and in particular, werstit have
access to the y-dimension for at least the smatiests-sectional thickness of the ribbon itself.
We make note of this now, but this will be very on@ant to understanding how the DWY
monopoles in three space dimensions connect to FQIifo space dimensions.

Now, if the initial rotation in Figure 2 had betdwough only+2/7=+36C, Figure 2(b)
would contain alkingle left-handed helixes, both for its entanglementveen the two ribbons
and for the twists of each ribbon. And, as is welbwn, there would be no way to disentangle
the two ribbons from each other with the two barkéd into immobile relative alignment using
only manipulations of the ribbons. But from Figug¢b), because of the double helix
entanglement which results from the double windiatation throughg - ¢ +4m7=¢ +72C

aka ¢ - ¢+2 using the reduced azimuthg=¢ /2 earlier defined, aligned-bar

disentangling is possible using only ribbon maragiohs. And specifically, in order to
disentangle the two ribbons using only operatiomsthe ribbons with both the top-bar
environment and the bottom bar vector remainingtiretly immobile, one must performavo

ribbon operations, and there are three choicesdarthese two ribbon operations may be done.

For the first choice, as shown in Figure 3 belowv, the first ribbon operation, one can
take thenorth ribbon, wind it in front of and past the north “pole,” md it beneath and behind
the entire vector, and then wind it back aboveubetor in front of and past the south “pole.”
Then, for the second operation, one can takealéhribbon, wind it past the north “pole,” wind
it beneath the entire vector, and then wind it balokve the vector past the south “pole.” This
can be done in either order, that is, one can hsesouth ribbon in the first operation and the
north ribbon in the second operation and end up wie exact same result as the vice-versa
operation, which, as shown in Figure 3 below, ndy alisentangles the two ribbons from each
other, but also removes the individual twists iche@ibbon. We denote this by placing the
number “0” next to each ribbon to indicate thatas no residual twist. Here, with one operation
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using the north ribbon and a second operation vinglthe south ribbon, in either order, we
have restored the original OET state of Figure R(&@p entirety.

(b)

Figure 3: The Disentangling Operation- ¢ +2 - {N,S§ - 0

In either case, however, whether the north or soibstbon is operated first, the ribbon
windingsmust go from north to souytthat is, the ribbons must be first brought arotirenorth
pole, then wound past the vector, then be brougbk Ipast the south pole. If the ribbons are
wound from south to north, they will become everitfer entangled, and the net effect will be
that of having performed @ - ¢ +87 a.k.a. a¢ — ¢ +4 quadruple rotation starting from
Figure 2(a). The question occurs why there is #pparent asymmetry in which the ribbons
must be brought past the north pole first, but ika¢xplained by the fact that the Figure 2
rotation was done counterclockwise i.e. right-halgl@bout the z-axis, and thus was positively
signed, ¢ — ¢ +4rt. Had the rotation been clockwise hence negativeording to the
customary conventions for defining angular rotatie., ¢ -~ ¢ -4 ak.a.¢ - ¢ -2, then
disentangling would have required winding the ribbdirst over the south and then over the
north pole. So there is in fact an overall symmetrthese operations, and one can choose — as
we now do — a convention of only doing positivghtihanded rotations and then always starting
disentangling about the north pole, rather thannglonegative rotations then starting
disentangling about the south pole.

It is also important to observe that although theertangling operation can take place
very close to the x-z planaf least some small incursion into the y dimenssorequired of at
least the narrowest cross-sectional width of tbban. How do we see this? If one labels the
N->S bar with N and S near the ends, then when fiostimg a ribbon past the N pole, it will be
impossible to progress without the N becoming maardy obscured by the ribbon. So if the
narrowest cross section of the ribbon has somel darath £, the ribbon will at least pass
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through y=+¢& to get past the N pole. The same will be tru¢hatS pole. Further, when

moving the ribbon past the length of the>IS vector, the ribbon will have to go behind the bar
through y =-¢, and the ribbon will always visually obscure sopzet of the back of the bar

while this disentangling is occurring. So althougk have removed the y-axis from being
availablefor rotation of the object bar vector, we must make a very kpwtion of the y axis
available for passing the ribbons during disentagg! If we do not do so, then the ribbons are
frozen as is — the word “frozen” being a deliberel@ice in relation to FQHE near OK — and
cannot be disentangled. Now, let’s turn to whaipeas as a result of this disentangling, if we
are permitted a smally = & ribbon incursion into the y axis, and let's deyeimme notational

shorthand to discuss this.

We shall use the shorthan®,0- ¢+2- N /N,S/N- 0,C to represent this
operation in Figure 3 in which both the north andth ribbons start with no twist8,0, the
azimuth is positively rotated through two windings+ 2, the north and then south ribbons are
wound over the north pol&l / N, S/ N, and the disentangled state finally restores riet$w
0,0 which was the original ground state. If the readi®es this operation but instead performs

S/ N, N/ N in opposite order, it will be seen that the oralieribbon operations does not matter
and the same end result is reached in either caseThis means that
0,0-¢+2-S/N,N/N- 0,C as well. Thus, when the initial rotation is negat
¢ - ¢ -2 rather than positiveg - ¢+2, as we have already started to discuss,
0,0-¢-2-N/S,S/S> 0, and 0,0-¢-2-S/S,N/S> 0,C are also operations
which restore the initial disentangled state withtwists. And as already stated, in recognition
of this symmetry, we shall wor&nly with positive right-handed rotations/hich means that
ribbons must always go first over the north poleathieve disentangling. So by adopting this
convention, we can drop the/N” from the notation because it is always to be ioty
assumed. We also keep in mind that the finaligardition is invariant under the order in which

the north and south ribbons are operated, i.e eueither temporal orderingN, S) or (S, N) of
the permutated ribbon s{eN,S} . Thus, we can simplify the shorthand to write Fhgure 3
operation as0,0 -~ ¢+ 2~ {N,§ - 0,( simply indicating that eithe({N, S) or (S, N) over
the north pole will restore a disentangled, untadsstate following ag + 2 rotation of a vector.

For the second choice to disentangle the ribboms,can take the north ribbon and wind
it twice past the north pole, then past the vector, thet i@ south pole, and the ribbons will
still disentangle as before. But here, there ella residual twist in each ribbon, as now shown
below in Figure 4 below. Now, because we have tisedibbon se{ N, N} to disentangle the
ribbons, the north ribbon maintains a double hislisst with right-handed parity as defined along
the +z axis which we denote by 2R, while the sailthon also has a double helix twist but with
left-handed parity which we denote as 2L. Theaitare fully disentangled, and yet, the end
state in Figure 4(b) is observably, physically4dist from the end state of Figure 3(b), based
wholly on the operation that was used to disentatigt ribbons.So even though a rotation of a
vector throughg - ¢ + 4/ yields the exact same orientation and the exactesantanglement
for that vector, the final, physical state canlshk different from the starting state, wholly
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dependent upon how the disentangling operationthken place. This means thap + 47 is
topologically observably distinct fronp, even after disentangling. These two orientations

separated byi/r have the same OE version and can both be disdethrigit they still may have
different OET twist configurations.

(b)

Figure 4: The Disentangling Operation- ¢ +2 - {N,N} - 2R

Using the notation developed above, we may 0fe—- ¢+ 2 - {N ,N} - R,2L to

denote the final state of Figure 4(b) in which tiogth ribbon ends up with a double right-handed
helix and the south ribbon ends up with a doubfehanded helix. Theg +2 of the two
windings gets inherited by the 2 in the two douimdéix twists. It will be apparent, however, that
the left and right twists are offsetting, whichtgs say that thanet twist of the overall system
remains zero as it was when it started in Figura).2(In general, it turns out that this
“conservation of twist” result carries through b @ET disentangling. So, if we know that the
north ribbon has ended up wigR then we automatically know that the south ribbas ended
up with 2L. And if the north ribbon has a 0 twist then so ttwes the south ribbon. Thus, we
can use the twist conservation under OET disentaggp simplify the summary of the Figure 4

operations to0 - ¢ +2 - { N ,N} - 2R, showing only 0 as the initial twist aiZiR as the final
twist for the north ribbon, and deducing by implioa that O an®L are therefore the initial and
final twists for the south ribbon. In this way, wdopt aconventionwvhereby the helicity twist of
the “north” ribbon is used to characterize the diglitwist of the south ribbon and therefore of
the overall OET system following disentangling.

For the third and final choice to disentangle tiilons, one can take the south ribbon
and wind ittwice about the north pole, then the vector, then thehspole, and the two ribbons
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will again disentangle from one another. But hénere will be a residual twist in each ribbon
oppositely to that shown in Figure 4, as now shawRigure 5 below. Here, we have used the

operational se{S, § to disentangle the ribbons. The north ribbon radis a double helix
twist but now with left-handed parity which we démdy 2L, while the south ribbon also has a

double helix twist but with right-handed parity whiwe denote as 2R. Twist is still conserved,
i.e., the net ribbon twist is zero, so continuingépresent the end result simply by #hestate

of the north ribbon0 - ¢ +2 - {S, S} - 2L now summarizes the Figure 5 operation.

2L 2R

(b)

Figure 5: The Disentangling Operation- ¢ +2 - {S,§ - 2L

Returning to Figure 3, because we now know thatti8 conserved, as already done
with Figures 4 and 5, we further consolidate themmary of this operation to

O-¢+2- { N S} - 0. These are the operations shown in the captmmhése three figures.

They key thing we learn from all of this is thastate which starts at O for the north ribbon can
be disentangled into one of three staté:® and 2 depending on whether we disentangle with

{N,N}, {N, s} or{s, g, respectively.

Now let us now make some final changes to ourtioota Because the two ribbons can
only be disentangled from one another in this Walgere have been two rotations to begin with,
and because the result® and 2. both have two twists, let us talk from now on abthe
number ofdoublerotations and the number dbubletwists. So in all of the above, we started
with one (1) double rotation and the states whefained non-zero twist ended with one (1)
double twist. Also, because the non-zero twist sailts always contain a left- or right-handed
double twist, let us use the “+” sign to denoteghtrhanded and “-” to represent a left-handed
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twist in relation to the +z axis. And since thenhber of rotations and the number of twists are
both topologically-quantized integers, let us assjgantum numbers to these.

In all of the foregoing we first rotated the azimdtty ¢ — ¢ +2, which we rewrite as
¢ - ¢ +2I" with I' =+1 denoting the number of double rotations whichiasubsed is always
a positive number. The reason for using “primeas’the notation will momentarily become
evident. So all of Figures 3, 4 and 5 can be sunzed by the double rotation quantum number
I'=+1, and instead of writing¢ +2 in our notation, we simply writd'=+1. After
disentangling the two ribbons, depending upon theration used, we ended up witR, D, or
2L. For these let us use the respective double tyisntum numbersn =+1, m =0 and
m =-1, and. Bothl' andm are quantized, but there is no mystery to thisabse they simply
represent the number of double rotations and thabeu of double twists. So using this
notation, we can consolidate all of the resultsnfieigures 3, 4 and 5 in the following triplet of
final states:

{N.N} ~ mi=+1 (|1=+1ni=+3)
0-1'=+1-4N.S} - m=0 ([I=+1m=0) . (5.1)
(S 9~ =1 (|1=+1,h=-1)

To the point: the triplet of final states|i$=+1,m' =+1), |I'=+1m = 0) and|l' =+1m' =-1).

Now let’'s repeat everything we have just done, ibatead of a single double-winding
I"=+1, let's start with Figure 2a, and do two doubleavimys, ¢ — ¢ +8m, i.e., ¢ - §+4.
This is now anl’ = +2 state, and it requires four ribbon operationst iBstead of showing more
drawings, let’s just use the consolidated notatmmepresent the results. As discussed earlier,
ribbons must always be brought first past the narl then past the south pole, because the
rotation is a positive rotation. Doing otherwiséll vereate further entangling, rather than
disentangling. As also reviewed, the temporal oxdéh which one operates the ribbons does
not matter because as with=+1 the final twist results are invariant with resptxthis order.
So the five disentangling operations which can daclapplied in any temporal permutation are

{N.NON N, {NONG N, S, {N,N, S §,{N,S S $ and{S, S S . What we now have, in
place of five more figures, are the five resultgtates:

{N,N,N, N - m=+2 (| 1=+2,m=+2)
{N/N,N,§ - mh=+1 (| 1=+2,th=+1})
0-1I'=+2-{N,N,S;§ - =0 (|1=+2,= Q) . (5.2)
{NSS$- m-1 ('E+2 te-})
{sssp- -2 ('k+2 m-2)
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So now we start to see the pattern when Orient&itanglement (OE) is analyzed also
with careful consideration of Twist, for which whadl use the acronym OET. In general, for
OET, I' which represents the number of double rotationdings is an integer which always
has the valué’' =0,1,2,3,.. (I'=0 is represented by Figure 2(a) and has the sistgdegdm =0
with no twists), and the resultant twist of the thanbbon following disentangling ranges over
the integersm’ for which -I'sm'<+I'. So, for example, if we go next 16=+3 with three
double windings we have seven statds=0,+1,+2+:  And in general, the number of end

states will be equal t@l' +1 for any givenl'. Strikingly, if we simply remove the “primes,”ih
is the same pattern seen in the orbital angular embmm and magnetization (z axis orbital
component) of electrons in the shells of atomstepsesented by the quantum numbeesnd

m(: IZ). And also strikingly, the azimuth ang§e about which this topological winding occurs

is the same azimuth in physical three-dimensiopate through which this angular momentum
is specified.

Clearly then, OET provides the basis for assettirag) vectors with orientations in the set
@+4rm are not trivially-identical once topological OETash been considered, and that the
differences between these inequivalent states riraptlg to the orbital and magnetic quantum
structures of atoms and the nuclei and the orbigiular momentum quantum numbers which
force exclusion. We also note in passing thatwtbb animation at [31] which follows the same
winding procedure we have used here albeit displds@m a bottom perspective view, is one
example of how OE discussions often overlook Twisiis animation performs the disentangling

operation{S, §, so while it does indeed disentangle the threadstll leaves the routinely-

overlooked twist which in this case is th’e: +1m' = —]} state of Figure 5.

This leads us to three questions: First, are thiese0,1,2,3,.. and —|'sm' < +I'
concurrences merely coincidental, or can OET bed use provide a fully-topological
understanding of electronic structure quantizat@md by extension nuclear structure which is
subject to similar quantized exclusion principles proton and neutrons)? Second, how does
this all relate (if at all) to the DWY monopoles mih motivated this discussion in the first place
because of the need to physically-distinguish ianal states with the same OE, i.e., states
differing by a 27 or 47 rotation inv =A/ ¢ in (3.8)? Third, because with the exception of

the even denominator 2 which still needs discusgi®8) is an empirically-correct description
of the observed odd-fractional FQHE denominatorsiciwvhapparently are observably
topologically distinct and so can possibly be pbgsbbservables, how does this relate (if at all)
to FQHE? And these three questions taken togé#laer to a fourth question: does the high-
symmetry environment of FQHE where electrons astramed to two dimensions at ultra-low
temperatures approaching absolute zero reveal $gmeeof genuine physical convergence of
topology and atomic structure and the electric-neign symmetry of DWY magnetic
monopoles, all emanating from U{l)gauge theory?

