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Abstract:  The purpose of this paper is to explain the pattern of fill factors observed in the 
Fractional Quantum Hall Effect (FQHE) to be restricted to odd-integer denominators as well as 
the sole even-integer denominator of 2.  The method is to use the mathematics of gauge theory to 
fully develop Dirac monopoles without strings as originally taught by Wu and Yang, while 
accounting for topological orientation-entanglement and related “twistor” relationships 
between spinors and their environment in the physical space of spacetime.  We find that the odd-
integer denominators are permitted and the even-integer denominators excluded if FQHE only 
displays electrons of identical orientation-entanglement “version,” i.e., only electrons separated 
by 4π not 2π.  We also find that the even-integer denominator of 2 is permitted if entangled 
electrons can pair into boson states, and that all other even-integer denominators are excluded 
because bosons are not subject to the same Exclusion statistics as are fermions.  Because this 
proposed relation between the Dirac monopoles and the FQHE presupposes an electric / 
magnetic duality near 0K, and because magnetic monopoles are certainly not observed at higher 
temperatures, we also find how to break this duality symmetry with the consequence that the low-
temperature Dirac monopoles are replaced by a “thermal residue” at higher temperatures.  We 
conclude that the observed FQHE fill factor pattern can be fundamentally explained using 
nothing other than the mathematics of gauge theory in view of orientation, entanglement and 
twist, with proper breaking of the low-temperature electric / magnetic duality.  An unanticipated 
bonus is that the quantum topology emerging from this analysis appears to map precisely to the 
electronic orbital structure of atoms. This provides the basis for proposed experiments to closely 
observe the FQHE quasiparticles to seek correlations to the angular momentum observed in 
atomic electron shells, and to boson spin states. 
 
PACS: 11.15.-q; 73.43.Cd; 14.80.Hv; 65. 
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1. Introduction: Wu and Yang and the Dirac Monopole without Strings 
 
 The Fractional Quantum Hall Effect (FQHE) observed in two-dimensional systems of 
electrons at low temperatures in superconducting materials subjected to large perpendicular 
magnetic fields is characterized by observed filling factors /n lν = , where n and l are each 
integers, but where l is an odd integer only, with the exception that l may also be the even integer 
2.  In other words, the apparent pattern, widely reported and studied in the literature, is /n lν =  
with 1, 2, 3...n = ± ± ±  and 1,2,3,5,7,9,11...l = , see, e.g., [1], [2], [3], [4], [5], [6] generally, and 
for the even denominator 2, see, e.g., [6], [7] for 1/ 2v = , [8] for 3 / 2v = , [9] for 5 / 2v =  and 
[10] for 7 / 2v = .  Two questions arise from this effect: why are the denominators in the filling 
factor odd but not even (including the quantization of whole unit charges with denominator l=1), 
and why is the even denominator l=2 an apparent exception?  We show that this pattern of filling 
factor denominators has a fundamental explanation based on using the mathematics of U(1)em 
gauge theory to develop the Dirac Quantization Condition (DQC) for Dirac-Wu-Yang (DWY) 
monopoles, in view of how orientation-entanglement (OE) applies to fermion spinors but not to 
bosons, and also in view of a “twisting” associated with orientation-entanglement which appears 
to have been underreported in the literature. Along the way, we demonstrate have the electric / 
magnetic duality symmetry of Dirac monopoles does exist near 0K, and how that symmetry is 
broken at higher temperatures leaving in its stead a “thermal residue” possible responsible in a 
fundamental way for the very existence of heat energy in nature. 
 
 In 1931 Dirac [11] discovered that the existence of magnetic monopoles would imply that 
the electric charge must be quantized.  While charge quantization had been known for several 
decades based on the experimental work of Thompson [12] and Millikan [13], Dirac was 
apparently the first to lay out a possible theoretical imperative for this quantization.  Using a 
hypothesized solenoid of singularly-thin width known as the Dirac string to shunt magnetic field 
lines out to mathematical infinity, Dirac established that a magnetic charge strength µ would be 
related to the electric charge strength e according to 2e nµ π= , where n is an integer.  This 
became known as the Dirac Quantization Condition (DQC).  This electric charge strength is the 
same one which, at low probe energies, is related to the running “fine structure” coupling via 

24 / 1/137.036e cπα = ≅ℏ , see, e.g., Witten’s [14], pages 27 and 28.  Subsequently, Wu and 
Yang used gauge potentials, which are locally- but not globally-exact, to obtain the exact same 
DQC without strings [15], [16].  Their approach is concisely summarized by Zee on pages 220-
221 of [17] and will be briefly reviewed here, because it provides the methodological basis for 
understanding the pattern of filling factors observed for the FQHE.  Throughout we shall use the 
natural units of 1c= =ℏ . 
 

Using the differential one form A A dxµ
µ=  for the electromagnetic gauge field a.k.a. 

vector potential and the differential two-form 1
2!F F dx dx dA A dx dxµ ν µ ν

µν µ ν= ∧ = = ∂ ∧ , a 

magnetic charge µ may be defined as the total net magnetic flux Fµ ≡ ∫∫�  passing through a 

closed two-dimensional surface S2 which for convenience and symmetry we may take to be a 
sphere.  Differential exterior calculus in spacetime geometry teaches that the exterior derivative 
of an exterior derivative is zero, dd=0, which means that the three-form equation 0dF ddA= = .  
Thus, via Gauss / Stokes, 0 dF F µ= = =∫∫∫ ∫∫∫ ∫∫� .  In classical electrodynamics prior to Dirac, 
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this was taken to mean that the magnetic charge µ=0.  But a close consideration of gauge 
symmetry, which is locally but not globally exact, tells a different story: 
 
 When a spin ½ fermion wavefunction (which we shall generally regard as that of the 
electron) undergoes a local gauge (really, phase) transformation ( )( ) ( ) ( )i xx x e xψ ψ ψΛ′→ = , the 
gauge field one-form transforms under U(1)em as 
 

/i iA A A e de ie− Λ Λ′→ = + . (1.1) 
 
More generally for larger non-abelian gauge groups with gauge potential G and charge g, this 
transformation is ( )† /G G U G d U ig′→ = +  where U is a unitary matrix † 1U U = .  If we 

represent F in polar coordinates ( ), ,r ϕ θ  in the three-dimensional space of physical spacetime as 

( )/ 4 cosF d dµ π θ ϕ= , then because F dA=  and dd=0, we can deduce that 

( )/ 4 cosA dµ π θ ϕ= .  However, dϕ  is indeterminate on the north and south poles, which is an 

inherent feature of three-dimensional space as are the non-commuting rotational properties of 
this space when represented by SO(3) or its double covering SU(2).  To remove this 
indeterminacy and create a smooth geometric interface, we may define north and south 
coordinate patches over ( )( )/ 4 cos 1NA dµ π θ ϕ= −  and ( )( )/ 4 cos 1SA dµ π θ ϕ= + , 

respectively.  But at places where these patches overlap, these gauge potentials are not the same, 
and specifically, their difference is ( )/ 2S NA A dµ π ϕ− = , or written slightly differently: 

 

( )/ 2N N S NA A A A dµ π ϕ′→ ≡ = + . (1.2) 

 
So comparing this with (1.1), to unite the two patches we may regard S NA A′≡  as a gauge-

transformed state NA′  of NA , for which the gauge transformation is simply: 

 
1

2
i ie de d

ie

µ ϕ
π

− Λ Λ = . (1.3) 

 
We simply note for the moment that S NA A′≡  which yields (1.3) is actually a commonly-made 

assumption that the north and south gauge field patches differ from one another by no more than 
a gauge transformation and so are not observably distinct, in order to yield a smooth unbroken 
geometric relationship between the north and south patches.  Whether the physics we observe in 
the natural world agrees with this assumption is a separate question.  In section 9 a 
reexamination of this assumption will have important consequences for relating physics near 0K 
with physics at other, higher temperatures. 