We shall address all of these questions more &tidlyting in section 7. But first, we need

to see if this topology can be further developedntp one other indispensable aspect of any
conversation about electrons: their intrinsic Spin
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6. Twist Part 2: Topological Modelling of Fermions and Conser vation of
Orbital Plus Spin Angular Momentum

We found in the last section that when rotatingeater (meaning, the arrow in the=?6
bar) throughl’ =0,1,2,3,.. double windings {4/ rotations), the number of double twis#éx(
twists) that remain following disentangling usingieo of 2I'+1 available disentangling
operations is-I'<m’' < +I" with the positive and negative signs represertiglgcity handedness
in relation to the +z axis. And this made us ditento apossibleconnection with the analogous
1=0,1,2,3,.. and-l<m<+l in one of 2 +1 states from atomic structure. However, even if
this possible connection is established to ltei@ connection, the finding that angles differing
by 4 are topologically distinct still does not entiregolve the problem of physical
observability because the orbital angular momentumr xp to which we seek to solidify a
connection is not by itself a physical observabl®bservables must commute with the
Hamiltonian, and when commuted with the Dirac Héonilan, [H,L]=~i(axP). To fashion

an observableangular momentum analogy, we need to also indldespin operator for which
diag(Z) =(o.0) with S=1%, and for which[H,S|=+2i(axP). Then, forming the total

angular momentund =L +1X=L +S, we obtain[H ,J] =0, and find that it is the total angular
momentumJ which is the conserved observable. It is from @esimir operators=+ in
S| ¢)=s(s+1)|¢) and from the eigenvaluesi in S|¢)=s|¢), that the Dirac fermions

acquire their intrinsic spin %. Thus, if our gaglto develop a topological understanding of
observablephysics — as it must be — then we must advanceethdts of section 5 to provide a
topological understanding of the intrinsic spin ¥2aofermion, and of the interplay between
intrinsic spin and orbital angular momentum to @we and render observable the total angular
momentum. That will be the main objective of tsction. So let us begin with the first
guestion: topologically, in terms of OET, using thea and ribbon apparatus of Figure 1(c), how
do we represent intrinsic spin %2?

We saw in the last section that each unit of a twramumber inl’ =0,1,2,3,.. which is

thel analogy represented odeublerotation of +477, and that each unit of a quantum number in
—-I"'sm' < +I" which is the -l <m<+l analogy represented oriouble twist of 477 with
associated handedness. So each quantized uresponded with two rotations and / or twists.
Thus, eactsinglerotation or twist with magnitud@sr should be represented by a half unit of a
guantum number, i.e. by the quantum number ¥z wiiah fact the intrinsic spin of the electron.
So our first conclusion is that an electron willrepresented by in some way by a single rotation
and / or twist and that the associated topologjaantum number will be a half-integer.

Moreover, this first conclusion is supported by duding following (3.7) thatif the
DWY monopoles existsthen the special case in whiclh =27 and A =2 has an electric

charge equal to that of a single electron. Scetlean association already established between
the DWY electron ands = 277 which represents a single rotation. Specificaliypughout the

last section, we made use of the rotatgn- ¢ +2|" which is to say we took the apparatus of
Figure 3(b) in some unspecified azimuth orientaigormnd then added #471" rotation to bring
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the azimuth tap +471'. But we never really stated what the orientatbbthe originalg might

be. However, if it is a single DWY electron that wre rotating and then disentangling, then
what we found following (3.7) tells us that thetiai state for this electron needs to be regarded
as ¢ =2mr. Thus, for example, if a DWY electron with= 27 is taken to be the initial state,

then the rotationp — ¢ +47" isreally ¢ =2 —~ ¢ = 277+ 4l = 47(l' +1).

Now, the fact thatl’+% naturally appears in this expressign= 277 - ¢ = 477(1' +1)

aka¢g=1-¢-= 2(|’ +%) means that the whole integér=0,1,2,3,.. naturally gets added to
the half integer ¥2 when the initial topologicaltetes taken to be th¢ = 277 DWY electron. So
keeping in mind that spirs=% comes from the Casimir operator §f|¢)=s(s+1)|¢), we
posit a topological spin analogs =3, and we rewrite the foregoing rotation as
¢=1- ¢ =2(1'+s). But of course the total angular momentym! +s=1,3,5,Z... comes
from the Casimir operator ind?|&)=j(j+1)|¢) which combinesL?|&)=I(l +1)|&) with
S| &) =s(s+1)|&) via J=L +S for which [H,J]=0. So the topological analog to the total
angular momentum will need to be=1"+s"=1,2,2,Z.... Thatis, if the electron begins in the
topological state withl'=0 and j'=s'=1, and then we apply’ =1,2,3... double rotations
before disentangling the ribbons, the state we @mdvith will need to be characterized by
j'=1"+s'=1,3,3,5... in order to establish a suitable analog to theenkablej. This means
that the rotationg. =1 - ¢ = 2(I'+s') may be further rewritten ag- =1 . ¢ =2j'=1,3,5,7...

But this is just the odd-integer denominator ir8f3and that denominator originates in the exact
same reduced azimut$p =2j'=1,3,5,7... So if we go back and use this in (3.8), we mayew

v—ﬁ—i' A=0,£1+2£3..; j'=I"+s'=

¢ 2"

N~

$57.51= 01234555 (6.)

Now, the denominator in the fill factor is expredsdirectly in terms of a quantum
number ¢ =2j'=1,3,5,7.. which is an odd integer, which has a topologic#éripretation by
which each of thesd/r-differing orientations is topologically distinatjhich does correspond to
what is observed in the FQHE, which uses the egante reduced azimutk, and which

analogizes tg which is a physical observable beca{lbleJ] =0. But now, how, exactly, do we

capture all of this in the bar and ribbon apparatu&igure 1(c)? More precisely: how to we
now modify the bar and ribbon apparatus of Figu® %o that it properly represents all of this
and provides an exact topological mapping to althef angular momentum quantum numbers
l,m,s, j,s, },?

The final clue involves the z-component of thesguder momenta. The spin angular
momentum has the eigenvalugs=+3 emerging fromS,|¢) = s|¢) while the magnetization
quantum number <m<+| to which we analogize the double twist numbérsm’' <+l is
the eigenvalue of the z-component of the orbitajuder momentumm= 1, as obtained from
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LZ|E> :m| E). The z-component of the conserved and obsentabdé angular momentum is
then obtained fromJ, |&)=j,|&) with J,=L,+S, and j, =m+s,, with the integer plus ¥
-] <j,<+] inone of2j+1 total angular momentum states. Therefore, theltgpcal analog
to the z-axis total angular momentum will need ¢ojb=m'+s, with —j'<j’ <+j" in 2j'+1
possible twist states, wherg is always an integer plus ¥ and theref@ri¢ is always an odd
integer just like the FQHE denominator, aside ftbwdenominator of 2.

So to pin this all down, because the question ket is what we need to do to the
apparatus of Figure 1(c) to model intrinsic spirithwj, =m'+s,, let us first sets, =0 thus

j, =m’ which is not a physical electron state, but whgkthe model we developed in section 5
from Figure 1(c) before starting in this sectiorctmsider intrinsic spirs, =+%. This quantum

number m in section 5 directly represented the number aaddbdness of the topological
double twists following disentangling of the riblson This means that if, =m' as it was in

section 5, thenj, must similarly represent double twist number anddedness subsequent to

disentangling. And this should not change onceimeduce s, =+1 to replace thes, =0
which was implicit in section 5.

So let us now considefj, =m'+s, in the situation wherem =0 but s,=+1, for

example, for the state#lsf =+1lm = O> in (5.1) or(||’ =+2,m' = 0>) in (5.2). In these states, once

intrinsic spin is included we will havg, =s, =+1. Topologically, this represents half of a

right- or left-handed double twist, i.e. one rigbt-left-handed single twist. So now we have our
answer: for the topological analogy of Figure X¢{che able to account for intrinsic spin we must
model the spin %2 DWY electron in its initial unrted state with a single twist, i.e. a half double
twist. Because there is both spin up and spin dalang the z axis, this means that we will need
two topological models, one in which the N ribbevhich by convention represents the state of
the Figure 1(c) apparatus given twist conservati@s) a single right-handed twist and the other
in which it has a single left-handed twist.

Based on all of the above, we proceed in Figurelévibto represent a fermion, using the
“bar and ribbon” topological device of Figure 1(by introducing a singl€sr twist into each
ribbon, but with opposite helicity as between thege ribbons so as to conserve twist. Because
we have adopted a convention utilizing twist comagon whereby the north ribbon specifies the
OET handedness in relation to the +z axis, wemwad#d two such bar and ribbon systems: one in
which the north ribbon has one right-handed hglititist to represent spin up, and the other in
which it has one left-handed helicity twist to repent spin down. We denote the right-helicity
ribbon with one half of a right-handed double twising the quantum numbef =+1 and the

left-helicity ribbon likewise ass, =-1, and we continue the convention whereby the “riorth

ribbon represents the overall topological systddecause we have not yet performed aidyr
rotations about the +z axis and then disentanghgthang, these are configurations in the state

|I’ =0,m = 0>. We have also included a second set of northafid) south (S) references in
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these Figures, with N placed on the OET “environthbar and S placed in the middle of the
OET “object” bar. The original &S vector maintains the reference to the originahdimpic
deformations in Figure 1 here, of MTW'’s “object’dafthreads” and “environment” illustration
in Figure 31.6 of [18], into the bars and ribbong wre using here. Meanwhile, the
supplementary N and S provide a way of referrinthtorelative relationships between the OET
“environment” bar in the north and the “object” barthe south. Which N and S we are talking
about in any particular situation from here shdwdddiscernable by context.

N N

0.0 P ®

IR IL 1L IR

y
N T A »S+—x | N —»S+x
(a) (b)

Figure 6: Topological Representation of spit. DWY Electrons: (a)
I'=0m'=0,g =+},,=+}) and (O))1'=0m'= 0,4 =~} ], =~})

Now, given that we intend to use the configuragioh Figure 6 above to represent spin
up and spin down fermions, =+ and s, = -1, a practical question arises which may point to a

deep physical result: Let us suppose that theerdaals built the apparatus in Figure 2(a) a.k.a.
1(c) and now wishes produce the apparatuses ofdddi(a) and 6(b). Is the reader required to
unstaple or unglue (detach) the ribbons from Fige(a), given them each a twist, and then
reattach them back? Or, can the reader merelpmerome set of operations of rotation and
disentangling to get from Figure 2(a) to Figures BRis is a practical question for somebody
who lacks a staple remover, but given the topoklgionnections we are finding between twist
and spin it is also a deep theoretical questiomeha is there some way in which Figure 2(a)
which represents no intrinsic spin can be topolatfjcdeformed into Figures 6 which represent
a half unit of intrinsic spin?That is to sayare these representations of spin 0 and spin ¥z @fart
the same homotopy group and thus topologically\edent, or, are they topologically different?
The reason this is important is that if are evdhtuatending to have the number of double
twists be a topological representation of total &g momentum about the z-axig, then

Figure 2 will eventually represent spin O and Fegu6 will eventually represent spin %, and so
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the topological deformation of Figure 2 into Figeiré would suggest that one can use
topological deformations to go from spin 0 scalersa spin ¥2 fermions and by induction to
higher spins. So the deep question this raisd#sdgscan topological deformations in the three-
dimensional physical space be used to connectgbestiof different spins all within the same
homotopy group, or do such different-spin particleslong to different homotopy groups
whereby they are topologically distinct?

As it turns out — which the reader who has buguFe 2(a) can easily confirm — there are
no OET operations about either the z or y axeswiihtieform Figure 2(a) into Figures 6. The
z-rotations have already been explored in thedastion, and it turns out that rotation about the
y axis followed by disentanglement produces resedjsivalent to the z rotations followed by
disentanglement. However, it is possible to deféiigure 2(a) into Figures 6 by rotating the
bottom N> S barabout the x axisand then disentangling the ribbons. Specificalsing +x to
define the axis of rotation, if one doesight-handedrotation of the N>S bar about the x axis
through 277 (one rotation not two) letting the ribbons windcenabout the bar, and then
disentangles the north ribbon over the north polé the south ribbon over the south pole, the
resulting configuration iss, =+ in Figure 6(a). With deft-handedrotation of the N>S bar

about the x axis througBsr followed by the same disentangling, the resuFigure 6(b). So
our representation of spin 0 in Figure 2(a) catdpelogically deformed into our representation
of spin %2 in Figures 6, buanly if we are permitted to rotate the*& bar about the x axisif we
are prevented from this rotation, and are only iéechrotations about y and z, then the different
spins cannot be deformed into one another. Itss mteresting to note, although thes2rr
spin-changing rotations about the x axis ao¢ rotations about the azimut## defined around
the z axis, that after we have disentangled th®onb, the resulting twists do become transferred
such that theirt2/r handedness and magnitude is now oriented about thas. Apparently,
topologically, this £277 rotation about the x axis followed by disentanglithe ribbons
transmutes into the = 27 azimuth which, as found after (3.7) and reviewei@w moments
ago, is the ground state of the DWY electron.

Although tangential to the main development hemtake a moment to point out how all
of this raises the physical question whether thamee natural situations in three-dimensional
space where rotations can occur about two of theetlaxes but not about the third. And in
thinking about this question, one is drawn to tieainical property of physical space whereby if
one has an object with differing length > width epth, say a length of 12 inches, a width of 6
inches and a depth of 1 inch, and then throwsdhpect into the air while imparting rotation, a
stable rotation can be achieved about the lengihdapth axedyut not about the width axisSo
there is a physical precedent for “excluding” rmla$ about one of the three space axes. While
we shall not pursue this collateral question hérés perhaps worth musing whether this
dynamical property of three-dimensional space catp hin trying to understand spin
supersymmetry, or its apparent observed absence.

Returning now from this brief digression, let usanrotate the azimutlp of the N> S
bar of each of Figures 6(a) and (b), which is iehdy ¢ =27, through one+4/r double

winding, then disentangle the ribbons using §M,N}, {N,S and {S,§ operations
developed and discussed in section 5. We can sloave more Figures for this, but that is now
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unnecessary because we have developed some slibffilvamepresenting the results, and
presumably the reader has built this apparatusaman observe these results directly.

So, starting with Figure 6(a) which is in the stafe=0,m' =0,5,=+1, |, =+1)with
one-half of a right-handed double twist in the hortribbon, we rotate
¢ =21 - ¢ =2+ 4r= &7, which brings about thdl'=1) state representing one double
rotation. We learned at (5.1) and (5.2) that a&mtizngling which equally balancésand S
restores the original number of and handednessulbld twists, i.e., leaves unchanged from
its original state. If one carries out these aboperations it will become clear thgf =m’ + s,

tells us the number of double twists in each figte. Thereafter, for each of the three
combinations of disentangling, we arrive at:

{N,N} S [F=+1m=+1,8 =+, [=+3)
I'=0,m'=0,8,=+%,f,=+1) - '=+1-{N.§ - |I=+1m= 0,6=+1 ’;: 1) . (6.2
{Ss}ﬁll—ﬂn"-l;“ i=-3)

Likewise, if we start with Figure 6(b) which is the state |I' =0m' =0, =-1,j,=

,=-1) and
again rotate ¢ =2m - ¢ =2+ 47= 6T which is represented byl'=1), each of the

disentangling options produces:

{N,N}—>||':+1’m:+1,$:_%’jzz _%>
'=0m=0=-1,},=-2) - I'=+1-{{N.§ - |I=+1m= 05=-1 ,j=-1) . (6.3)
{S g -|1=+1,Mm=-1,5=-1, j=-3)

All of the foregoing states havig=2 =1"+1 which is the maximum number of double
twists that can remain following a maximally-sttegd all-N or all-S disentangling, i.e.,
following {N, N} or {S, § in which m" and s, are both like-handed. And there are a total of
six (6) distinct suchj’ =2 states, which is equal to the two original stateBigures 6 times the
three distinct disentangling operatiofisl, N}, {N,S and{S, § that can be done following

21" = +2 single rotations from which there need to be tigetangling operations to disentangle
the ribbons from one another. (Keep in mind, agtiat the final result is invariant under the

two temporal permutationSN, S) and (S, N) of the operation sdtN, § .)
Let's now start with each of Figures 6 which hage- 277 and rotate four times to

¢ =107 which brings them into thé =2 state of two double azimuth rotations. To save on
drawings, let us simply represent the results enstlamne way. Now from Figure 6(a) we have:
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{N, 2
{N,N,N,S}_»|I_+2,n‘1 +1,; +1,": 3)
I'=0m'=0,8 =+1,[,=+1) - I'=+2- {{N N ,S,$ - | 1=+ 2,ih= 0,5=+1 ,)j=+1) .(6.4)
{N,S,S $-|'=+2, fe-1, 5=+, =-1)
{S.§8¥-|'F+2 =25 =+1,[,=-3)

Likewise, if we start with Figure 6(b) which is the state |I'=0,m =0, =-1,j,=-1) and
again rotate td' =2 which is ¢ =1077, each of the disentangling options produces:

{N,NNGNE S [ T=42,mi=+2,8=-1 , ]=+3)
{N,NN, G - [ 1=+42,m=+1, 6=-1, j=+1)
I'=0m'=0,8=-%,f,=-4) - I'=+2- {{N NS, $ - | 1=+ 2,hF 0,5=-1 ,)j=-1) .(6.5)
{N.SS$-|'=+2 me-1, 5=~ %,Zj_—%>
{sssb-|'F+2 tr-25=-4j,=-9

All of the foregoing states hav§ =3 =1"+3 which is the maximum number of double
twists that can remain following a maximally-stfegd all-N or all-S disentangling, i.e.,
following {N,N, N, N} or{S, S S §in which m and s, are both like-handed. And there are

a total of ten (10) distinct sucli =2 states. This is two original states times the filistinct

disentangling operationsN, N, N, N}, {N,N,N, §, {N,N,S $,{N,S, S $ and{S,S S ¥
that can be done followin@l' =+4 rotations from which there need to be four disegliag
operations (for which the permutations of N andr@edng do not change the final result) to
disentangle the ribbons from one another.

We can next go t@ =147 which is|'=3 double rotations over and above the 277
initial state and will find a total of fourteen (Ldlistinct j'=7 states, and the pattern will
continue. Indeed, in general, for any given numtfedouble rotationd’ =0,1,2,3.. starting
with the two s = states shown in Figures 6(a) and (b), we will have

2
j=l'+s'=1"+1=1,3 5 1. with —j'<j.<+j', as well as-I'sm' <+I". Making use of
j'=1"+3 there will be a total o#4j' = 4(1'+) = 2( 2"+ J distinct states for any giveji . So

for respectivej' =3,3,5,5... there will be a total of2,6,10,14.. distinct states following the

distinct sets of disentangling operations that lsarperformed, and as we would hope, with the
mere removal of the “primes” from all of the abowhjs precisely maps into the angular

momentum states observed in the electronic shélsatom. In other words, this pattern of

OET states derived wholly from the topology of OET in threaspdimensions will continue

to perfectly match the observed atomic structureaf@ular momentum, all the way through the
entire periodic table.
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These results deepen our attention to a possilsleection between OET topology and
electronic atomic structure, especially now thathage a j, quantum number representing the

total number of double twists which asbservableafter all disentangling has been performed,
which analogizes to thebservable j, eigenvalues inJ,|¢) = j,|¢) for which J=L +S and

[H,J] =0 and for which the Casimir relationship 3$|&)=j(j +1)|¢). Now, by representing

spin %2 topologically with the twists in FigurestBe observable number of double twists in the
topological pattern following OET, namely,, now matches up precisely with the empirically-

observable z-component of the total angular momnmentonamely j,. And in general the

permitted states and numbers of these states atgohnperfectly with all of the angular
momentum quantum numbeksn,s, j,s,, j,. This renews our attention to the question whethe

OET be used to provide a fully-topological undendiag of electronic structure quantization
(and by extension nuclear structure which has alaimshell patter for each of protons and
neutrons), and how this relates to the DWY monapoded the odd-numbered FQHE
denominators.

7. Review of Evidencethat the Quantized Fractionalized DWY Electric
Charges may be Synonymouswith FQHE Quasiparticle Charges, and a
Proposed Experimental Test

The whole original purpose of the last two sedigwhich yielded some unexpected
analogies to atomic structure) was to show thdtoaljh the gauge angla and the azimuth
angle ¢ appearing in (7.1) involve sets of angles diffgrioy 277 which are geometrically
indistinct, these angles are nonetheléspologically-distinct under OET and so can be
physically observable, at least in terms of havihg topological distinctness. This is a
necessary(albeit not sufficient) condition for these angles have physically-observable
consequences, for example, as the numerator anamileator in the fill factorv =A/¢ of

observed quantized and fractionalized DWY eleadnd magnetic charges. In this section we
shall review facts and evidence widely known orutit to be true, and evidence which has
been demonstrated thus far in this paper to be s evidentiary review will then lead us to
propose an experiment to test some inferences frosnevidence which inferences will be
detailed in the next section.

To the best of our present knowledge, the Dirac¥8ng (DWY) magnetic monopoles
have never been observed. So if they do exisy, wwaaild exist under some highly specialized
set of physical circumstances which certainly doinolude ordinary observations of electrons
either as free fermions or bound within the eleutrshells of atomic orbitals at temperatures
not near absolute zero. Because the DWY monopdleyg and indeed are defined by the Dirac
Quantization and Fractionalization Condition (DQR@)ich can be restated from (3.2) or (3.4)
and (3.5) before we began to consider OET, as:

Eoy="=120 A=02122£3..; 4= 1,2,3,4,5,6, (7.1)
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and because this DQFC is symmetric under the imd®ige i/ -~ e of electric and magnetic
charges, this means that the specialized set afitbmns under which these monopoles do exist —
if they exist — is one of perfect electric-magnesgmmetry in which Maxwell’'s classical
equations areJ” =0 _F% and P* =d_* F* where F* is the electromagnetic field strength

tensor,*F% =L ¢¥*F__ is the dual field strength tensor in flat spacetid” is the electric

current four-density and®” the magnetic current four-density. So the DWY opwoles — if
they exist — exist under natural circumstances wkixhibit a high degree of symmetry, indeed,
a high enough degree of symmetry to restore etegtagnetic duality to Maxwell’s equations.
So one question now becomes, what are the candttgecal conditions under which such a
high degree of symmetry might arise and becomeroabkle?

To the best of our knowledge, there are two nataadidate circumstances under which
nature displays a very high degree of symmetrye flifst is at GUT energies; the second is at
temperatures near absolute zero [27]. As discuatdde end of section 4, we expect that at
GUT energies, and most certainly at ultra-GUT emsrgnear the Planck scale defined by the
Planck masdv,, 01.22x 16° Ge\in GM,? = ic whereG is the Newton gravitational constant,

there will be many symmetries that we do not obsataboratory energies. Bu{l)emis not a
high energy symmetry group; indeed, it arises wifienelectroweakSu(2),, x U(1), is broken
down to U(1)em at energy scales established by the Fermi conggantand its associated
relatively-low vevv 0246 GeV, Further, the electric charge generafpr Y/ 2+ |, sits across
the generator¥ and I, of the hypercharge and weak interactions. So Gaf&qot the place to
be looking for electric-magnetic symmetry, becau§k)en is far from having yet been “born” at
GUT energies. The other candidate circumstandeoto for high degrees of symmetry, namely
temperatures near OK, on the other hand, may bidemi place to observe @(1)en electric-
magnetic symmetry. Other than the Fermi energies@ated with the highest occupied states,
virtually all other energy has been entirely drdimait of the electrons, and under such ultra-low
energy conditionsJ(1)em is certainly very firmly established. So if th&\Y monopoles and the
electric-magnetic symmetry they imply do exist und®me specialized set of physical
conditions, ultra-low temperatures appear to bedkarest and best candidate for being and
providing that special set of conditions.

In this paper thus far, we have demonstrated DiVeY analysis of U(1dn gauge theory
does lead to charge quantization and fractionatimads in (7.1), and in the last two sections, we
have demonstrated that these quantized numeratmis fractionalized denominators are
topologically distinct and thus are eligible be picglly observed, at least on a topological basis.
Further, we demonstrated in (3.8) that if the DWYnopoles exisand if the only observed
charges are those which can exist in a disentangtate theny =-A /¢ in (7.1) will become

restricted to only odd denominatogs =1+2 =1,3,5,7,9.. Setting aside the observed even
denominatorg =2 which we shall separately consider in Sectionitli@, an empirical fact that
in FQHE, the observed states have precisely the slenominatorsg =1+2 =1,3,5,7,9. as
are shown in (3.8), and indeed, also looking toréuiced gauge angt&d =A\/27=n=1,2,3..,
have precisely the same filling factors=A/¢ as are shown in (3.8). 3bthe DWY
monopoles exist and the only charges observed are ones which candamtdingled without
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counter-rotationthen electric-magnetic duality which likely can only bestored and observed
near the high-symmetry environment of OK will exhib quantization and fractionalization
which corresponds perfectly with the FQHE whichoadgppears only near OK, aside from the
denominatorg =2.

The next piece of evidence utilizes the topoldgicalings of the last two sections and
specifically (6.1). In order to establish that is a topological observable which is a necessary

(but not sufficient) condition for it to be a phyal observable, we ended up showing that
¢ =2j'=1,3,5,7.. which is equal to the maximum number of twists tten be observed once

an unwound DWY electron stai =1 with I'=0 hence ' =s' =1 has been disentangled using

only all-North or all-South disentangling operason So these DWY denominators
¢ =2j'=1,3,5,7.. do have a definitive connection to the state®pblogical twist under OET.

Additionally, thesej' and s and the related topological quantum numberms', s, j, all map

on a one-to-one basis, precisely with the angulamentum quantum numbers of the same
labels simply without the “prime” designations. Bat can be demonstrated by theoretical
argument or by experimental observation or by bibidt the angular momentum states of
electrons in atomic shells topologically groundedn this mapping ofl’,m’,s,, j, to their
unprimed cousind,m,s,, j, from atomic theorythen these denominators would be given by
¢ =2j=1,3,5,7.. with the “prime” removed, and would be equal tdcevthe total angular

momentum of the DWY electron. This would relate WY denominators to the total orbital
angular momentum quantum numbers of the DWY elastro

Additionally, becausgis obtained from the Casimir operatdt via J?|&) = j(j +1)|¢),
which operator by definition commutes with eachidagmomentum generator v[a]z,J] =0,

and becausel =L +S is a conserved observable beca{JBbJ] =0, this would connect the
azimuth via¢ =2j =1,3,5,7.. to a total angular momentum quantum number whgaot only
a topological observable, but is also a physicakolable in atomic theory becaL{ée,J] =0.
This is an additional necessary (but still not isight) condition for ¢ to be a physical

observable. Furtheif it can be theoretically or experimentally demostgtd that the angular
momentuml,m,s,, j, are topologically-grounded in theit,m’,s , j, cousins of OETthenthis

would mean the DWY denominators are intimatelyteslao the quantized states of electrons in
atomic shells.

Finally, if we are able to relate the DWY denontara ¢ =2j'=1,3,5,7.. to the total

orbital angular momentum quantum numbjeas the DWY electrons as just laid out in the last
paragraph, and these DWY denominators can also be connectedetd-@HE denominators,
then the FQHE denominators would become connectéotal orbital angular momentum, and
one could start to look fampirical correlations between the two. Thus, wla=2j =1,3,5,7..,

the FQHE states witlv =n/3 would all be states withj =32, the FQHE states witlr =n/5
would all be states withj =2, the FQHE states witlr =n/7 would all be states withj =7,
and more generally, the FQHE states witken/2j would all be states with total angular
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momentumj. Thus, by testing foj in each of the FQHE fill factor¥ =n/2j, and more
generally, by testing fol,m,s,, j, which are related tpto see if there is an observed correlation

between the fill factor denominator and the hypsitex-to-be-related angular momentum
guantum numbers, we would have an experimentalerdoit testing whether all of these
connections among topology and atomic structureCAMY monopoles are or are not physically
supported by the natural worl@his final observation leads us to propose an axpent.

If the one-to-one mapping developed here betweetofi@ogical I',m’,s,, j, and the
atomic angular momentum quantum numbdens, s,, j, is a true physical connection, which is to

say if the pattern of angular momentum quantum rersis rooted in the topology of OET, then
we would be able to remove the primes frght’,s’ in (6.1), and so rewrite (6.1) as:

N _ EAY EAY
V==—=—= = . ;

¢ 2j 2(+s) 2(1+1) . (7.2)
A=n=0,£1+2+3..; j=l+s=3 321 ..;1= 0,1,23...;s=3

So now, the odd-integer DWY denominatog =2j=2(l +1)=1,3,5,7.. would be
characterized completely in terms of the observadid angular momentum quantum numper
which is obtained from the Casimir relationshilf|&)=j(j+1)|¢) for a total angular
momentumJ =L +S for which [J*,J]|=0 and [H,J]=0 and J,[¢)=],|¢). But because
j =1 +% with 1 =0,1,2,3.. we can just as readily characterize the DWY denator in terms of
| which has the Casimir relationshig’ |&) =1(1 +1)|¢). This 1=0,1,2,3.., however, is the

exact samé which is used to characterize atomic orbital shelith the designations s, p, d, f,
etc., respectively named “sharp,” principal,” “di$le,” “fundamental,” etc. Specifically, using

|I) to denote “an electron in a particulastate,” these designations of the shell in which a
particular electron resides are definedsag1=0), p=|l=1), d=|1=2), f =|I=3), etc. But
becauseg = 2(| +1), we can also write these in terms of the DWY deinators ass=|4 =1),

p=|¢=3),d=|¢=5), f=[4=7), etc.

This means that the DWY monopoles are observed anywhere in theralatvorld,then
the whole number chargeg =1 with v=n should exhibit properties reminiscent ®5hell

electrons; the 1/3 unit charges with=3 thus v =n/3 should exhibit properties reminiscent of
p shell electrons; the 1/5 unit charges with=5 thus v=n/5 should exhibit properties
reminiscent ofd shell electrons; and the 1/7 unit charges wggh=7 thus v=n/7 should
exhibit properties reminiscent bghell electrons; and so on.