 
This differential equation (1.3) for Λ  and ϕ  in relation to e and µ is solved by: 

 

( )exp exp
2

i ie
ϕµ
π

 Λ =  
 

,  (1.4) 
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as can be seen simply by plugging ieΛ  from (1.4) into the left hand side of (1.3) and reducing.  
This relates the azimuth angle ϕ  which is one of the three spacetime coordinates, to the local 
gauge (phase) angle Λ , and thereby connects rotations through ϕ  in physical space to rotations 
through Λ  in the gauge space in a manner that we shall now explore in detail. 
 

In polar coordinates, the azimuths 0ϕ =  and 2ϕ π=  in (1.4) describe exactly the same 
orientation (but not entanglement) on the surface of S2.  So to make sense of (1.4) at like-
orientations, substituting 0ϕ =  and 2ϕ π=  into (1.4) and equating the two terms following this 
substitution, we must have: 
 

( ) ( ) ( )exp exp 0 1 exp 1i ie ieµ µΛ = ⋅ = = ⋅ . (1.5) 

 
Specifically, this means that ( )exp 1ieµ = .  Mathematically, the general solution for an equation 

of this form is ( )exp 2 1i nπ =  for any integer 0, 1, 2, 3...n = ± ± ± , which is infinitely degenerate 

but quantized.  As a result, the solution to (1.5) is:  
 

2e nµ πΛ = = . (1.6) 
 

This, of course, is the Dirac Quantization Condition (DQC), which we see may also 
specified in relation to the gauge (phase) parameter Λ  which is seen to be an quantized integer 
multiple of 2π .*  It will be immediately apparent that this equation has an electric / magnetic 
duality symmetry under e µ↔  interchange.  And it will be equally apparent that if magnetic 
charges do exist in nature, they do not seem as of yet to have ever been observed.  So 
understanding if there is some real, observable physics to be found from the monopole in (1.6) 
and their derivation is an undertaking of substantial interest. 
 

Further, (1.6) with simple rearrangement tells us that the electric charge is quantized 
according to: 
 

u

2
e n ne

π
µ µ

Λ= = = , (1.7) 

 
where the n=1 “unit” (u) of electric charge is u 2 /e π µ≡ , defined as 2π  times the inverse of the 

magnetic charge.  The customary interpretation of ( )2 /e n π µ=  in (1.7), ever since Dirac first 

found this relationship, is the conditional statement that if this magnetic charge “exists,” then the 
electric charge is quantized in units of ue .  It is important to keep in mind that the converse of 

                                                 
* It should be noted that when we used the local angles 

0( ) 0xϕ ϕ= =  and  ( ) 0 2xϕ ϕ π= +  in (1.4), the implicit choice 

of 
0 0ϕ =  had no special physical significance.  We could have used any other 

00 2ϕ π< <  or indeed any 
0ϕ  

whatsoever and still ended up with the exact same DQC in (1.6); 
0 0ϕ =  was merely the easiest mathematical choice.  

This means the DQC (1.6) is invariant under local gauge symmetry, as it must be to have possible physical meaning. 
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this conditional is not true: the observed quantization of electric charge does not imply that the 
magnetic charges do exist.  In fact, as best as is known, this DWY magnetic charge µ has not 
been observed to date, while the firmly-established quantization of electric charge is explained 
not on the basis of these DWY magnetic charges, but on the basis of the charge generators 

3/ 2Q Y I= +  which emerge in Yang-Mills gauge theory following the electroweak symmetry 

breaking of (2) (1)W YSU U×  down to (1)emU .  So if this DWY monopole “exists,” it would have 

to “exist” under some very specialized set of physical conditions and it would of course be 
desirable to know what those conditions might be.  
 
 We may finally go back to the original definition Fµ ≡ ∫∫�  and isolate µ  in (1.6), thus: 

 

u

2
F n n

e e

πµ µ Λ= = = =∫∫� , (1.8) 

 
where we also define an n=1 unit of magnetic charge u 2 /eµ π≡ , similarly quantized.  By 

appropriate local gauge transformation, and specifically by choosing n=0 which is the same as 
choosing the phase angle 0Λ = , the nonzero surface integral can be made to vanish, 0F =∫∫� .  

But this does not invalidate (1.7) and (1.8) nor does it prevent us from seeking to draw physical 
conclusions from these.  It simply means that n=0 with no monopoles and no electric charges is 
one of the permitted states.  Again, the meaning of the whole range of charges ue ne=  for 0n ≠  

has been physically-interpreted ever since Dirac discovered this, as suggesting that the 
“existence” of a magnetic charge would imply electric charge quantization, with the further 
understanding that the converse is not true. 
 

This is how Wu and Yang obtain Dirac monopoles and the DQC without strings.  
 
2. Quantum Topology and Orientation-Entanglement-Twist (OET): the 
Observable Distinctness of Similar Geometric Orientations 
 
 If we define a reduced gauge angle / 2πΛ ≡ Λ , then by (1.6) this reduced nΛ =  is a 
quantum number which states the number of “windings” through the complex gauge / phase 
space contained in the operator ( ) cos ( ) sin ( )i xe x i x a biΛ = Λ + Λ ≡ +  of the local gauge 

transformation ( )( ) ( ) ( )i xx x e xψ ψ ψΛ′→ = .  But in the DQC, nΛ =  also becomes the charge 

quantum number n, and so (1.7) may be rewritten as u ue e ne= Λ = .  Therefore, every gauge 

transformation 2πΛ → Λ +  adding an angle of 2π  also adds one unit of electric and magnetic 
charge.  This is the first indication of a conceptual challenge which will occupy of fair share of 
attention in this paper and lead us to undertake a detailed study of quantum topology which will 
in turn reveal some unanticipated insights about the observed electronic structure of atoms.  Let 
us now introduce this challenge. 
 

If these DWY monopoles were to exist under some specialized set of physical conditions, 
then the electric charge would be quantized, u ue e ne= Λ = , and this quantum number nΛ =  
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would of course have to be a physical observable.  In geometry however, angles measuring 
rotation which differ from one another by 2π , such as 0,2 ,4 ,6 ...π π πΛ = , are trigonometrically 
indistinguishable.  Indeed, we already used this indistinguishability of 0 and 2π  to write (1.5) 
and then derive (1.6).  Consequently, if we draw x and y axes on a sheet of paper and then draw a 
vector starting at the origin which points along the +x axis, we cannot state looking at the paper 
whether the angle between that vector and the x axis is 0, or is 2π  or 4π  or 6π  or any other 
multiple of 2π .  It can be any of these, because these are all indistinguishable orientations.  So 

0,1,2,3,4...Λ =  is not a geometric observable.  But if the DWY monopoles were to exist under 

some physical conditions, then the nΛ =  in u ue e ne= Λ =  would have to be observable.  If we 

observed one unit of charge, we would know that 2πΛ = .  Observing two units of charge we 
would know that 4πΛ = , and so on.  Thus comes the question: how can / 2 nπΛ = Λ =  be an 
observable when it is a charge quantum number but not be an observable when it represents the 
number of geometric “windings”? 
 