Consequently, the proposed experiment, in primcgoather simple: We already know a

great deal about the behaviors of electrons in @&twhells. For example, [32] and similar
references which are available illustrate the meavefunctions of various s, p, d, f electronic
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states. Additionally, we know that there are t&@p distinct electronic states in the s shell with
# =1, namelys=[1=0;m=0; s =+1). There are six (6) distinct electronic statestia p
shell with ¢ =3, namely pE|I =+],-1<m<+1s = i%), see also their topological cousins
with I'=+1 in (6.2) and (6.3). There are ten (10) distinec&onic states in the d shell with
4 =5, namelyd =|l =+2;-2sm< +2;5 =+1), see also their topological cousins with +2

in (6.4) and (6.5). And there are fourteen (14jidct electronic states in the f shell with=7,
namely f =[l =+3;,-3sm<+3;5,=+1). In general,2¢=4j=4(l +1) is the number of
distinct states for any giveh So if the various fill factorS/:n/Z(I+%) of the DWY
monopole were to be observed somewhere in theatatorld, and if the person observing these

fill factors was to give the name “quasiparticles’the charges that exhibit these quantized
fractional fill factors, then the quasiparticlestiwthe fill factor v = n/2(| +%) for any givenl

would be expected to come i21¢1:4(l +%) “varieties,” i.e., a number of varieties which is

equal to twice the denominator, where by “varietiase mean distinct states according to
fermion Exclusion Principles.

So now the question becomes under what conditiotise natural world, one might be
able to observe charges with the fill factors n/ 2(I +%). We know thatf the atomic quantum

numbersl,m,s,, j, are topologically rooted in OET, than= n/2(| +%) are the fill factors of

the DWY monopoles. But we also know that with éxeeption of the odd denominator 2, this
is precisely the set of fill factors that is obsatvin the FQHE, where these fractionalized
charges are in fact referred to as quasiparticl&o the question is whether these DWY
monopole quantized fractionalized charges are @t $gnonymous with the FQHE quantized
fractionalized charges. Based on the foregoingeawe, one might weuspecthat these are
one and the same, but it is not possible at thstjue to do more than make tinéerencefrom

all of the evidence discussed above that theggt be one and the same. There are good
argumentswhich can be made in support of this inference tede will be elaborated in the
next section. And then in section 9 we shall emde#o theoretically prove this inference by
showing how a low-temperature duality symmetry oafact be broken at higher temperatures
consistently with the well-established non-obseovatof magnetic monopoles in daily
experience.

But the most important direprroof or disproofof this inference, would be found not in
in theoretical argumentation, but in the observatio non-observation of FQHE quasiparticles

which for odd numbered denominators in the filltéaas =n/ 2(I +%) which exhibit properties
reminiscent of electrons with orbital angular motaeml, including exhibiting2¢ = 4(I +%)

distinct fermion exclusionary states for any gitdmence fractional denominatagg = 2(I +%).

If such a correlation was to be observed between RQHE denominators and the orbital
guantum numbelrthus the atomic s, p, d, f etc. shell states,ombt would this confirm that the

odd-denominator DWY states are one and the sambkeasdd-denominator FQHE states and
thus confirm the existence of DWY U(}) magnetic monopoles near OK in certain
superconductors subjected to large perpendiculgnete fields and so evidence — for the first
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time since Maxwell’'s day — the existence of Wglagnetic monopoles and electric / magnetic
duality in the physical environment of temperaturesar OK. Because such an observed
correlation would have also been based upon hasamgpected the topological OET quantum
numbersl’,m’,s,, j, to the atomic angular momentum quantum numbgrss,, j,, this would
confirm that atomic structure, and by implicatiamclkear structure, can be explained entirely on
the basis of the topological OET characteristicthefthree-dimensional physical space of four-
dimensional spacetime. This in turn would affirimaly answer Misner, Thorne and Wheeler
[18] by showing that orientation-entanglement asiglyloes have a very “detectable difference
in the physics” that shows up at the root of atoramd nuclear structure, and it would
compellingly validate Ross’ belief [28] that the @&ationships have a tremendously important
“topological role in physics.” And at the most tlamental level of theoretical physics, it would
extend the reach of geometrodynamic principles thto atoms and nuclei at the heart of the
material universe and advance the view that onatdayl become possible to fully explain the
entirety of the natural world on the basis of norenand no less than spacetime geometry itself,
and the topological OET features which are inheteriis geometry.

These are the reasons why it would be a valualdenamthwhile to conduct experiments
to closely observe the odd-denominator FQHE quasipes to seek correlations to atomic
angular momentum electronic shell structure. Nigwvus examine more closely, some of the
theoretical inferences which make it very plausibi@ such an experiment would yield positive
results to confirm all of these connections.

8. Three Theoretical I nferencesfrom the Evidence: Correlations between
Topology and Atomic Structure, Correlations between Topological Freedom
and Temperature, and the I dentification of DWY Monopoleswith FQHE; and
Principles of Topological Least Action

As developed in the previous two sections the ltmpoal quantum numbers,m’, s, |,
which summarize what happens under OET and thentdisgling of various entangled states
map directly on a one-to-one basis to the angulamentum quantum numbetgn,s,, j, seen
in the electronic shell structure of atoms. Alflle azimuthg used to define the former
topological numbers has exactly the same physieanimg as the azimutii about which the

latter angular momentum is defined. Therefore fils¢ theoretical inference we shall make, or
the first evidence-informed hypothesis if one prefes the following:

Inference 1: Orientation-Entanglement-Twist (OE&} ldirect, physical relevance
to and indeed is the topological basis for why dingular momentum quantum
numbersl,m,s,, j, have the values and interrelationships that theyhalve. In
other words, the one-to-one mapping between theoldgally-evidenced
I''m',s,, |, and the experimentally-evidencégn, s,, j, is not just a happenstance
concurrence. Rather, the experimental latter isdi@ct and immediate
consequence of the topological former.
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As we have already done in (7.2) in the last sactance it has been made, this inference /
hypothesis allows us to remove the “primes” fromtapological quantum numbers and now

regard these as the angular momentum quantum nenoba@lectrons in atomic shells and of

protons and neutrons in nuclear shells.

Although this mapping betwedhm', s, j, andl,m,s,, j, was found because of the need

to topologically-distinguish angular orientationsffeting from one another by27 sans
entanglement andl/z accounting for entanglement to provide a neceskargdation for the
fractional numeratorsA- =n and denominatorsg- in the DWY monopoles to be possible
physical observablest is critical to understand that this topologictd-angular momentum
mapping is totally and entirely distinct from th&\Y¥ monopoles It would have been entirely
possible, without even a whisper about DWY monogole have simply taken up Ross’ call in
[28] to “further work on the OE relations themsehand their topological role in physics,” gone
back to Figure 1(a) which is Figure 31.6 of MTWXE3], show that Figure 1(c) topologically
deforms from and so belongs to the same homotopypgas Figure 1(a), and then proceed to
analyze OET as we did in sections 5 and 6. Thawihly each quantized integer represent one
doublewinding rotation odoubletwist, and using single offsetting twists (netitigy zero) as in
Figures 6 to represent an electron, we would hasgaed the electron a reduced azimythr 1

to represent the topological dimensional transnautawvhich occurs after &2/7 rotation about
the x axis followed by disentangling the ribboransfers thaingle rotation about into a single
twist along z as reviewed after Figures 6. Then, we would hatated the NS vector by
I'=1,2,3,4.. double rotations, and after any specific doublaediig, disentangled the N and S
ribbons using various combinations of the N andiserdangling operations. Doing so, we
would have found that the total number of doubléstsvj, =m+s, and the combinations of

operations which led to those double twists co@dharacterized fol’ =0 double rotations by

$=|I'=0;m=0;§=+1); for I'=+1 double rotations byp' =|I'=+L,-1<sm < +1;§ =+1);
for 1'=+2 double rotations byd'=|l'=+2;-2<m<+2;4=+1), and for I'=+3 by
f' E|I':+3;—3s m <+3;s, :i%>, etc. And we then would have seen that thies®', s,, |,

topological quantum numbers map precisely with #emic I,m,s,, j, angular momentum

guantum numbers and would have been asking asemgresently whether this is a coincidence
or a real physical connection.

So because this mapping betwdem', s, j, andl,m,s,, j, is entirely independent and

distinct from anything having to do with DWY mondes or FQHE, and is simply the
consequence of “closely studying the OE relatidmsmselves and their topological role in
physics” per [28], we can evaluate this first tleimal inference that’,m’, s, j, andl,m,s,, j,

are genuinely physically connected without any tiiduor reference whatsoever to DWY
monopoles or FQHE. So, setting aside any thoupBPMdY monopoles or FQHE, and thinking
solely about atomic (and if we wish, nuclear) stioe, is this a plausible inference?

At present, thel,m,s,, j, angular momentum quantum numbers (taken also thigh
principal numbem not yet examined, which will make its topologieglpearance in section 9)
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with 1 =0,1,2,3.. and -l <m<+|l ands,=+3 and j,=m+s, (and| <n) are simply a set of
rules that are required to enforce Exclusion ottetaic states in atomic shells. But these rules
are heavily validated empirically by the structofeéhe Periodic Table of the Elements itself. If,
as a theoretical physicist one adopts the creditaldw which has been taken by the likes of
Einstein [21] and Weyl [22], [23], [24] and Wheeld9], [20] that geometry and by extension
topology should eventually be understood to furrtisé basis for explaining all of physical
reality, then on broad, fundamental geometrodynaanid topological principleghere would
have to be some geometric or topological explamafar the precisel,m,s,, j, observed in

atomic structure, even if that explanation is mespntly known. If one further credits the study

of orientation-entanglement in [18] as being a @nynapproach to understand the topology of

the physical three-dimensional space of spacetme then finds as we have done here that this
topology produces a set 8fm', s, j, which map precisely tb,m,s,, j,, the inference that these

are connected to one another appears almost ireddeap For, if this mapping between
I''m',s,, |, of OET andl,m,s,, j, of angular momentum each using the same azirguts not

the reason why them, s,, j, are empirically observed to be they are, then whtite reason?

So if this inference is correct and tHan', s, j, of OET are in fact the foundation for the
I,m,s,, j, observed in atoms, what things can we learn froentopology which might better

inform our understanding of electrons in atomicllshend thereafter allow us to account for
DWY monopoles and FQHE? To consider his, let tgrneto Figures 6, and more carefully
walk through the process already somewhat revieweskction 5, of rotating the XS vector
through I'=+1 double winding about the z axis. It is advisabbe the reader to have
constructed this bar and ribbon apparatus andttigeonfirm what is about to be discussed.

The first thing to notice is that this operationkea use of all three of the x, y, z spatial
dimensions. The ribbons are aligned parallel whinz axis, and the rotatioh — ¢ + 47 takes

place through the x-y plane. Now as we startedisouss following Figure 2, if we think of
Figures 6 as if the ##S bar (OET “object”) was the seat of a child’s syvand the ribbons were
a pair of “chains” (OET “threads”) which have ofttseg twists (total twist conservation) and
which hang from the top bar which is the “fulcrumf’ the swing (OET “environment”), then
after we have done this rotation, if we now “let gnd give the swing seat freedom to rotate in
the x-y plane, then under the force of “gravityheétswing seat will start to rotate about the z axis
oppositely to how it was originally wound, it wilo somewhat past its original configuration
due to its rotational inertia, and it will thereaftslow to a stop. Then it will reverse direction,
and do this through a few pendulous cycles unéldbmping effect of friction has drawn off all
energy and the swing seat has returned to itairstate of Figures 6, which initial state we may
think of energetically as a “ground state.”

But as before, let us say we dot let the N> S vector rotate any more. Instead, let us
remove the degree of freedom along the y axis ackl éverything into the two-dimensional x-z
plane, not allowing the ##S vector to rotate back. That is, let us now “Zesé pun very
intended, the OET *“object” in relation to its “ermmment.” What will happen then? As
discussed following Figures 3, if we do permit aainy = +& ribbon incursion into the y axis

simply to allow the ribbons to be moved around theS bar which is now immobilized from
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rotating relative to the environment bar, then —vbyue of having done a4sr rather than a

+277 rotation — we can still disentangle the ribbonsnfrone another and end up back at a
disentangled state. But, depending upon what nldjerations we use to disentangle, if we do
not balance the number of operations using théobbn with the number of operations using the
S ribbon, then we will introduce some additionalibdie twists which were not there at the start.
And if we regard a less-twisted ribbon as represgrda lower energy state than a more-twisted
ribbon, then we will not have returned fully to theund state. For, rather than getting back to

s =|I'=0;n=0; §=+1) where each ribbon had no twists other than thglesitwist used to
represent spin Y2, we will end up with an=+1 double twist. And if the original twis$, =+1
aligns with them' =+1, then we will havej, =m'+s,=+23 totaling three single twists, rather

than j,=+1 and one single twist that we started out with. dAthis state with

p'=|l'=+L-1sm<+1g =+1), when j, =+ with a pair of three offsetting twists, will be

energetically elevated from the ground sta‘te| '=0;mM=0;3 :i%> with its pair of single
offsetting twists.

What we are able to deduce from all of this, areapparent set of topological “least
action” or “least energy” or “topological geodesidynamical principles which it is helpful to
keep in mind as we think about how to relate thd @ipology to temperature which is a driving
variable in FQHE, and thus think about temperatopelogically:

Topological Least Action Dynamical Principles: i &->S bar has been rotated
from its ground state through an even number ddtiarts in the x-y plane and
had its ribbons become entangled with one anothea gesult, and if nothing
prevents the NS bar from rotating back, then this bar will natlyreotate back
to its ground state with no entanglement. Howetlfethere is a force which
prevents the WS bar from disentangling by a counter-rotation tigto the x-y
plane, then that i S bar will still naturally evolve to become disemjéed by a
passing the ribbons around the>$ bar with a small but finitey = +& incursion
into the y axis, so long as there is nothing alsevgnting this smally =+¢
incursion. Further, if this smal =+& incursion is permitted, this disentangling
through ribbon passage around the 8 bar will occur even if the net result of
this disentangling is that more twists are creat€derefore, disentangled ribbons
generally define a lower energy state than entangilebons, irrespective of
twists. Finally, if e =0 and no incursion is permitted into the y axis wgbater,
then the bars and ribbons will become completalydn as is, with no entangling
or disentangling occurring at all.

How do we know this is true® our first theoretical inference is correct than,s,, |,
emanate from the topologicdl,m’,s,, j,, then we know that this is true from them,s,, |,

structure of the atoms themselves in the perioalidet Why? If the electrons in the atoms
preferred to remain in states of topological enkamgnt, i.e., if states of greater entanglement
had lower energy than states with additional twitsn we would not observe such things as p
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shell electrons with the stategE|I =+, -1sm<+1s = i%) or d shell electrons with
d=|l=+2;,-2<sm<+2;5 = i%> with j, =m+s,, etc., given that when the primes are returned
to these quantum numbers, we haye=m’+ s, representing the number of offsetting double

twists at the end of the disentangling process. e Tact that wedo observe j, =+3

corresponding to 3 twists in some of the p electr@mddo observej, =+32,+2 corresponding
to 3 or 5 twists in some of the d electrons, dadbservej, =+3,+2,+I corresponding to 3, 5
or 7 twists in some of the f electrons, all of whiare more twists than th&ngle twist

j,=s,=%% ofthes=|I1=0,m=0; s :i%> individual Figure 6 electrons that we started with
tells us that to maintain exclusion, nature willetitangle the electrons and put them into states

with extra twists instead of leaving them entangied can, i.e., if it is allowed a smally =+¢
incursion into the y axis to disentangle ribbonBecause nature will always migrate to the
lowest permitted energy state when it can, the tfaat we do observg, =+3,+3,+< tells us
that disentangled states have a lower energy tla@sswhich remain entangled. States such as
those with j, =+3,+3,+ are the elevated energy states that fermionsegréred to enter into
when they assemble into atomic systems, in ordeatsfy the requirement that they maintain
Exclusion. And in all of this, physical principles least action and lowest energy are seen to
correspond to topological principles of least egtament and least twist and a priority for least
entanglement over least twist which means genetiadli/less energy is needed to maintain twist
than to maintain entanglement. (One can suppa@gehbre are some cases where nature might
prefer a small entanglement over a very large numbevists, but for the cases studied here that

does not appear to have presented itself.)