Answering this and analogous questions which will shortly arise about the azimuth angle 
ϕ  in three-dimensional physical space, will require us to develop the quantum topology of 
Orientation-Entanglement (OE) and Twist, which is rooted in Misner, Thorne and Wheeler’s 
(MTW) widely regarded review of OE at section 41.5 of [18].  What we shall find is effectively 
this: in geometry, as distinct from topology, orientations in the set of angles 2 nπΛ =  manifest 
no observable features to distinguish them from one another.  Orientation differences between 
these angles are not observable, so n is not a geometric observable.  Entanglement, however, is 
an aspect of topology which tracks the relationship between a vector (“object”) and its 
“environment” via sets of connecting “threads.”  When OE is considered, orientations which 
differ from one another by 2π  are observably-different, because they have opposite 
entanglements.  This is also verbalized by stating that they have opposite “versions.”  But vectors 
rotated by angles in the set 4 nϕ ϕ ϕ π′→ = +  still manifest no observable features to distinguish 
them from one another, because they all have the same orientations and entanglements.  Once 
entangled by rotations in integer multiples of 4π+ , the vector can be restored to its initial 
disentangled state without any reverse-directional 4π−  rotations, via various “disentangling” 
manipulations of the threads.  So vectors rotated to these angles are all said to have the same OE 
versions.  So the question posed in the last paragraph has a partial answer whereby angles 
differing by 2π  can be observably distinct, but still remains unresolved as to angles differing by 
4π . 

 
The 4π  distinctness question is answered fully, by a third aspect of OE which appears to 

have been widely overlooked or at least underdeveloped in the literature, and that is twist:  When 
one carefully studies OE, then depending upon how one “disentangles” the “threads” following 
any rotation of the “object” through some multiple of 4π , it is possible to completely restore OE 
by disentangling the threads from one another, yet still have observable “twists” remain in 
individual threads which twists were not there at the start.  Once these twists are considered, 
every angle in the set 4 nπΛ =  is observably distinct from every other angle in this set, because 
the number of twists that can observed after disentangling a 4π  rotation is different from the 
number of twists that can be observed after disentangling an 8π  rotation, and these differ from 
the number of twists that can be observed after disentangling each of a  12 ,16 , 20 ...π π π  rotation.  
Thus, upon considering Orientation-Entanglement-Twist (OET), every single angle in the set 
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2 nπΛ =  is observably topologically distinct from every other angle in this same set.  So it is on 
the basis of OE&T that each of the quantized states in u ue e ne= Λ =  gains the possibility of 

being physically observable, because each of the angles in the set 2 nπΛ =  is observably 
topologically distinct. 

 
A totally unanticipated bonus from this analysis, however, when it is applied to the 

azimuth angle ϕ  in the three-dimensional physical space of spacetime, is that the topological 
rotations and twists based on OET following a 4 lπ ′+  rotation of the “object” through an integer 
number of double windings 0,1,2,3...l ′ = , can be summarized using quantum numbers 

designated as , ,z zl m s′ ′ ′ , with 0,1,2,3...l ′ =  and zl m l′− ≤ ≤ +  and 1
2zs′ = ± , where l ′  is the number 

of double rotations, zm′  and zs′  are the possible numbers of double twists after disentangling 

depending upon the disentangling procedure used, and the + and – signs represent the right or 
left handedness of these twists in reference to the axis of twist defined as +z.  This topological 
summary of OET – and this is the bonus – maps exactly, on a one-to-one basis, with the angular 
momentum quantum numbers , ,z zl m s  observed in the electronic structure of atoms.  This exact 

mapping raises the prospect that atomic structure (and even nuclear structure because protons 
and neutrons, albeit composite, are also fermions like electrons and form similar shell structures 
in the nucleus) can be explained strictly on the basis of quantum topology.  If this were to be 
possible, then the quantum numbers , ,z zl m s  with l n<  and zl m l− ≤ ≤ +  and 1

2zs = ±  would no 

longer just be electronic state rules with fundamental origins unknown, but would be topological 
mandates from physical space.  If such a connection can be empirically confirmed – and the 
FQHE experiments to be proposed here are intended to do exactly that – this would take us a step 
closer to the ultimate fulfillment of Wheeler’s geometrodynamic program [19], [20] in the spirit 
of Einstein [21] and Weyl [22], [23], [24], of establishing that the entirety of the observed natural 
world is no more and no less than a manifestation of spacetime geometry and spacetime 
topology. 

 
Now, it is time to return to the Dirac Quantization Condition. 

 
3. The Fractional Denominators Indicated by Dirac-Wu-Yang (DWY): are 
they Somehow Related to the Fractional Quantum Hall Effect (FQHE)? 
 
 If we closely study the derivation by Wu and Yang summarized in section 1, we see that 
there are some additional quantum states indicated that have not yet been considered.  Referring 
to (1.5), not only do 0ϕ =  and 2ϕ π=  describe exactly the same orientation (sans entanglement 
and twist) in the physical space, but so too do 4ϕ π= , 6ϕ π= , 8ϕ π= , etc.  So starting with 

2ϕ π=  and considering all positive (right-handed about the z-axis) rotations which we 
summarize by 2 lϕ π=  using a positive integer 1,2,3,4,5,6...l = , if we proceed solely on the 
basis of geometric orientation and do not concern ourselves with entanglement or twist, we may 
now extend (1.5) to: 
 

( ) ( ) ( ) ( ) ( ) ( ) ( )exp 1 exp 1 exp 2 exp 3 exp 4 exp 5 exp 6 ...i ie ie ie ie ie ieµ µ µ µ µ µΛ = = ⋅ = ⋅ = ⋅ = ⋅ = ⋅ = ⋅ .(3.1) 
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Each of the above is a separate relationship of the general form ( )exp 1ie lµ ⋅ = , where 

1,2,3,4,5,6... / 2l ϕ π= =  is an integer not the same as the n already in use and corresponds to 
the number of azimuth windings.  At the same time, as noted after (1.5), the general solution for 
an equation of this form is ( )exp 2 1i nπ =  with this integer 0, 1, 2, 3...n = ± ± ± , as before.  

Comparing ( )exp 1ie lµ ⋅ =  with ( )exp 2 1i nπ =  means that more generally, 2e l nµ π⋅ =  i.e. 

( )2 /e n lµ π= , or restated, also using 2 nπΛ =  from (1.6), that: 

 

u u

2 1n n
e e e

l l l

π ν
µ µ

Λ= = = = , (3.2) 

 
where we may define a “filling factor” 
 

; 0, 1, 2, 3...; / 2 1,2,3,4,5,6...
n

n l
l

ν ϕ π≡ = ± ± ± ≡ = . (3.3) 

 
This electric charge is both quantized and fractionalized.  Likewise, for the magnetic charge 
defined as in section 1, 
 

u u

2 1n n

l e l l e

πµ µ νµ Λ= = = =  (3.4) 

 
is also quantized and fractionalized.  If we define a reduced azimuth / 2 lϕ ϕ π≡ = , then with 
the reduced gauge angle / 2 nπΛ ≡ Λ =  as before, we can rewrite this fill factor (3.3) as: 
 

; 0, 1, 2, 3...; 1,2,3,4,5,6...
n

l
ν ϕ

ϕ ϕ
Λ Λ= = = Λ = ± ± ± = . (3.5) 

 
This is simply to ratio of gauge-space windings to physical-space windings, and equivalently, the 
ratio of the gauge angle to the spatial azimuth angle. 
 
 The conditional statement we may make based on the above is the following:  If these 
DWY monopoles exist under some specialized set of physical conditions, then not only are the 
electric and magnetic charges quantized, but each unit of electric charge ue  or magnetic charge 

uµ  is also fractionalized into ( )1/n lν = ⋅  quantized n fractions 1/ l  of itself.  As with (1.6), see 

the related footnote, this relationship is locally gauge invariant.  More generally, what we now 
see that that U(1)em gauge theory itself inexorably implies that if these DWY monopoles exist 
under some specific set of physical conditions, then electric charge is quantized, and electric 
charge is also fractionalized.  In other words, based on the Dirac-Wu-Yang derivation, the DQC 
is really a DQFC, Dirac Quantization and Fractionalization Condition. 
 
 For a single rotation through 2ϕ π=  where 1lϕ = = , (3.2) and (3.5) become: 
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2 2e nµ π π= = Λ = Λ , (3.6) 
 
which is identical to (1.6) and so recovers the usual Dirac Quantization Condition without 
fractionalized charges, as a special case.  If we further specialize this to a single winding 1Λ =  
a.k.a. 2πΛ =  in the gauge space, then: 
 

u

2
e e

π
µ

= = , (3.7) 

 
which is the unit of electric charge for which, as noted in the introduction [14], 24 eπα =  in 
natural units.  The conditional statement we can make based on this specialization to 2ϕ π=  and 

2πΛ =  is that if these DWY monopoles exist under some specialized set of physical conditions, 
then the special case in which 2ϕ π=  and 2πΛ =  has an electric charge equal to that of a single 
electron.  So the 1ϕ = Λ =  electric charge state of a DWY monopole with a single winding in 
both the three-dimensional physical space and the two-dimensional gauge space is the same as 
the state of a single electron with charge 2 / 4e π µ πα= = . 
 
 This has a consequence of immediate interest.  If a single winding 2ϕ π=  about the 

azimuth yields the equation ( ) u2 /e n neπ µ= =  which describes the quantization of an 

unfractionalized electron, then according to (3.5) each additional winding about ϕ  will 
fractionalize the charge in proportion to /n ϕ .  If we consider orientation and entanglement, 
then not all of these states can be disentangled.  The only electron states which can be 
disentangled are those which differ from 2ϕ π=  by a 4π  rotation, i.e., for which 2 4 lϕ π π= + .  
Consequently, the set of DWY electric and magnetic charge states which can be disentangled is 
restricted to those in which the fractional denominator 1 2 1,3,5,7...lϕ = + =  is an odd integer.  
All of the even-integer charge states are entangled states which cannot be disentangled. 
 
 The conditional statement we can now make based on this observation, is the following:  
If the DWY monopoles exist under certain physical conditions, then the set of electric and 
magnetic charge states which can exist in a disentangled state are given by:  
 

; 0, 1, 2, 3...; 1 2 1,3,5,7,9...; 0,1,2,3,4...
1 2

n
l l

l
ν ϕ

ϕ ϕ
Λ Λ= = = Λ = ± ± ± = + = =

+
, (3.8) 

 
that is, they are fractionalized such that the fractional denominator 1 2 1,3,5,7,9...lϕ = + =  is an 
odd integer.  With the exception of the even denominator 2, all of the observed states of the 
FQHE also have odd denominators.  So the refinement if this conditional statement is this: If the 
DWY monopoles exist under certain physical conditions, then the set of disentangled electric 
charges is precisely the same as what is observed in the FQHE, except for 2ϕ = . 
 
 This raises the central questions to be studied in the paper and eventually answered 
affirmatively with some proposed avenues for experimental validation or contradiction: Are the 
odd-integer denominators observed in FQHE a physical consequence of the odd-integer 
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fractionalization of disentangled electric and magnetic charge states in (3.8)?  And, is the even 
FQHE denominator of 2 also a physical consequence of (3.8) based on what would be a 2ϕ =  
entangled state in (3.8)?  Finally, does (3.8) also provide an explanation for why all other even 
denominators are not observed in FQHE? 
 
4. Three Questions to Consider: Observable Topological Distinctness of 
Angles with 4π Orientation Separation, Three-Dimensional DWY U(1)em 
Gauge Analysis versus Two-Dimensional FQHE Electronic Configurations, 
and Low-Temperature Electric / Magnetic Duality Symmetry Breaking  
 
 For the fractionalization in (3.5) of Dirac-Wu-Yang monopoles based on U(1)em gauge 
theory – or the odd-integer fractionalization (3.8) assuming the even integer 2ϕ =  can also be 
understood – to specify a valid connection between the fractionalized DWY charge states and the 
fractionalized quasiparticle states of FQHE found in the empirical data [1], [2], [3], [4], [5], [6], 
[7], [8], [9], [10],  there are at least three questions which would need to be answered: 
  

The first question arises because in geometry absent consideration of topology, angles 
which differ from one another by 2π  orientations are geometrically, trigonometrically 
indistinguishable. This applies to the azimuth angle ϕ , just as it applied to the gauge angle Λ  as 
discussed in section 2.  If we take into account topological orientation and entanglement (OE), 
then angles which differ by 2π  do become topologically distinct and thus have the possibility to 
be observably distinct because they have opposite entanglements.  But angles differing by 4π  
appear to remain indistinct because they have the same topological orientation and entanglement.   
 

Now, because the fractional denominators in FQHE are empirically observed, this means 
that if the denominator 1 2lϕ = +  a.k.a. 2 4 lϕ π π= +  in (3.8) was to actually be the odd 
denominator of the FQHE, then 2 4 lϕ π π= +  would have to be observable.  But even with OE 
considered, angles in the set 2 4 lϕ π π= +  are indistinct from one another.  So we now ask the 
same question about the azimuth angle 1 2 1,3,5,7...lϕ = + =  that we asked in section 2 about the 
gauge angle nΛ = :  If 1 2lϕ = +  was to be the odd-fractional FQHE denominator and thus an 
observable, how could this be an observable as the FQHE denominator yet not be an observable 
when it represents the number of azimuth windings 1 2lϕ = +  of states with identical OE?   