With this introduction to topological dynamicst les now talk about what happens when
an electron is added to an orbital shell of an atomconversely, when it is removed from a
shell. Energetically, of course, some amount ofzation energy needs to be provided for the
electron to join the atom, and these required mfion energies have been well-catalogued
empirically, see, e.g., the web references [33jraphical form and [34] in tabular form. But
our interest in this discussion is to understaredtdipological processes which occur when an
electron joins or leaves an atom. And to use arede example, let us suppose that we are
starting off with a fluorine F nucleus that hasen{®) protons, but the orbital structure only has
eight (8) electrons, so this atom is positivelyiz@a and needs to secure a ninth electron to
achieve neutrality. The reason we choose F, isthiis the first element for which at least one

of the electronsnusthave a total angular momentujn=+2, which corresponds to three-halves
of a topological double twisf, =+2, which is a conserved observable, and which gelathan
the j, =s,=+1 of a free electron and in particular has more wge double twist than the

electrons in Figure 6.

So, introducing the principal quantum numberwith | <n as usualthe first two
electrons which bring us through H and He hase|n=1,1=0m= 0,5=%% ,j=+1). The
next two electrons which pass Li and Be if they kde the lowest energy states have

2s=|n=2,I=0m=0,5=% ,j=+1). The next two electrons for B and C with
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2p, E|n: 2,=+1m= 0,5 =+% ,jZ:i%> for the first time have a non-zetp which means
topologically, their N> S bar (whatever that corresponds to in physicditygdas been wound
through |’ =+1 double rotations. The 0 subscript pj designatesm=0. But then, once the
two bars have been given a frozen alignment, tlsentangling would take place using a
balanced{ N, S operation, yieldingn =0 new twists, so that the total number of doublestsvi

remains atj, =+%. For N and O we must ha®p, =[n=2l=+1m=+15=31, [=+1)

which for the first time introduces a non-zemo=+1, (the 1 subscript ir2p,_). But if the spin
S, =F3 is aligned opposite tm (the — subscript ir2p,_), we will still have j, =+, which still
corresponds tg, =++ of a double twist. It is only for F that for tfiest time, we must have at

least one2p,, =

n=2,l=+1m=+x1s=%3 ,jZ:i%> electron, and this electron will have the
topology of j, =+32 double twists, or three single twists.

So, when thip,, electron with topologicalj, =+3 is added to create a neutral F atom,

what happengppologically? Energetically, we can refer to [34] and find th&t 17.4228 eV of
energy is provided to a freks electron topologically represented by Figures Bictv energy
enables the electron to elevate irgp, and join the F. If we had a Ne nucleus with t&0)(

protons but only nine (9) electrons thus positivielyized, and wanted a tenth electron to join,
then anothefis electron would need to be given an even larges6th eV of energy and turned
into the secon®p,, electron in Ne, also with thg, =+32 topology of three full twists. But the

guestion we are driving at is topological: what tltese ionization energies purchase,
topologically? What they purchase is¢a— ¢ + 4 rotation of the freels electron through a

I"=+1 double winding. Once this double winding has o, the electron is suited to join the
atom because it has sufficielit (This is the case for the earliér=+1 electrons in Li, Be, B,
C, N, O also, but these still could maintgin=+3 and so did not need quite as much energy to

add a full double twist. For example, the new &tatin N needs 14.5341 eV and that in O
needs 13.6181 eV.)

Now, however, for the electron to join the atoneathe ¢ - ¢ + 4 rotation has been
purchased with some ionization energy, any furtb&tion must cease, and the>$ “object”
bar needs to become fixed relative to its “envirentd’ After all, this electron is now joining an
atom, and as such, it is no longer free, but valldnto fall in line as part of a group of electrons
in orbital shells and so will have its freedom éorient with respect to its environment, i.e., the
rest of the atom, wholly or partially removedhis is a very important point, because this tells
us for an electron to join an atom, it must surreind degree of freedom, at least insofar as its
N->S “vector bar” is no longer able to fully rotate bugh the x-y plane.Finally, because
entanglement is still an elevated energy state wiitl be lowered by topological least action if
possible, so long as there remains some freedora $onall y = ¢ incursion along the y axis,
the ribbons can still be disentangled, but withrisult that there may be some additional twists
that were not present when the electron was adietron. So, some of this ionization energy
also purchases the latitude for tlye= & spacing needed for disentangling. And in the end,

after everything is disentangled, some of this gyevill be stored in the extra topological twists
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that were not present when t@g,_ E| n=2l=+1m=x1s=%3,}= i—%) electrons were free

|=0,m=0,s =+1,j,=+1) electrons.

With this background, let us now start to thinkiagebout low-temperature FQHE where
the electrons are tightly constrained to two dinems As a result of the discussion just
concluded, we understand thatany temperature environmergimply by being in the shells of
atoms electrons are already somewhat topologically tamed to two dimensions, because
their N> S vector bars are not permitted to make full rotadiin the x-y plane. But, in this still-
unfrozen (i.e., not yet near OK state), there i shough freedom in the y dimension
schematically represented s= ¢ for the ribbons to disentangle themselves fromhigher
energy state in which they are entangled with amatheer, into the lower energy states where
they are no longer entangled but may gain some eéaprological twists which they did not have
when the electron was free. It may well be and/ Vikely is the case even when the electrons
are in the shells of atoms, thabme limited rotations still permitted through the x-y axis. But
this permitted albeit limited rotation — to whatewdegree it is permitted — is insufficient for the
electron to disentangle by undergoingga- ¢ — 4 rotation to undo the origingp - ¢ +4mr
rotation like the child’s swing will do if one siryplets go. So having the ribbons / threads
disentangle is the next best choice, and this phdselectron into its observed exclusionary
guantum states as has been reviewed.

So now, let's discuss temperature and heat gewneraith an eye firmly pealed on
FQHE. Undoubtedly, the removal of heat from anjecbremoves energy and removes some
freedom to move about in the physical three-dineradi space of spacetime. Through the
Boltzmann relationshife = KT one can obtain the energy equivalErdf a given temperaturg
A gas which is cooled has less energy and reduoesphysical agitation of its atoms and
molecules in the x-y-z physical space. When the igacooled enough to phase transition to
liquid, there is a further reduction of freedonthe physical space. When the liquid turns solid,
various crystalline or lattice or similar structsrare formed and there is even less spatial
freedom. And when all heat is removed and the &aipre approaches absolute zero, the
spatial freedom is at an absolute minimum and tilg energy left in an electron is the Fermi
energy of the state it occupies (and of courseegsmass). And for a superconductor exhibiting
FQHE, in this state near OK with large perpendicuteagnetic fields applied, the electrons or
guasiparticles are understood to be tightly restido two dimensions. But what is really
happening here, topologically? More directly te thoint, we have articulated the theoretical
geometrodynamic view that all of nature ought tounelerstood based on geometry and the
topological properties of geometry. Sehat is the correct topological understanding oahe
and of temperature which measures heat?

Clearly, the very act of joining an atomic shelimoves from an electron as represented
in Figures 6,sometopological freedom to move about in the y-dimensibut leavegnough
residual freedomn the y-dimension at least for the ribbons orrédds” which connect the
electron to its environment to become disentangled, presumably for some limited rotation in
the x-y plane, but just not enough for a full radatwhich would allow ag — ¢ + 471" rotation
to simply reverse itself vigg - ¢ —47'. We have spoken abstractly of this residualdoae in

terms of ay = £ incursion into the y-axis, which is certainly neddor ribbons to disentangle.
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But now let’s progress this discussion furtherthis lengthe which we are schematically using
to represent freedom in the y dimension a fixed loemmor can it vary? And if it can vary, in
relation to whaphysical observablesiight £ vary? Given all that we have just reviewed, heat
and temperature would certainly be good candidat&®. let us now introduce our second
inference or informed hypothesis:

Inference 2: The magnitude of topological freedomiclv an electron has to
operate in the y dimension i.e., in all three spdicgensions, correlates not only
with whether it is free or in an atomic shell, baiso with heat and / or
temperature.

How might this work? Let's start with very highmeeratures, where many elements are
in plasma phase, and where the defining featurthefplasma is rampant ionization. What is
plasma? Itis a phase of matter in which electaresfreed from their nuclei and float around in
something of a soup and are exceptionally respensos electromagnetic forces. And,
topologically, what is ionization? As just discedswhen we add an electron to an atom which
changes the atom’s ionization, we supply enoughization energy to rotate through
¢ - ¢+4m'", hitch the electron up to the rest of the atomrémoving enough of its x-y
rotational freedom to stop it from unwinding wa— ¢ —471', and then disentangle the ribbons
instead. So reversing course, how might we memovean electron from a neutral atom and
create an ionized state, and so do with enoughsatonereate a plasma with a high degree of
ionization? Simply, provide enough heat to restive freedom of many electrons to rotate
through the x-y plane fully without restriction #tey can uncouple from the atoms and become
the freely-flowing electrons of a plasma. So ia thghest temperature extreme of a plasma, the
schematice in y==*¢ is not a small length, it is a large length. Sipeally, it is large enough
so that there is complete x-y-z freedom and thetmles can topologically rotate in the x-y plane
at will and so ionize in and out of atoms equatlyval.

At the other extreme is OK. Between plasma plaasksolids near OK, the schemadic
in y=x& goes from offering no y-axis restriction, i.e. qaete 3-dimensional freedom to

electrons in the plasma phase, to some y-axidagsir sufficient to keep the electrons bound to
the atoms in a gas or liquid or solid state watlgrowing smaller and smaller as the temperature
decreases, to no y-axis freedom at all at OK. t8ppsng short of trying to quantify this for the
moment, we certainly expect qualitatively that ardase in temperature and / or heat will
correlate with a decrease in thye= ¢ freedom afforded to an electron and that the ttians
from ultra-high to ultra-low temperatures is topgptally understood as a transition from
electrons with unrestricted x-y-z freedom to somastriction along the y axis to rigid, frozen
two-dimensional constraint that entirely removek aglcess to the y-dimension.  So what
happens at absolute zero? New 0. There is no freedom whatsoever &mythingtopological

to utilize the y dimension. There is no permittetation whatsoever of the-XS vector in
relation to the environment i.e. relative to thetref the atom and its nuclei. And very
importantly, there is no movement whatsoever ofrthieons / threads through the y-dimension.
If something is entangled it stays entangled. othething is not tangled but is twisted, it stays
not tangled but twisted. Whatever it is, it congs to be. Everything is — to use a very apt
descriptor — entirely frozen at OK. To the questiof why there is an absolute zero of
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temperature in the first place, the topological C#iBwer is this: absolute zero is reached when
an OET object is given no latitude at all to rotat® the y dimension, and the threads which
connect that object to its environment also havér@edom to move at all into the y dimension.
It is a complete and total freezing of an electwdrich has some temperature-correlated three-
dimensional freedom at higher temperatures, tolactren entirely topologically restrained to
two dimensions at OK. So throughout the entiraditéoon from high to low temperature during
which the y-freedom goes from being unrestrictedh¢ong more and more restricted, the final
transition is toe =0 at OK. Now the ribbons can no longer move airdath the y dimension.
Now, there is ajualitative change that has occurred from any other stateevherO because
even the ribbons / threads cannot move. Now thieee@ET for each electron is frozen into the
two dimensional x-z plane.

If we think of this total removal of freedom inetly-dimension as a very tight “tuning” of
the electron’s topological properties which remoess$raneous topological activity in the y
dimension — sort of like tightly tuning a bobslexthe tracks on which it slides to minimize
extraneous jostling movement normal to the trackd ansure a smoother ride with less
resistance — then we can think about the supercbindy observed in certain metals at low
temperature as the result of fine tuning the ebtectopology tightly into two dimensions: By
fine tuning the electron topology in relation ts gnvironment by removing the y-dimension
freedom, so too are removed the frictional foraas therefore resistance that is observed absent
this fine tuning. If the electrons are the bobslelbject” and the superconducting metal is the
tracks “environment” and the resistance arises fittenOET relationship between the object and
its environment, then near OK the electron objectstightly tuned to the their environmental
tracks by the complete removal of the y freedom #ng the resistance of jostling between
object and environment is also removed.

All of this provides a qualitative, topological wrdtand of superconductivity. So now,
what about DWY monopoles and FQHE? And how do va&arthis all quantitative? We have
demonstrated that DWY monopoles exist and their implied electricdgnetic symmetry exists
under some physical conditiorthentheir electric and magnetic charges will be quaadiand
fractionalized. We have also demonstrated tiiathese DWY charges are all to be in
disentangled statethenthe fractional denominators for these charges vallodd integers, see,
e.g., (7.2). In sumif the DWY monopoles exist near OK in disentanglemtest only, then
guantized fractionalized charges with only odd getedenominators will be observed near OK.
And, if DWY monopoles exist and the only permittedtangledstate is¢ =2 (which is

entangled because this state ig & 27 » ¢ = 4/7 rotation of the electron througBsr which

state cannot be OE disentanglatignthe quantized fractionalized charges will haveyardd
denominators, with the exception of the even denator 2. Finally, it is empirically-
established that FQHE is a near-OK quantized, itraatized charge phenomenon which does
exhibit only odd integer denominators, with the eptton of the exclusive even denominator 2.

All of this evidence leads us to make a third ewick-based inference which we shall
pursue quantitatively in the next section:

Inference 3: DWY monopoles and electric / magngfimmetrydo exist in nature
under some physical conditions, and the physicalditmns under which they
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exist is in certain materials near OK. Thus, n@kr one of the symmetries
restored is the electric-magnetic symmetry whickegirise to the formation of
DWY monopoles with quantized fractionalized odd-o®mator charges as
found in (7.2). The electrons underlying these DWhonopoles must be
topologically disentangled, with the exception tha only permitted entangled
state is¢ =2, and therefore, the observed charges will have ahlg odd
denominators, with the exception of the even denator 2. Because this
precisely maps to both the conditions under whi@HE is observed and to the
guantitative features of FQHE, we infer that thase not separate and distinctive
phenomenatather, they are one and the same phenomenon

As a consequence of this inference, what we oriyntinink of as fractionally-charged
guasipatrticles, are instead seen to be ordinaggreles with a quantized fractional charge which

is v=n/2(1+1) =n/2j with the orbital quantum numbér 0,1,2,3.. based on (7.2). In other

words, v =n/3 quasiparticles are electrons in thel orbital angular momentum state which
were topologically rotated through=1 double windings prior to joining an atomic shelhich
are now frozen into their orientation and entangetwith all y-freedom removed;=0. And

v =n/5 quasiparticles are electrons in the 2 orbital state followingl’' =2 double windings,
frozen to =0, etc.

The challenge which we now take up in the nexti@ecis to understand how it is that
we can pass between a state near OK where DWY notesopo exist and so the gauge theory
inexorably leads to quantized fractionalized chsyge the observed states at all other
temperatures where there have never been monopb$esved and charges are quantized but
not fractionalized (other than fractionally-chargegiarks, of course, which come from
Q=Y/2+ 1, and not FQHE). One might picture that topolodicathe “pinching” of the
ribbons wheng =0 at OK with all topological freedom in the y dimens completely removed
somehow causes the electric and magnetic fieldgarbto do strange things so that the magnetic
fields suddenly exhibit net non-zero surface qu{éﬁF = u and the charges suddenly become

quantized independently oQ =Y/2+ I, and also become fractionalized. And the OET
topology provides us a backdrop, because we knovanedooking at a situation in which the
“N->S object” bars and ribbons at the bottom (soutb)siad Figures 6 are completely fixed and
permitted no independent freedom in relation to“#m/ironment” bars at the top (north side) of
Figures 6. But to fully work this through, the gtien of how a transition might occur between
no monopoles and no fractionalization in most ptaissituations, to there being monopoles and
FQHE fractionalization in certain materials near, @best approached by returning to Wgl)
gauge theory, and the DWY monopoles already studisdctions 1 through 3.

9. How DWY Monopoles and Charge Quantization and the FQHE near
OK, Symmetry Break into a Thermal Residue and Energy Quantization and
Atomic Shell Structureat Larger Temperatures

Let us now return to section 1 and retrace oueligment very carefully to see if we can
garner a better topological understanding of hogv (WY monopoles might come into being
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including a restoration of electric / magnetic syetrp near OK. Topologically, we now

understand that near OK the electrons become tgjualidy confined to the x-z plane without any
freedom of incursion whatsoever into the y dimensaad the south “object” bars in Figures 6
become completely immobilized in relation to thethdenvironment” bars.

We start with equation (1.3 dé" / ie=(u/2m) d, becauséf equation (1.3) is true,
thenrestating (3.2), it is also true that the electih@argee and the magnetic charge will be
related to one another B = 277(n/ 1) wheren andl are both integers. This would mean three
things all at once: if (1.3) is true, then 1) thexan electric / magnetic duality symmetry because
eu = 277( n/ I) is invariant undee - y interchange; 2) these charges are quantized beoasis

an integer; and 3) these charges are fractionabeeduseé is also an integer. This of course is
the Dirac Quantizatioand FractionalizationCondition (DQFC). In section 1 we segregated the
study of the DQC and so developeg =277n in (1.6) without the fractionalization to keep

section 1 limited only to what is already well knoand widely accepted. But in reality, beyond
this pedagogically-motivated segregation of the DIQn the full DQFC, there is nothing that

prevents us from asserting that(1.3) is true,then e,u:2ﬂ(n/ I) is true. Equation (1.3) is
solved by (1.4), and (1.4) is in turn fully solvéor all states in (3.1) byeu=27m(n/l).

Logically, the electric / magnetic symmetry and tjuantization and fractionalization all emerge
together. The quantization can only be separatecth fthe fractionalization by what is
effectively restricting consideration tb=1. Later, we connected these quantum numbers
n/l=A/¢ to the topology of physical x-y-z space and shovegdexample that if we restrict

ourselves to only disentangled electronic statesetivould only be odd denominators. But it is
the DQFCeu =27 n/ 1) of (3.2) which is the raw logical conclusion flowi from (1.3).

The reason this is important is because in evgryakperience, we dmot observe
electric magnetic symmetry, and we dot observe charge fractionalization (pace quark
charges). We only observe charge quantizatiortlzeids for a different reason, namely because
of the electric charge generat@=Y/2+ |, emerging from electroweak symmetry breaking.

While ey =27(n/1) may be true under some specialized set of physwaditions, and while
we have inferred and are presently working to dgvehe view that this is true near OK and is
observed as the FQHE, we can state with certaidy dy =27(n/ 1) is not true in general

because it is not observed in general. If we looly at the logical implication relation8 - B,
then what we found earlier is|e"dé"/ie=(u/2m) |~ [ @=27( 1 )]. The
contrapositive~ B -~ A of this is ~[ ey =27z(n/l)] - ~[ €" d&" / ie=(u/27) $]. In all
known observations to date, certainly in observetiaway from OK, we have found that
eu = 277( n/ I) is not observedi.e. ~ [e,u: 277( n/ I)] , because electric / magnetic duality is and
charge fractionalization is not generally observ&a the logical conclusion from contrapositive
logic is that generally~ [e“’\ de&" / ie=(u/2m) db]. That is, equation (1.3) isot trueas a
general rule because there is neither observettielemagnetic duality nor any fractionalization
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as a general rule. And if the inference is cortbat the DQFC is only manifest near OK, then
e'""d&"/ ie=(p/2m) @ can also only be true near OK. So there mustobeething that is

routinely being overlooked not only by this autlmt by everyone else in the DWY monopole

derivation, before we even get to (1.3). Thus, meed to return to section 1 and scour
everything that gets us to (1.3) in light of all nave learned here since (1.3), to find out what is
being missed.

Specifically, if the third inference in the lagtcsion is correct that the DWY monopoles
are physically real near OK and responsible for EQkhen e dé&" / ie=(,u/2ﬂ) @ is also

physically true put only near OK So as we carefully turn over how we got to (v need to
look for anything that is assumed to be generallg,twhen in fact it is only true near OK. So
let’s start to scour.

We know thatF =dA is a generally true relationship, because its eguences are
observed throughout electrodynamics and in quanghysics, and thaid=0 is a mathematical
identity of differential forms geometry which issal true in general. We also know that

A- A=A+e"dé/ icin (1.1) is a correct and generally-true statenoéritow a gauge field
transforms, due to the gauge symmetry which is feanihroughout nature generally. We know

that if a magnetic charge exists it will be definda ,u:#F and that using
F:(,u/4ﬂ)dcosﬁd¢ in this surface integral properly reproduce)s:qj}F because

gf_[)(,u/4ﬂ)d cosfdg = (u /4T)Iond co§j§”d¢ which evaluates upon definite integration to

(u14m) cosﬁ|§¢|§” =Uu. Further, because F=dA and dd=0 we know that
F=dA=(u/4m) dcosfdp =(u /41) d( co¥- K) dp will be correctly reproduced with any
constantK in A=(u/4m)(cosf-K)dg. Of course, these relationships containipg
presuppose a magnetic charge but that is the proposition being tested, notoaarsight in
logic. Finally, because general coordinate irafae allows us any choice of coordinates, we
can choose A, =(u/4m)(cosd-3dp and A =(u/4m)(cosf+3dg to avoid any
indeterminacy at the north and south poles, argdttia is not limited to any special circumstance
such as OK. And thereforél — A, :(,LI/ZIT) dg is a proper statement of a perfectly general

relationship between these two coordinate patches generally valid and fully determinate
system of coordinates. So with all of these ingmet$ being correct and generally true, what are
we missing?

Starting with A, = A, =(u/2m) dp, we can easily rewrite this a& = A +(u/2m) dp
as in (1.2), and we are still darra firma But now, when we take the next step and regard
A=A, as simply a gauge-transformed sta#®, of A,, and proceed to write

A, = A, +(u/2m) dg, the problem begins. For as soon as we wige= A +(x/2m) dg in
the form of the gauge transformatiof, = Aq+(,u/27r) dg, then the combination with the
certainly-true A -~ A= A+ e d&€ / icin (1.1) leads us to (1.3), and (1.3) in turn ioebly
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leads us to electric magnetic duality and fracti@ed charges that we do not generally observe.
So what is wrong here? Why is it a misstep to mkg® as a gauge-transformedy, i.e., to

assume tha# = A, at least in gener&l What if, as a general ruie, the physical worldthere
actuallyis no gauge transformation by which the north patah be transformed into the south
patch? What if these north and south patches of the gdiefe A= A dX' are observably-

distinct in general and their observable distinstnis only removed near OK? Or, going back to
topology, what if the north environment bars ané slouth object bars in Figures 6 have some
freedom relative to one another in general, ang t¢wave their mutually-separate freedoms
removed near OK?

In other words, might it be thak, can only be gauge transformed indg in the limited

environment of temperatures near OK, and mighe ithat otherwisan the physical world not at
OK, there is arobservable distinctnedsetween theA, and A;? And might it be that this is

topologically represented by the immobilization vbe¢n the OET “object” and the OET
“environment” near OK juxtaposed against the retatireedom between the object and its
environment in the physical world not at OK? Letstudy this possibility more closely.

When we assumed to arrive at (1.3) that= A, we were assuming that these two
gauge field patches over the closed surféj‘&d,E = u surrounding the magnetic charge differ

from one another by nothing more than a gauge foemstion. Written using the vector
potentials asA;, = A , = A, +0 A, this A;= A is an assumption that the gauge potentials
on the two patches about what then turns out tarbelectric and magnetic charge, differ by
nothing more than the gradiedfA of a localunobservablghase/A(x”). And because\(x")

is not observable, we are assuming that there ishservable distinction between the gauge
fields on the two patches. But suppose thesdramd south gauge field patclae observably

distinct, in physical reality. Suppose that in physicallitg A, # A, as a general rule, i.e., that
there is no gauge transformation that can getars fA, to A; or vice versa. Suppose instead
that the assumptior, = A is only true and thus permitted close to OK, &mat bther than at

OK there is no transformation whatsoever by which horth coordinate patch can be gauge
transformed into the south patch.

Quantitatively, suppose instead thgt , = A, +¢, for the gauge field of each charge,
where ¢, is some four-vector whiclkannotbe expressed merely as the gradiépf of an
unobservable local phasg(x“) and so cannot simply be gauged away idfé . Using the
one-form £ =¢£,dx“, this may be written agy, = A, +¢&, and the deliberate analogy is to the
y=z& spatial freedom except whea=0 near OK which we used during our topological
discussions. The gauge transformation (1.1) ik #fj = A, + € d&'/ i¢ for the north patch,

and the north and south patches are still relayed\o= A, +(,u/277) dg . But now, rather that
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assuming as we did at (1.3) th&t = A, we are assuming that in gener&|, = A, +&, where
£=¢,dx" #0 in general ands a physical observahle

Because the gauge field, has physical dimensions of energy, this new veeowill
likewise have physical dimensions of energy. fidien of energyepresented b, is electrical
potential energyso if A, and A, differ by more than just a gauge transformatibrs tells us
that the form of energy represented §y must be aifferent form of energy And given the
context of this discussion, the suspicion whichne® need to confirm is that, represents heat
energy. Ife, does represent heat energy then we would lBgwe0 at OK, andA, , = A, +¢,
would becomeA , = A, at OK, and the DQFC would come to life at OK, ame could

understand the FQHE using the DWY monopoles at BKd then we would be saying that the
north and south gauge patchég, and A, differ from one another by merely a gauge

transformationin the absence of all heabut differ from one another by more than a gauge
transformation in the presence of heat energy septed bye,. And this would in some way

help to unify U(1), electromagnetic gauge theory with thermodynamigs.let's now develop
this formally.

First we may writeA; = A,—&= A, +(x/2m) dp by combining the two expressions
containing A;. Then, writing this asA, = A, +(u/2m) dp+e= A+ €" d€ / i which also
employs the gauge transformatidf) = A, + € d&' / i¢, and eliminatingA,, yields:

_ie-moléA =H e, (9.1)
ie 217

This is the generalization af " d&" / ie=(u/2m) dp in (1.3), to the circumstance where there

is an observable distinctness between the nortlsanth gauge patches which cannot be gauged
away by a gauge transformation. Based on all we lidscussed, we expect thatwill be
temperature dependent, i.e. tlzat £(T), and that at absolute zerg(0K) =0. Thus, very close

to OK, (9.1) will becomee™ de" / ie=(u/2m) d, and based on what was discussed at the start

of this section this will mean thag = 277(n/ 1) near OK. This in turn will mean that there will
be an electric / magnetic symmetry near OK withngzad fractionalized charges. And as also
discussed, if the only permitted states are disghd states, this will yield only odd
denominators just like in the FQHE. And if we algermit a single entangled stage =2
(which we shall study in the next section), thers twwould entirely reproduce the observed
FQHE in all respects, with only the denominatgrs-1,2,3,5,7,9..

With (9.1) however, we now have a way to study wigppens away from OK, in the
physical domains where we do not observe magnatimopoles, or fractionalized charges other
than those of the quarks. So let us find the gwistto (9.1). First, related in some to-be-
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determined way tag(T), let us posit a “thermal functionT(T) which is also a function of

temperature. Then, working from the earlier soltid.4), and using the reduced azimuth
¢ =¢ 12 which we have previously related to the orbitatl amgular momentum quantum

numbers viag = 2j = 2( +1), see (7.2), let us write:

2

exp(in) = exp{ie,u ¢ +ierJ: exfieup +ier) = expigup) expe) (9.2)
If we then place this into the left hand side afl§9we obtain:

Lengd =2 g+ a=F @+e. 9.3)
ie 27T 21T

Therefore, (9.2) is the solution to (9.1) on thaditon that:
e=dr=¢,dx' =9 ,rdx, (9.4)
or in tensor language:

£,=0,T. (9.5)

u u

So the vectore, (T) is the spacetime gradient of a thermal scaldr), i.e., it is some sort of
thermal function gradient. The relationsi{p= A, +& between the north and south gauge field
patches is equivalent téy,, = A, +£, = A, +0,7(T). But the scalar(T) is an observable
function of temperature, unlike the unobservableaggh/A(x”) in the gauge / phase
transformationA, = A, +9 A(X).