 
As we shall show in the next two sections, when orientation and entanglement are very 

carefully analyzed, then depending upon the disentangling procedure employed, there can also be 
seen an observable “twist”  of the “threads” which connect an “object” to its “environment” 
which twist did not exist at the outset.  Therefore, even following disentangling, similarly-
entangled angles in the set 1 2lϕ = +  can become topologically distinct from one another.  
Consequently, these observable twists make it possible for 2 4 lϕ π π= +  and thus the 
denominator in (3.8) to be a topological observable.  Moreover, unexpectedly, it turns out that 
the pattern of this twist-resultant topological distinctness precisely mirrors the pattern of orbital 
and spin angular momentum observed in the electronic structure of atoms.  Specifically, writing 
1 1
2 2lϕ = + , we find that with ξ  representing spinor eigenstates, l relates precisely to the 
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Casimir operator of the orbital angular momentum in ( )2 1l lξ ξ= +L  and 1
2  relates precisely 

to Casimir operator of spin 1
2s =  in ( )2 1s sξ ξ= +S .  And as shown in (3.6) and (3.7), the 

2ϕ π=  a.k.a. 1 1
2 2 sϕ = =  state with 0l =  has the electric charge of an unfractionalized electron. 

So when orientation-entanglement and twist are all considered, there is no observability problem 
with nΛ =  or with 1 2lϕ = +  in /ν ϕ= Λ  in (3.8) because each of Λ  and ϕ  is a topological 
observable.  Using “twistors” as an element of spacetime topology was originally proposed by 
Penrose [25] and subsequently advanced by others including Witten in [26], and will become a 
central feature of the development here. 
 
 The second question arises because the Dirac-Wu-Yang theoretical argument based on 
U(1)em gauge theory is developed within the three-dimensional physical space of spacetime 
geometry, and is understood to apply to systems of electrons, protons, and neutrons for which no 
fractionally charged particles and no Dirac-Wu-Yang magnetic monopoles have ever been 
observed.  But at the level of analysis where the quasiparticle language applies, the system is 
fundamentally two-dimensional, because the superconducting materials used together with the 
ultra-low temperatures and large perpendicular magnetic fields applied to stimulate the observed 
FQHE, combine in some fashion to substantially remove one degree of spatial freedom from the 
electrons and so restrict the electrons to two space dimensions while also giving rise to 
superconductivity.  And in some way that needs to be understood, these all synergistically coact 
to produce the 1,2,3,5,7,9... denominator pattern which is observed.  Because of this apparent 
difference between the three-dimensional space of Dirac-Wu-Yang and the two-dimensional 
restricted space of FQHE, one might take the a priori view that there is no connection between 
Dirac-Wu-Yang and FQHE.  So at the very least, if there is some hidden, not-yet-understood 
connection between these two fundamentally-different environments of Dirac-Wu-Yang and 
FQHE, it is important for such a connection to be carefully developed and understood.   
 

The third question that arises stems simply from the observational data that insofar as is 
known, magnetic monopoles have never been observed.  So if the DWY monopoles are 
responsible for FQHE which would means that these monopoles do exist near 0K, then it would 
be important to understand how this low-temperature duality symmetry between U(1)em electric 
and magnetic charges becomes broken at higher temperatures.  As to this third question, we must 
keep in mind that while the high energies of Grand Unified Theories (GUT) have certain 
symmetries which are broken at lower energies, so too, low temperatures near absolute zero are 
also thought to cause displays of certain symmetries which become broken at higher 
temperatures, see, e.g., Volovok’s [27].  This third question can also be posed in relation to the 
second by asking whether by tightly constraining the electrons to two rather than three 
dimensions, and extracting virtually all of their heat energy leaving them only with their Fermi 
energies, we are forcing the electrons in superconductors near 0K into some highly-constrained 
topological condition which forces them to reveal their entanglements and to display an electric 
and magnetic monopole symmetry and a charge fractionalization which they otherwise can keep 
hidden from observation at all higher temperatures. 

 
Now, to address the first of these three questions, we embark in the next two sections 

upon a detailed study of topological orientation, entanglement and twist.   
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5. Twist:  The Missing Ingredient from Orientation-Entanglement 
Analysis, and how this may lead to a Topological Understanding of 
Quantization 
 
 Spinors, which includes electrons, reverse sign upon a spatial rotation through an angle 
ϕ  by an odd multiple of 2π .  Specifically, as Misner, Thorne and Wheeler (MTW) point out in 
one of the most widely-regarded discussions of this topic in [18] at section 41.5, the spin matrix 
of a rotation ( ) ( ) ( )cos / 2 sin / 2R iϕ ϕ= − ⋅n σ  (see MTW [41.48]) reverses sign upon a rotation 

through an odd multiple of 2π , as does the sign of a spinor under Rξ ξ ξ′→ =  (MTW [41.50]).  
This sign reversal does not, however, appear in the transformation law for a vector, 

*X X RXR′→ =  (MTW [41.49]). 
 
 Misner, Thorne and Wheeler provide a visual, macroscopic, intuitive, essentially-
topological understanding for this result by considering the orientation and entanglement of an 
object relative to its surrounding environment, because while orientation is restored under a 2π  
rotation, it takes a 4π  rotation to restore the object’s state of entanglement, i.e., to restore the 
complete “version” of the object.  They do, however, at page 1148 of [18], make the statement: 
 

“Whether there is also a detectable difference in the physics . . . for two 
inequivalent versions of an object is not known.”  

 
This question of whether MTW Orientation-Entanglement (OE) brings about detectable physics 
in physics will be the focus of the next two sections, and in some ways, the remainder of this 
paper.  In these next two sections, we shall find that OE with Twist provides a topological 
understanding of the observed electronic structure of atomic shells, and provides the basis for the 
physical reduced angles a.k.a. winding numbers in the sets nΛ =  and 1 2lϕ = +  in the fill 
factor /ν ϕ= Λ  in (3.8) to be physical observables.  We shall also show how ultra-low 
temperatures constraining electrons in superconductors to two dimensions may be represented in 
terms of constraints on OE and Twist, which will help us figure out how to break the electric / 
magnetic duality at higher temperatures.   
 
 Ross in [28] “hypothesize[s] that the OE relations are important to physics [and] 
represent the deep relationship between any particle or material body and its environment.”  He 
proceeds to show (reference renumbered) “that Dirac [11] magnetic monopoles do not satisfy the 
OE relationship” and “hypothesize[s] that this is the reason they have never been seen despite 
extensive searches . . . and despite having a natural and elegant theory underlying them . . . going 
back to the more natural symmetry of Maxwell’s equations with magnetic monopole sources 
present. ”  He then states that “[s]ince all known particles satisfy the OE relations and we show 
that Dirac magnetic monopoles which have not been seen do not satisfy these relationships, it is 
hoped that this paper will stimulate further work on the OE relations themselves and their 
topological role in physics.”  This further work on the OE relationships is precisely the subject of 
the present development, and will lead us to understand the fractional quasiparticles of FQHE as 
electron states which obtain their observability due to topologically distinct OET states, and 
which obtain their observed angular momentum in atomic shells based on the twisting which 
remains after the OET threads are disentangled. 
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 Figure 31.6 of MTW’s [18] which is also posted online at [29], shows a spherical “object 
connected to its surroundings by elastic threads.”   Indeed, it is these “threads” and various 
configurations of these “threads” which most directly illustrate the “deep relationship between 
any particle or material body and its environment” mentioned by [28].  It is also these “threads” 
themselves which will be the focus of the present discussion.  As is well-understood, it is always 
possible following a 720° rotation or integer multiples thereof of an object connected to its 
environment with “untwisted threads,” to remove all entanglement from the connections of that 
object to its environment.  But of particular importance, as we shall now develop here, the 
sequences of disentangling the “threads” from one another are not unique.  Depending upon the 
sequence chosen, even after disentangling, the “threads” may still each maintain individual 
twists, or they may have all twisting removed and have been returned to an untwisted state.  The 
surprise is that this twisting maps precisely to the structure of electronic shells in atoms. 
 
 To simplify this development without any loss of information, rather than use the 
spherical “object” and the spherical “environment” and the “threads” employed in Figure 31.6 of 
[18], let us employ a first “bar” or “stick” which represents the “environment” and a second 
“bar” or “stick” which represents the “object,” and a pair of “ribbons” which represent the 
connections of this “object” to its “environment.”  These two ways of representing OE do 
topologically map into one another as is shown below in Figure 1, which is why we can use the 
“bars and ribbons” as an alternative way of representing Figure 31.6 of [18].   

 
Figure 1: Topological Deformation of Figure 31.6 of [18] (MTW) into a “Bar and Ribbon” 

Configuration 
 

Specifically, to verify this topological mapping which means that Figure 1(c) belongs to 
the same homotopy group as Figure 1(a), one may start with the OE system shown in drawing 1 
from Figure 31.6 of [18], replicated in Figure 1(a) above.  To maintain points of reference, we 
label the north N and south H hemispheres of the object as shown above, which hemispheres also 
have north and south “thread” connections to the environment.  Then, as shown in Figure 1(b) 
above, one may topologically deform the object by stretching it in into a vertical elongation, 
while relocating the threads to the right along the northeastern and southeastern regions of the 
environment which can be snipped on the left side past all the threads without losing any relevant 
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information about the topology.  Then, one can take the entire Figure 1(b) and rotate it 90° 
counterclockwise to arrive at Figure 1(c) above.  In this final step, the environment is simply 
represented by a top “bar” or a “stick” at the top of 2(c), the object is represented by a bottom 
“bar” or a “stick” at the bottom of 2(c) which maintains the “north” and “south” labels simply as 
a point of reference back to Figure 1(a) (notwithstanding that these are east and west in Figure 
1(c)) and now also introduces a directional vector running from north to south, and the north and 
south threads are merged together into a pair of “ribbons” which represent the entanglement 
between the object and its environment.  It will be appreciated that the ribbons capture the same 
topological information as the threads (just think of the two lines bounding the ribbon widths as 
being two threads and then add a few more threads in between for good measure, see, for 
example, the web animation at [30]).  The benefit of employing “ribbons” (or thick “threads” 
with discernable width) rather than thin threads abstracted to being infinitesimally thin is that it 
is much easier with a two-sided ribbon to illustrate and track any twisting which may occur in 
the course of performing OE operations, which will be very central to the ensuing discussion. 
 

This “bar and ribbon” configuration in Figure 1(c) is often used in illustrations of the OE 
relationships, see, for example, an online animation at [31].  For the interested reader to follow 
the forthcoming development, it is easy and advisable to construct a physical apparatus 
resembling Figure 1(c) by taking two sticks or dowels or even pencils, and then gluing or 
stapling two ribbons or shoelaces or even rubber bands to the sticks in the configuration 
illustrated.  It also helps to color each side of the ribbons differently for monitoring twists.  At 
the web link https://jayryablon.files.wordpress.com/2014/12/figure.jpg the apparatus constructed 
by the author for this purpose may be viewed at in the upper-left photograph, with the other 
photographs showing some states of twist that we shall now review.  

 
Figure 2: Environmental OE Consequences of Rotating a Vector through 720° 

 
 Starting with the bar and ribbon configuration of Figure 1(c), let us first immobilize the 
top “environmental” bar.  This abstractly “fixes” the environment.  Let us then rotate the bottom 
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bar – which from now on we shall simply call the bottom “vector” – by a 4 720ϕ ϕ π ϕ→ + = + °  
right-handed counterclockwise rotation about the +z axis through the angle ϕ  in the x-y plane, 
as shown in Figure 2(a) above, to arrive at the configuration of Figure 2(b) above.  We shall wish 
to study the relationship of this vector to its environment through the behaviors of the ribbons 
under some operations to be elaborated momentarily.  In using the word “vector” in the present 
context, we are simply referring to the orientation arrow in Figure 1(c), not to a “vector” in the 
sense of a spin 1 particle.  The result of this 4π+  rotation is shown in Figure 2(b) above. 
 

It is worth keeping in mind that all three x, y, z dimensions are utilized in this rotating 
operation.  By rotating the vector through ϕ  we are utilizing the x-y plane, while the ribbons and 
the environmental bar are situated above this x-y plane along the z dimension.  It is also worth 
keeping in mind for later, that for electrons frozen in two dimensions at low temperature in 
superconducting materials in the FQHE environment, one degree of spatial freedom is 
effectively removed.  It is also important to keep in mind that this angle ϕ  is an azimuth angle of 
rotation in three space dimensions, just as was the azimuth angle ϕ  first introduced after (5.1) 

when we wrote the electromagnetic field strength as ( )/ 4 cosF d dµ π θ ϕ= .  So it is appropriate 

to try to relate these two angles ϕ  to one another because physically they mean the same thing. 
 
 In Figure 2(b), to provide depth perspective so it can be seen what is passing in front of 
and behind what else, the wider lines illustrated on each ribbon indicate a passing in front of the 
narrower lines illustrated on each ribbon, and diagonal hash lines are used to illustrate the 
opposite face of the ribbon relative to the face shown in Figure 2(a).  In Figure 2(b), we reach a 
state in which the ribbons are entangled with one another, with the entanglement forming a left-
handed helix in relation to vector pointing vertically in the +z direction, as illustrated.  And in 
addition, each of the two individual ribbons also is twisted into a left-handed helix (L), as 
illustrated.  Again, it is helpful for the reader to construct and use this bar and ribbon apparatus to 
see all of this.  In addition, both the entanglement helix and the twist helixes are double helixes, 
in the sense that there are two full helix rotations of 4 720π− = − ° , using a convention in which a 
right helix has a positive sign and a left helix has a negative sign.  Certainly, while the original 
ϕ  and the final 4ϕ π+  are indistinguishable geometrically, they are topologically distinct, 
because their relation to the “environment” as manifest by the ribbon entanglement and twist is 
different.  Geometrically, the vector has an identical orientation in Figure 2(a) as in 2(b).  
Topologically, it is clear that the Figures are different, and the number and handedness of the 
helixes is a form of physical encoding which tells us exactly what sort of rotation has occurred to 
get into that entangled and twisted state.  The same considerations apply when we rotate the 
gauge angle Λ .  However, in the complex gauge space there is no actual third dimension 
analogous to the z axis, while for ϕ  not only is there a z axis, but this z axis establishes 
coordinates in a real observed dimension of physical space. 
 