Now, let's get to work on the solution (9.2). Ifewfirst approach this purely
mathematically, and if we consider only orientatiovhereby exp(ie,u;it) for any of

$=0,1,2,3.. is regarded to be equal éxp(iei) for any otherg =0,1,2,3.., then:
1lexp(ier) = exqiex 0} expier)= expieud )2 efpa)= ekpeuO) 3 exi®) . (9.6)

Were we to then divide out the new temnp(ier) from each of the above, we would arrive at

exactly what we found in (3.1), which yields the BQof (3.2), namelyeu = 277( n/ I). But the

thermal functionz(T) was supposed to get rid of the fractionalized ghand break the electric

magnetic symmetry at higher temperatures, becahaé i what we observe at higher
temperatures. So what have we missed now?
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We regardedr(T) as a function of temperature, but we also now kttwat the azimuth
is in general related to electron angular momenbymg = 2| = 2(I +%), see (7.2). Keeping in
mind that7(T) is a function used to characterize the thermatadtarof individual charges
which means that it specifies the degree to whieh A, and A, for an individual DWY

electron cannot be gauge-transformed into one anotnd because individual electrons are
distinguished from one another by their orbital gthcipal quantum numbers, let us now

regard 7(T) to be a function not only of temperature, but aéthe ¢ =2j = 2(1 +1) of that
DWY electron. That is, we now regard this therngalar to be aT(T,¢L), so that its gradient
£, (T.¢) =aﬂr(T,¢L) is similarly a function of¢ =2 = 2(I +%). To make this explicit, let us
now write (9.2) as:

exp(in) = exfiepp +ier T 4 ) (9.7)

Next, recall that back at (3.7) we determined tlogiologically, ¢ =1 represents the
electron bar and ribbon systems of Figures 6, hat¢ =2| = 2(I +%) with s=1 in general.
The states which are not entangled are0,1,2,3.. i.e., ¢ =1,3,5,7... We also know that
¢ =0 representss=0, which is not an electron at all, but is the spasl (twistless) bar and
ribbon apparatus of Figure 2(a). So becagse O is no electron charge at all, we regard
7(T,¢) to be always equal to zero fag =0, i.e., 7(T,¢=0)=0. Thus, regarding any
exp(ieps) exier T ¢ ) for a disentangled electrong =1,3,5,7.. to be equal to
exp(ieps) exrlier T 4 ) for any other disentangled electron, and also tagyiahis to the
# =0 function exp(iex[D) exgier T 4= 0)= & expi 2n), we now write (9.7), contra
(9.6), in a way that the thermal scalaidoes not factor out, as:

exp(in) = exfi 2n) = E exfieuOtier T 4= )= efpeul Big T(4 = ¥

9.8
=exp(ieuB+ier (T ¢ = 5)= exfiquO# i@ T4 = 7) ... 8)

We may then extract the equivalent, disentangledsta
AN=2m=eulp+a(T¢) (9.9)

where ¢ =2| = 2(I +%) =1,3,5,7.. Interms of magnetic charge, and mindful that tlieiced
gauge angleA =/ /2r=n, we then restructure (9.9) into:

$ e ¢

_fen 1(.¢) (9.10)

Now let us consider two specializations of (9.10). d&sign, we expect the thermal
function 7(T,¢) to be zero af=0K, i.e., 7(0K,¢) =0, which means that over a spacetime
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region where the temperature is OK everywhere Attiales, Eyzdyr(OK,¢):O and

£=¢,dx" =0. This corresponds to the topologiea¥ 0 in y=+£. So at absolute zero, where
7(0K,¢) =0, (9.10) becomes:

,u:ﬁz—ﬂ:vuu, (9.11)

¢ e

or, in terms of the electric charge,

SRANC LI 9.12
e 2 u Ve (9.12)

with v=+A/¢ andu, =2m/e ande, =27/ u, just as before. Becausk =0,1,2,3.. and the
disentangled states ake =1,3,5,7.., and because these states are all topologicaigreably

distinct based on OET, (9.12), which is a near-p&cglization of (9.10), describes exactly what
is observed in the FQHE, if we take the single taidal step of permittingg =2 as the only

allowed entangledelectron state. Again, we shall look more closalyg =2 in the next
section. In this stateye= 27T(7°r/41), there is quantization, there is fractionalizatitrere is

an electric / magnetic symmetry under- e interchange, and the untangled charge states have
fill factors with the odd denominators found in fR@HE.

The other specialization of (9.10) is at warmenperatures. The magnetic chargein
(9.11) is based supposing thﬂtZCﬁDF, and then asking via the use of gauge theory, what

would happenf these magnetic charges were to exist under sonhté paysical circumstances?
We see that what would happen, is that we woul@mesa charge fractionalization which looks
very much like the FQHE near OK. But because wenaloever observe a magnetic charge at

warmer temperatures, this means tpat <ﬁ> F =0 except in the FQHE environment. So, let’s
simply go to (9.10) and segt =0, which we regard as an act of “breaking the ele¢tmagnetic
symmetry” and entering a thermal environment wii(T,¢)# 0, and find the result. With
u=0 butz(T,¢)#0, (9.10) now becomes

27T 27T 27 27
FAY =n =n —=n ,
(T, ¢) (T, ¢) r(T,2)) r(T,2+1)

(9.13)

where we have also usegl =2 =2 +1 to introduce the angular momentum Casimir quantum
numberg andl. Isolating the thermal scalar instead, and aoguthe DQC magnetic charge
unit u, = 277/ e, this becomes:

r(T,ng)=1(T,n2))=r(T,n2+ 1= n%T: n,, (9.14)
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where we have now written this &gT, n,4) in recognition that this thermal function is akso
function of the quantum numbekx =n as well as¢ =2) =2 +1.

Now, there are some notable similarities betwdenlow-temperature (9.11) and (9.12)
which are responsible for the FQHE and the highergerature (9.13) and (9.14). These
parallels are highlighted if we write the near-0X1(1) and (9.12) to show the FQHE and its
electric / magnetic duality including DWY electnoagnetic charges with-=1,2,3,4.. and

¢ =1,2,35,7,9. (all disentangled odd denominators excgpt 2 to be reviewed in the next
section) as:

FaY
—on ™ 9.15
eu ﬂ¢ (9.15)

and then write (9.14) in parallel form includiny =n as:

LLNE) oA (9.16)
¢ ¢

We see that when the low temperature symmetry breakluding breaking the duality
symmetry, the magnetic charge is replaced byr(T,n,4¢)/¢ which has the dimensionality
and character of a magnetic charge but is instethéranal scalar charge So in an extremely

fundamental way, the magnetic monopole chargedhat appear right at OK and motivate
FQHE, turn into a thermal charge(T,n,¢)/¢ at higher energies. Given that
U - 1(T,n¢)/ ¢ once we rise from OK and break the low temperadwaity symmetry, and

given that 7(T,n¢) is fundamentally a thermal scalar, we may unify xMell's

electromagnetic theory with thermodynamic theoraivery deep way at the microscopic level
of individual electrons by understanding thagt itselfis what replaces the magnetic monopoles
of OK once the temperature riseBhermal energy, which of course pervades naturpkggnce,

is the form in which we observe the broken resiofuthe DYW magnetic monopoles that give
rise to FQHE very close to absolute zero.

Now we return to (9.5) where we found that therrtted scalarr(T, n,¢) is related by
£,=0,r to the g, which via A, , = A, +¢&, specifies the extent to which the north gauge

patch cannot be gauge transformed into the soutth @nd vice versa. This:é:ﬂdx” was

developed to formally represent the topologicatdi@m y = +& which the “ribbons and bars” of

Figures 6 are given for OET rotation and disentaggl Now, in (9.14), we have found that
7(T,n,¢)=2mn/e. Se we can directly determine from this, that:

1 2T 1 27 1 2
e(M,ng)=01(T,ng)=27r0 |- |=——NW, &e— O, &E——« &, 9.17
W1 04)=0,r(T,ng) ”(e) g Ara * 4r g-2 * (.17)
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where we have also included the running electromtigoupling 47z = €*, and in the final
expression included the one-loop g-factor “anoméby”an individual electrory/2=1+a / 27

first found by Schwinger in [35]. The above isnatural unitsz=c=1, but with these two
fundamental constants restored- e/ /7 c is a dimensionless number. So as already disgusse
¢, has a mass dimension of +1, i.e., it has dimesstdrenergy. But becausg =2j =2 +1,
aside from being a function of the quantum numipeasd |, ¢,(T,n,¢) is also a function of
temperature. Thus, as an energy-dimensioned fector with thermal character, we anticipate
that £, will bear some discernable relation to the enezgyivalent of any given temperature,

E=KT, and as we anticipated, that(T,n,¢) is a form of heat energy which separates the

north and south gauge patches by more than a gearggormation. While2/(g - 2) 0861.02:
at a [11/137.03¢ for low probe energy is a large numbéye 000 is a very small number at low

energy, i.e., the running electromagnetic chargmupling is very flat at low energy and does not
start a discernable ascent until energies staneéwh the GeV domain. So at OK where
E=KkT=0, we also expect that, =0, consistent with how this is is understood to analogize

to the topologicaly = t¢.

Additionally, because the energy dimensiont, = —2n6”e/( - 2) O nis quantized
in proportion ton=+v, it is clear thah defines aquantized energy level Becausee (T, n,¢)
is also a function of the angular momentum Casiguantum numbersg =2j =2 +1, and
because the principal quantum numhbealso specifies quantized energy levels and isothg
atomic number that we have not yet attempted tolégically explain, and becausel ¢, and
&, is an energy distinct from the electromagnetieptiél and appears to be a thermal energy at

least in part, we shall now add a fourth evidemdermed inference to the three inferences in
section 8:

Inference 4: At finite, non-zero temperatureserathe electric / magnetic duality
is broken and the magnetic chargehas been replaced by its “thermal residue”
(T,n¢)/ ¢, the reduced gauge angle=# is one and the same as the
principal quantum number seen in atomic structure.

With this final inference our topological underdarg of atomic structure is complete.
All of the angular momentum quantum numbérss, j, m, s, and j, have already been
understood in terms of OET rotations and “threaslists of an OET “object” relative to its
“‘environment.” But the gauge angle=+/ has also been present all along as an integer
guantum number which brings about theantization of chargen DWY monopole theory.
Now, when we break the low temperature symmetrytaedmagnetic monopolg becomes a
thermal residuer(T,n,¢)/¢ , the thermal residue gradier, (T,n,¢)=0,r(T,n¢ )0 n,

which is an energy, becomes quantized in propotbdhis very samen =+, so that this same
n now brings about thguantization of energiy the electron shells of atoms.
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So what we now see is that at ultra-low temperatufres reduced gauge angle=# is
responsible for quantization of charge in the DWu¥nwmpoles and suppliése numerator in the
FQHE. But at higher temperatures after the electroraagmuiuality is broken, the reduced gauge
angle n=/4 now becomes responsible for quantization of eneargygomic shells, and becomes
the principal quantum number in atomic structurAnd this energy quantization driven by the
principal quantum number, is also related via #regeraturel dependence of (T, n,¢), to

the “freedom” which the electron has to operateotogically spatially perpendicularly to its
two-dimensional restraint at OK. Therefore,(T,n,4¢) which should be further studied,

appears to be a measure of the intrinsic heat sbaotehat electron, and therefore a microscopic
thermodynamic variable. Whether, contains energy content from a form other thart hea

leave as a question for separate consideration.wBat we do know for certain abosy, is that
it does include heat energy, and it does not irckldctromagnetic potential energy.

To the extent that this thermal magnetic chargeduesr(T,n,¢) and its energy-
dimensioned gradient, (T,n,¢)=0,r(T,n¢ )0 n, as it may be further developed, proves

capable of explaining the existence of heat atnti@oscopic level of individual electrons, and
to the extent that this microscopic understandinigeat for individual electrons can be related to
the usual statistical understanding of heat basdti®@ movement of collective systems, one may
be able to entertain the prospect thia very existence of heat energy in the univessibe
observed residue of the U{k)magnetic charges that exist near OK but quickbappear to be
replaced by heat energy once the low-temperatuaditguisymmetry is broken. It certainly
appears to be true that least somef the heat energin the universe is from the magnetic
monopole residuey - 7(T,n,¢)/¢ . The question being posed here, is whether inesom
fashion,all of the heat energin the universe can be traced back to this magmetinopole
residue. If so, it would be rather ironic to fititht the long-pursued magnetic monopole makes
its presence observably detectable, as a therreafgnesidue that animates all of nature.

With the connection between OK and other highempenatures developed in this section,
we now understand that at OK there is indeed atgi®timmetry between electric and magnetic
charges, that DWY U(3), magnetic monopoles do exist, and that these &lesmid magnetic
charges are observed via the FQHE fill factor=/A/¢ with integer numerators
A =n=0,1,2,3.. and with odd-integer denominatosg =2j = 2(1 +1)=1,3,5,7.. shown in
(7.2), with the exception of the even denominagor 2 which we shall examine in detail next.

We also now understand that once the temperatses from OK the electric-magnetic duality
becomes broken and the magnetic monopole chargereplaced by a “thermal residue” charge

r(T,n¢)/¢ which is a function of temperaturg the same# =n which is the FQHE
denominator, and the samg =2j = 2(I +%) =1,3,5,7.. which is the FQHE numerator. The
gradiente, =d,7 O+ =n of this thermal residue, which is an energy-dinemesd four-vector,

has its energy quantized in proportionrtoand taken together with all the other topological
connections to the angular momentum quantum nuniberg, m, s, and j,, this appears to

qgualify A =n at higher temperatures as the principal quantumbeu in atomic shell structure.
So just as the DWY monopoles become a thermaluesat higher temperatures, so too does the
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DWY electric and magnetic charge quantum numBer=n become the principal energy
guantum number for atomic (and presumably nuclednijal shells.

If we do identifyn from the DWY monopoles as the principal quanturmber in this
way, there is one question raised by the empimeah that still needs to be considered. In
atomic systems, the principal quantum number camstrthe orbital quantum number by the

relationshipl <n. But if we write the FQHE fill facto/ =A/¢ asv=n/2(I+1) with

A=n and ¢ = 2(I +%), then we see that there are some observed FQIHS sthich violate

this constraint. For example, if=1=1 we obtainy =1/3, which violatesl <n but is clearly
observed. The same is true, for exampleyef2/5 with n=1=2 and of v =3/7 with
n=1=3, which are also observed. If one were to observel/5 with n=1 and| =2, or
v=1/7 orv=2/7 with n=1 and n=2 respectively bul =3 in both cases, then we would
actually be observing states for whiohk|. So the question: how might the constrdistn at
higher temperatures be removed near 0K?

There appear to be two interrelated explanationsowf this could be the case. First, at
low temperaturen measuresharge quantization It is only at higher temperatures after the
duality symmetry has been broken that it startsiéasureenergy quantization So even ifn<|
is a constraint once begins to measure energy quanta, that may not atatidatn <| still has
to apply whem is measuring charge not energy quantization. 18kand closely related, is the
fact that even at low temperatures, fermions stilist satisfy the Exclusion principle. And in
atoms at low temperatures, electrons in the atsimétls of these atoms still must have quantum
numbered states available into which they can &tewa satisfy exclusion. So if is
proportional to heat energy, and if there is nd leeargy at OK, and ifi is removed as an energy
guantum number and converted over to a charge grantimber at OK, then the electrons still
must be able to enter stateslof O to satisfy Exclusion, even when there is no heat would
become zero if it was still a measure of heat,Hdadause there is no heahas now converted
over from a measure of heat to a measure of chaRyé. differently, oncen is no longer an
exclusionary quantum number measuring heat energyis simply a measure of charge
guantization, fermions still need to enter elevastates to satisfy Exclusion, and kawwill
decouple froom and states for which=n and evenl >n will now be permitted.

The final piece of the puzzle which now needs ¢oelaplained, is the even-numbered
FQHE denominatowg = 2.

10. Paired, Entangled Electron Stateswith Even-Integer FQHE
Denominator 2, why Larger Even-Integer FQHE Denominators are not
Observed, and some Additional Proposed Experimental Tests

Based on (9.11) and (9.12), which was the eaflie2), we now know that when the
thermal scalarr (T, n,¢) =0, in other words, at or very near OK, there is lttec / magnetic

duality symmetry, ye =27 /¢ with a fill factor v =+A/¢, with A =0,1,2,3.., and, if the
DWY electrons are to exist in disentangled stately,0¢ =1,3,5,7... All of this accords
perfectly with the quantized and odd-fractionaliZéQHE with one exception: the empirical

54



Jay R. Yablon

evidence thatg = 2 is also an observed state [6], [7], [8], [9], [18hd that this is the only even

denominator state observed. So the empirical eceldas telling us that at OK, the DWY
electrons are indeed all in disentangled state$, the singular exception af =2. Therefore,

let is make use of this empirical observation fottr understand, theoretically, what motivates
this pattern of observation for the even-denomin&@HE, as well as the observed absence of
any other even-integer denominators.