 Now let’s discuss ways to disentangle these ribbons, one from the other.  It must be made 
clear that when we talk about disentangling ribbons, we are talking about disentangling two 
ribbons from one another.  That is a separate matter from removing the twists from each 
individual ribbon.  One way to disentangle these ribbons is to simply release the N�S vector and 
let it “hang” from the environment bar and un-rotate, analogously to a child’s swing that has had 
the seat twisted into Figure 2(b) and then is released to rotate back under the pull of gravity to its 
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ground state of Figure 2(a).  Indeed, it is helpful and physically pertinent think of the unrotated, 
untwisted Figure 2(a) as representing a sort of topological “ground state” to which Figure 2(b) 
will return if the N�S vector is given freedom to rotate through the x-y plane, i.e., if it keeps its 
freedom in all three dimensions.  If this is allowed, not only will the two ribbons naturally 
disentangle, but all twists in each ribbon will also naturally be removed. 
 

But let us say we do not let the N�S vector rotate any more.  Now that it has been 
rotated from 4ϕ ϕ π→ +  let us suppose that we remove its freedom to rotate through the x-y 
plane.  Let us now mandate that the top and bottom bars are heretofore to remain locked into 
immobile alignment with one another with no relative rotations allowed?  In other words, let us 
now remove the degree of freedom along the y axis and lock everything into the two-
dimensional x-z plane.  What happens then?  Is there a way to return to the “ground state” even 
with the two bars locked into immobile alignment and freedom confined to the two dimensions 
of the x-z plane? 
 
 This is where disentangling operations are used, whereby we can return to a ground state 
– or as will be seen at least to a lower energy state – using only two dimensions, if we move the 
ribbons around the N�S vector.  However, the ability to disentangle in this way is subject to an 
important caveat that there must at least be some very minimal freedom to use the y axis to get 
the ribbons around the ends of the N�S bar and past the bar, and in particular, we still must have 
access to the y-dimension for at least the smallest cross-sectional thickness of the ribbon itself.  
We make note of this now, but this will be very important to understanding how the DWY 
monopoles in three space dimensions connect to FQHE in two space dimensions. 
 
 Now, if the initial rotation in Figure 2 had been through only 2 360π+ = + ° , Figure 2(b) 
would contain all single left-handed helixes, both for its entanglement between the two ribbons 
and for the twists of each ribbon.  And, as is well known, there would be no way to disentangle 
the two ribbons from each other with the two bars locked into immobile relative alignment using 
only manipulations of the ribbons.  But from Figure 2(b), because of the double helix 
entanglement which results from the double winding rotation through 4 720ϕ ϕ π ϕ→ + = + °  
a.k.a. 2ϕ ϕ→ +  using the reduced azimuth / 2ϕ ϕ π≡  earlier defined, aligned-bar 
disentangling is possible using only ribbon manipulations.  And specifically, in order to 
disentangle the two ribbons using only operations of the ribbons with both the top-bar 
environment and the bottom bar vector remaining relatively immobile, one must perform two 
ribbon operations, and there are three choices for how these two ribbon operations may be done. 
 

For the first choice, as shown in Figure 3 below, for the first ribbon operation, one can 
take the north ribbon, wind it in front of and past the north “pole,” wind it beneath and behind 
the entire vector, and then wind it back above the vector in front of and past the south “pole.”  
Then, for the second operation, one can take the south ribbon, wind it past the north “pole,” wind 
it beneath the entire vector, and then wind it back above the vector past the south “pole.”  This 
can be done in either order, that is, one can use the south ribbon in the first operation and the 
north ribbon in the second operation and end up with the exact same result as the vice-versa 
operation, which, as shown in Figure 3 below, not only disentangles the two ribbons from each 
other, but also removes the individual twists in each ribbon.  We denote this by placing the 
number “0” next to each ribbon to indicate that it has no residual twist.  Here, with one operation 
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using the north ribbon and a second operation involving the south ribbon, in either order, we 
have restored the original OET state of Figure 2(a) in its entirety. 

 
Figure 3:  The Disentangling Operation { }0 2 , 0N Sϕ→ + → →  

 
In either case, however, whether the north or south ribbon is operated first, the ribbon 

windings must go from north to south, that is, the ribbons must be first brought around the north 
pole, then wound past the vector, then be brought back past the south pole.  If the ribbons are 
wound from south to north, they will become even further entangled, and the net effect will be 
that of having performed a 8ϕ ϕ π→ +  a.k.a. a 4ϕ ϕ→ +  quadruple rotation starting from 
Figure 2(a).  The question occurs why there is this apparent asymmetry in which the ribbons 
must be brought past the north pole first, but that is explained by the fact that the Figure 2 
rotation was done counterclockwise i.e. right-handedly about the z-axis, and thus was positively 
signed, 4ϕ ϕ π→ + .   Had the rotation been clockwise hence negative according to the 
customary conventions for defining angular rotation, i.e., 4ϕ ϕ π→ −  a.k.a. 2ϕ ϕ→ − , then 
disentangling would have required winding the ribbons first over the south and then over the 
north pole.  So there is in fact an overall symmetry to these operations, and one can choose – as 
we now do – a convention of only doing positive, right handed rotations and then always starting 
disentangling about the north pole, rather than doing negative rotations then starting 
disentangling about the south pole. 

 
It is also important to observe that although the disentangling operation can take place 

very close to the x-z plane, at least some small incursion into the y dimension is required, of at 
least the narrowest cross-sectional width of the ribbon.  How do we see this?  If one labels the 
N�S bar with N and S near the ends, then when first moving a ribbon past the N pole, it will be 
impossible to progress without the N becoming momentarily obscured by the ribbon.  So if the 
narrowest cross section of the ribbon has some small length ε , the ribbon will at least pass 
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through y ε= +  to get past the N pole.  The same will be true at the S pole.   Further, when 
moving the ribbon past the length of the N�S vector, the ribbon will have to go behind the bar 
through y ε= − , and the ribbon will always visually obscure some part of the back of the bar 
while this disentangling is occurring.  So although we have removed the y-axis from being 
available for rotation of the object bar vector, we must make a very small portion of the y axis 
available for passing the ribbons during disentangling.  If we do not do so, then the ribbons are 
frozen as is – the word “frozen” being a deliberate choice in relation to FQHE near 0K – and 
cannot be disentangled.  Now, let’s turn to what happens as a result of this disentangling, if we 
are permitted a small y ε= ±  ribbon incursion into the y axis, and let’s develop some notational 
shorthand to discuss this. 
 