We used the first of four evidence-based inferemade in sections 8 and 9 to introduce
the view that the observed angular momentum quamtumbersl,m,s,, j, in atomic orbital

shells is a consequence of precisely-analogous’,s,, j, numbers used to summarize OET

topology because of a precise one-to-one mappihgeea these. Once this connection was
made, we came to understand that the azimuth aggie2j =2 +1=2 + 2 in terms of the

Casimir numberg andl where the Casimis=3, becauseg =2j'=2"'+1= 2"+ 2’ based on
the topology to which this maps. Therefoge=1,3,5,7.. corresponds toj =1,2,2,Z and
=0,1,2,3... Sowhat does it means when we empirically olesgre 27

Topologically, although we are entangling the DW¥c&rons with-¢ =2, they are still
intrinsic spin ¥, electrons, so their spin Casisi# 1 will not change. Any changes will be to
the other angular momentum quantum numbers. Based =2j =2 + &, thistopologically
entangledstate¢- =2 hasj =1 andl =s=3. So this entangled state is a boson state widh to

observable angular momentum Casimji=1 in J?|&)=j(j +1)|¢). We also know that

L?|&)=1(1 +1)|&) and S?|¢)=s(s+1)|¢). So along the z-axis, the observed eigenvalués wi
be L,|&)=m[é&)=+L|&) and S,|¢)=s|é)=%1|). As a shorthand, let us now define
‘Tm>s|m:+%>, ‘lm>s|m:—%>, 1) = L)=

possible state combinations 4rem,T%>, Tm,l§>, ‘lm,T§> and ‘lm,l§>. Then, because

s,=+1), and

s,=-1). Therefore, the four

j, =m+s,, we can group these into the familiar triplet anulet states:

|j =1,jZ=+]>E‘Tm,T §>
|i=1j,=0= %(Tm’l s Thml §)>
|j:1!jz:_]>E‘Tm’T§> .

1200, 20=|E(tnty =t ml )

(10.1)

This pattern will be familiar because it is thetpat of spin ordinarily found in massive vector
bosons, with a spin 1 triplet which includes twansverse and one longitudinal polarization, as
well as a scalarj =0 singlet.
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So, the empirically-observedt =2 FQHE denominator is telling us that the even
denominatorg =2 is evidencing a boson spin state consisting ciregied electrons, with three
spin 1 degrees of freedom and a single spin O degfrédreedom. At the same time, all of the
odd FQHE denominators are evidencing individualaegkement-free electron states of
¢ =1,3,5,7.. which we know respectively as s, p, d, f... electton

This allows us to expand the experiment proposedection 7: It has already been
suggested to closely study the observed FQHE chstages for correlations between the
¢ =1,3,5,7 FQHE denominators and the known observed charstatsr of the s, p, d, f

electrons, respectively. A further empirical prtiin from (10.1) is that close experimental
study of the ¢ =2 even-denominator states should demonstrate tlkatthre boson states in

which two electrons have become entangled togeiteerthese arelectron pairstates, and that
these pair states when studied closely experingrsfabuld correlate with the boson spin pattern
of (10.1). While the “Cooper pairs” model of elect pairing [36] may well come to mind, for
the moment let us not be that specific. What d@esn to be clear, is that there #e= 2 states

do involve boson spins in which two electrons beegmaired by entanglement, and that these
should exhibit angular momentum characteristicscvtare decidedly-distinct from the angular
momentum characteristics of all the odd-integerod@nator states.

Further, now that section 9 has made clear howr@EE can indeed be regarded as a
consequence of the electric / magnetic duality@HE because we have shown how this duality
can be broken at higher temperatures so that thpodes are no longer observed and leave in
their place a thermal reside observed as heagugththese monopole charges may be slight in
relation to the applied perpendicular magneticdBelit would be worthwhile to see if some
clever experiment can be designed to filter outrnibise of the experiment from the signal of the
monopoles so that these monopoles might be dirdetigcted.

Returning to theg¢ =1,3,5,7 FQHE denominators and their correlation with sdpf
electrons, let us predict one further correlatioat tshould be experimentally observable. With
all electrons in the lowest permitted Exclusionatgtes, the elements frog through,,Ca
(with Z=1 and Z=20 respectively) will only contasnand p electrons for whic =1,3. The
elements fromp:Sc throughsgBa must all naturally contain some p electronswbich ¢ =5,
even before any magnetic field is applied whichldaxcite higher orbits. And once we enter
the Lanthanides afLa, then there must also naturally be some f eastifor which¢ =7,
before anything else happens. Now, the FQHE isobstrved in free space; it is observed in
certain superconducting metals, see for example, phrtial listing of simple-structure
superconductors at [37] which also lists higheahdition temperatures and critical magnetic
fields. So if the FQHE denominator is in fact tiedhe s, p, d, f... states of electrons, then more
electrons with larger and therefore largeg- will naturally be made available by metals which
contain heavier elements than those with lightemeints.

With this in mind, the final correlation proposedr fexperimental observation is to
characterize the observed FQHE in relation to tleenents in the particular superconducting
metals used to discern this effect. Tgredictionis that metals which contain elements with
higher Z on the periodic table, will all be metals in whitdrger FQHE denominators reveal
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themselves more readily in response to smaller iegppperpendicular magnetic fields.
Specifically, one does not need to rely as muclhenmagnetic fields to raise the orbital levels
into the fractional states, because there aredrekectrons at higher orbitals in the naturalestat
of these metals. Thus, for example, the list & Ehows that all of-La, 70Yb, 72Hf, 73Ta 74W,
wRe, 760s, #lr, 80Hg, 31T|, 32Pb goTh, a1Pa, 9oU or Compounds Containing these are
superconductors, and these will all naturally confaelectrons for whichl =3 and ¢ =7.
Because it takes a larger perpendicular magnetid fo generate the FQHE states which display
smaller fractions, this correlation would suggésit the larger denominators can be brought into
observation with smaller applied magnetic fieldhigh-Z superconductors such @®b orgeTh
with naturally-provided d-state and f-state elegs;athan in lowZ superconductors witfsAl or

1451 0Or 22Ti or various carbon compound superconductors whale a natural surfeit of d and f
electrons. PerhapgPb (lead) with a fairly high critical temperaturel9K and a fairly small
critical magnetic field 0.08T is a good elemenuse to see how readily the large-denominators
states can be produced with smaller magnetic fields

The other factor that will correlate with genergtlarger ¢ with smaller magnetic fields

will be how tightly bound the d and f electrons toeheir atoms. The more the d or f electrons
are accessible at the outer shells with smallergeese the more readily the application of a
magnetic field will be able to stimulate them temlaying their higher orbitals via the FQHE. In
this regard, the Lanthanoid superconductors wheeHh-electron binding energies of 5.57 to
6.25 eV [33], [34] may prove to be the best cantisidor generating highg fractions with

smaller applied magnetic fields.

The final question as regards the observed FQHBrdaators, is whyg = 2 is the only
observed denominator, and why we do not observeo#imgr even denominatorg = 4,6,8..
which via ¢ =2j=2+1=2+ 2 would correspond tgj =2,3,4.. and| =3,2,Z.... This is
answered by reference to quantum statistics ané&xikision Principle: For multiple electrons
to exist as part of a single quantum system, e&dcheoelectrons must have a set of quantum
numbers which differs from the quantum number $etny other electron in the same system,
and this requirement remains in place even near UKis is why, for example, electrons still
maintain a non-zero Fermi energy to be able to pg@xclusionary states, even at OK. So in
any given principal shelh, once there are two s electrons wigh=1 and | =0 and j =3, in

order to add a third electron we must put that eéxetron into a p state with=1 and j =2,
which corresponds withp =3 and| =1 and j=2. In short, we must have highestates to

satisfy Exclusion in larger systems of electroAsnd near OK, this raises the Fermi level. On the
other hand for bosons there is no such requirem@ne can have as many bosons as one would
like with ¢ =2 and thej =1 spin characteristics of (10.1) all in the samdesys without ever

having to supply ag =4 and j=2 or any higher spin state boson. Because natwayal

seeks the lowest energy state and because lastgtes require more energy than smal&eates
as evidenced by the ionization energies [33], [84¢, higher-denominatog = 4,6,8.. boson

states are not required by Exclusion, and theynatefavored energetically, so they are not
observed in the FQHE.
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11. Summary and Conclusion, and Consolidation of Experimental
Predictions

A complete analysis of the gauge symmetries ofiManopoles following the approach
pioneered by Wu and Yang [15], [16] (DWY monopole=jults in an electric / magnetic duality
symmetry with charges that are quantiaed fractionalizedaccording to the Dirac Quantization
and Fractionalization Condition (DQFGY =277(# /¢), where A =A/27=0,1,2,3.. is a
reduced gauge angle aglil=¢/27=1,2,3,4..is a reduced azimuth angle following the DWY
analysis, see (3.4) and (3.5). When orientationals considered, these angles differing2ay
are geometrically indistinct from one another. Hwer, when topological Orientation-
Entanglement as taught by Misner, Thorne and Wh¢e# is accounted for, and when we also
account for the topologicaivisting of the threads following various disentangling i@ens,
then all angles differing from one another Byr and even by4/r are seen to be observably
topologically distinct based on Orientation-Entaamgént and Twist (OET). Moreover, when we
characterize the various topological OET statesedbasn rotations throughdzi’ where
I'=1,2,3.., followed by disentangling of the rotated state, wnexpectedly discover that this

OET topology can be characterized by a set of quamtumberd’,m’,s, s, |, ], representing
rotation and twist which map precisely, on a oneite basis, to thé,m,s, s, j, j, observed in
the orbital, spin and total angular momentum ottet:s in atomic shells. Finding that the
topology of a free electron is representedgpy 1, and if the DQFCeu = 277(7‘*/4&) is applied
only to states which differ from this by integer ltiples of +47 and so have the same
orientation-entanglement “version” ag =1, then the denominatorg =1,3,5,7.. will be

restricted to odd integers only, and this provide®pological explanation for the similar odd-
integer denominators of FQHE. At the same time,dhly observed even-FQHE denominator
¢ =2 is seen to correspond to the spin 1 boson state4)( and the absence of larger even-

integer FQHE denominators is understood on thesbidsit whereas fermions are subject to
guantum Exclusion, bosons are not.

The central conceptual hurdle in this developmsrihe fact that all of the foregoing is
rooted in the DWY analysis which predicts the DQBEZ= 27T(7°r/41) and therefore a duality

symmetry undere - x4 electric / magnetic charge interchange, and tlo¢ flaat magnetic
charges are definitively not observed, at leastQHE is connected to the DWY DQFC) in any
environment other than near OK. A related conaagturdle rests in fact that the DWY analysis
involves three-dimensional systems of electronsredme electrons in superconducting materials
subjected to ultra-low temperature and large petipetar magnetic fields in the FQHE
environment are substantially restricted to twotigpalimensions. The OET topology does
allow us to understand qualitatively, how a lowgriof temperature correlates with a gradual
restriction in, and eventual removal of, one sp#egree of freedom from these electrons. But to
make the quantitative connection required to cotepleclear these hurdles, it is necessary to
recognize that there is a hidden assumption the$ gao the usual DWY analysis, namely, that
the south patch of the gauge field differs from the north patci#, by nothing more than a

gauge transformation, and so can be represented byA, = A, + " d¥ / ic. Specifically,
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this assumption leads by inexorable logic to thea®prediction of electric / magnetic duality,
and because such a duality is not physically olese(at least at temperatures not near OK), this
means by contrapositive logic thaf, = A, is a flawed assumption (again, at least at

temperatures not near OK). As a result, we arairegby the empirical evidence of no observed
duality a.k.a. no observed magnetic monoptdesiodify this assumption into a new supposition

that A, = A,+&(T), where £(T) =¢,dx’ is a physically-observable function of temperature

which is equal to zero at OK, but otherwise nonzemd wheree, (T) has physical energy
dimensionality but represents heat and possiblyerotforms of energyother than the
electromagnetic gauge potentidl,. Thus, at all temperatures but OK, there is asepkable
physical difference between the north and south DWauge field patches. With this
modification, we find in (9.9) that the DQFC gerla®s to A =2/m=eu3p + a(T,4) where
€,=0,r and wherer(T,¢) is a thermal scalar which is a function of tempeeas well as of

the topological winding reduced azimu# (and also ofn). At OK, 7(T,n,¢)=0 which
recovers the DQFQ@rm = eu [ and leads to the FQHE as discussed in the preypategyraph.

But when the low-temperature duality is broken #rmlmagnetic monopoleﬁ} F=u=0, the

DQFC is replaced by2rm=er(T, n¢), which means thaty - 7(T,n,¢)/¢ becomes a
“thermal residue” of the magnetic chargeonce the temperature rises from OK and the etectri
magnetic duality symmetry is broken.

The experimental tests proposed at the end ofosectifor the odd-FQHE denominators
¢ =135,7.. and also in section 10 for the even denominaggr=2 and highZ
superconductors are intended to validate not ohly overall inference that the DQFC
ey =2m(+ 1 ¢) = 27w is responsible for the FQHE, but also, the fiéeience in section 8 that
the angular momentum quantum numbers observedeirel#ctronic structure of atomic shells
(and by extension in nuclear structure) are a tliceasequence of the OET topology. This is
because, if the DQFC truly is responsible for ti@HE, and if the OET topology really is
responsible for atomic structure, then becausadtaced azimuthg in the FQHE fill factor

v=+/4¢ is thereby related byp =2j=2 +1=2 + & to the Casimir quantum numbers for

total, orbital and spin angular momentum, the aoddger FQHE denominators
¢ =1,3,5,7,9,11. will characterize electrons in the respective taltangular momentum states

1=0,1,2,3,4,5. for which the respective shorthands s, p, d, h gfe customarily employed.
And, this also means that thg =2 denominator will characterize a pair of entanghsttrons
forming boson states summarized by (10.1).

All of this is consolidated into Figure 7 below, it is reproduced from [38], [39] and
adapted from Figure 3 in [40], and which contaimkleal annotations showing how each
fractional denominatorg =1,3,5,7,9,11. is expected to correlate with the orbital angular
momentum states of s, p, d, f, g, h electronsraowd ¢ =2 is expected to correlate to spin 1
boson polarization states. The experiments prapbsee, are then easily summarized: each of
the odd-denominator fractional states shown in f@guis predicted to correlate to the angular
momentum states signified by the s, p, d, f, gadmotations, and the single state with even
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denominator¢ =2 is predicted to correlate to the angular momenstates of a spin 1 boson.

Thev =2/3=6/9 state may be of special interest, because it eageberated by both p orbital
and g orbital electrons, and so it can be predittiatiboth of these orbital characteristics may be
correlated tov =2/3. Experimental tests which observe these angutanemtum correlations
would support the theoretical results presented;hvhnile a finding that these correlations do not
exist would provide contradiction to these theaadti results.  Additionally, because
superconductors with largéon the periodic table naturally contain more d &sHell electrons
than smalleiZ elements before any magnetic field is ever applied predicted that the larger
denominator FQHE states such #s=5,7,9,11.. can be stimulated with smaller applied
magnetic fields using higheét-versus loweiZ superconductors, which is illustrated by the
horizontal arrows showing how largematerials should stretch the magnetic field amighie
right, i.e., move the observation of smaller fractl charges to the left along the magnetic field
axis. Finally, if the “noise” of the large perpeétudar magnetic fields introduced in the FQHE
experiments can somehow be separated from thediSigi the DWY magnetic monopoles

@F = 1 which are predicted by these results to exist idarand be tied to the FQHE by
e,u:2ﬂ(+‘r/¢t): 2rv — which might be assisted by the use of highaterials, then these

experiments should most certainly also seek toctlireobserve these magnetic monopoles,
which have been the object of inquiry and pursinites ever the time of Maxwell and Heaviside.
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Figure 7: Figure 1: Fractional Quantum Hall Effeefproduced from [38], [39], and adapted
from [40], with added annotation
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