We shall use the shorthand 0,0 2 / , / 0,0N N S Nϕ→ + → →  to represent this 
operation in Figure 3 in which both the north and south ribbons start with no twists 0,0,  the 
azimuth is positively rotated through two windings 2ϕ + , the north and then south ribbons are 
wound over the north pole /N N , /S N, and the disentangled state finally restores no twists 
0,0 which was the original ground state.  If the reader does this operation but instead performs  

/S N , /N N  in opposite order, it will be seen that the order of ribbon operations does not matter 
and the same end result is reached in either case.  This means that 
0,0 2 / , / 0,0S N N Nϕ→ + → →  as well.  Thus, when the initial rotation is negative 

2ϕ ϕ→ −  rather than positive 2ϕ ϕ→ + , as we have already started to discuss,  
0,0 2 / , / 0,0N S S Sϕ→ − → →  and 0,0 2 / , / 0,0S S N Sϕ→ − → →  are also operations 
which restore the initial disentangled state with no twists.  And as already stated, in recognition 
of this symmetry, we shall work only with positive right-handed rotations, which means that 
ribbons must always go first over the north pole to achieve disentangling.  So by adopting this 
convention, we can drop the “/N ” from the notation because it is always to be implicitly 
assumed.   We also keep in mind that the final configuration is invariant under the order in which 
the north and south ribbons are operated, i.e., under either temporal ordering ( ),N S  or ( ),S N  of 

the permutated ribbon set { },N S .  Thus, we can simplify the shorthand to write the Figure 3 

operation as { }0,0 2 , 0,0N Sϕ→ + → → , simply indicating that either ( ),N S  or ( ),S N  over 

the north pole will restore a disentangled, untwisted state following a 2ϕ +  rotation of a vector. 
 
 For the second choice to disentangle the ribbons, one can take the north ribbon and wind 
it twice past the north pole, then past the vector, then past the south pole, and the ribbons will 
still disentangle as before.  But here, there will be a residual twist in each ribbon, as now shown 
below in Figure 4 below.  Now, because we have used the ribbon set { },N N  to disentangle the 

ribbons, the north ribbon maintains a double helix twist with right-handed parity as defined along 
the +z axis which we denote by 2R, while the south ribbon also has a double helix twist but with 
left-handed parity which we denote as 2L.  The ribbons are fully disentangled, and yet, the end 
state in Figure 4(b) is observably, physically-distinct from the end state of Figure 3(b), based 
wholly on the operation that was used to disentangle the ribbons.  So even though a rotation of a 
vector through 4ϕ ϕ π→ +  yields the exact same orientation and the exact same entanglement 
for that vector, the final, physical state can still be different from the starting state, wholly 
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dependent upon how the disentangling operation has taken place.  This means that 4ϕ π+  is 
topologically observably distinct from ϕ , even after disentangling.  These two orientations 
separated by 4π  have the same OE version and can both be disentangled, but they still may have 
different OET twist configurations. 

 
Figure 4:  The Disentangling Operation { }0 2 , 2N N Rϕ→ + → →  

 
Using the notation developed above, we may use { }0,0 2 , 2 ,2N N R Lϕ→ + → →  to 

denote the final state of Figure 4(b) in which the north ribbon ends up with a double right-handed 
helix and the south ribbon ends up with a double left-handed helix.  The 2ϕ +  of the two 
windings gets inherited by the 2 in the two double helix twists.  It will be apparent, however, that 
the left and right twists are offsetting, which is to say that the net twist of the overall system 
remains zero as it was when it started in Figure 2(a).  In general, it turns out that this 
“conservation of twist” result carries through to all OET disentangling.  So, if we know that the 
north ribbon has ended up with 2R, then we automatically know that the south ribbon has ended 
up with 2L.  And if the north ribbon has a 0 twist then so too does the south ribbon.  Thus, we 
can use the twist conservation under OET disentangling to simplify the summary of the Figure 4 
operations to { }0 2 , 2N N Rϕ→ + → → , showing only 0 as the initial twist and 2R as the final 

twist for the north ribbon, and deducing by implication that 0 and 2L are therefore the initial and 
final twists for the south ribbon.  In this way, we adopt a convention whereby the helicity twist of 
the “north” ribbon is used to characterize the helicity twist of the south ribbon and therefore of 
the overall OET system following disentangling. 
 

For the third and final choice to disentangle the ribbons, one can take the south ribbon 
and wind it twice about the north pole, then the vector, then the south pole, and the two ribbons 
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will again disentangle from one another.  But here, there will be a residual twist in each ribbon 
oppositely to that shown in Figure 4, as now shown in Figure 5 below.  Here, we have used the 
operational set { },S S  to disentangle the ribbons.  The north ribbon maintains a double helix 

twist but now with left-handed parity which we denote by 2L, while the south ribbon also has a 
double helix twist but with right-handed parity which we denote as 2R.  Twist is still conserved, 
i.e., the net ribbon twist is zero, so continuing to represent the end result simply by the 2L state 
of the north ribbon, { }0 2 , 2S S Lϕ→ + → →  now summarizes the Figure 5 operation. 

 
Figure 5:  The Disentangling Operation { }0 2 , 2S S Lϕ→ + → →  

 
 Returning to Figure 3, because we now know that twist is conserved, as already done 
with Figures 4 and 5, we further consolidate the summary of this operation to 

{ }0 2 , 0N Sϕ→ + → → .  These are the operations shown in the captions for these three figures.  

They key thing we learn from all of this is that a state which starts at 0 for the north ribbon can 
be disentangled into one of three states: 2R, 0, and 2L depending on whether we disentangle with 

{ },N N , { },N S  or { },S S , respectively. 

 
 Now let us now make some final changes to our notation.  Because the two ribbons can 
only be disentangled from one another in this way if there have been two rotations to begin with, 
and because the results 2R and 2L both have two twists, let us talk from now on about the 
number of double rotations and the number of double twists.  So in all of the above, we started 
with one (1) double rotation and the states which retained non-zero twist ended with one (1) 
double twist.  Also, because the non-zero twist end results always contain a left- or right-handed 
double twist, let us use the “+” sign to denote a right-handed and “-” to represent a left-handed 
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twist in relation to the +z axis.  And since the number of rotations and the number of twists are 
both topologically-quantized integers, let us assign quantum numbers to these.   
 

In all of the foregoing we first rotated the azimuth by 2ϕ ϕ→ + , which we rewrite as 
2lϕ ϕ ′→ +  with 1l ′ = +  denoting the number of double rotations which as discussed is always 

a positive number.  The reason for using “primes” in the notation will momentarily become 
evident.  So all of Figures 3, 4 and 5 can be summarized by the double rotation quantum number 

1l ′ = + , and instead of writing 2ϕ +  in our notation, we simply write 1l ′ = + .  After 
disentangling the two ribbons, depending upon the operation used, we ended up with 2R, 0, or 
2L.  For these let us use the respective double twist quantum numbers 1m′ = + , 0m′ =  and 

1m′ = − , and.  Both l ′  and m′  are quantized, but there is no mystery to this because they simply 
represent the number of double rotations and the number of double twists.   So using this 
notation, we can consolidate all of the results from Figures 3, 4 and 5 in the following triplet of 
final states: 

 

{ } ( )
{ } ( )
{ } ( )

, 1 1, 1    

0 1 , 0    1, 0      

, 1   1, 1   

N N m l m

l N S m l m

S S m l m

 ′ ′ ′→ = + = + = +
′ ′ ′ ′→ = + → → = = + =
 ′ ′ ′→ = − = + = −

. (5.1) 

 
To the point: the triplet of final states is 1, 1l m′ ′= + = + , 1, 0l m′ ′= + =  and 1, 1l m′ ′= + = − . 

 
 Now let’s repeat everything we have just done, but instead of a single double-winding 

1l ′ = + , let’s start with Figure 2a, and do two double-windings, 8ϕ ϕ π→ + , i.e., 4ϕ ϕ→ + .  
This is now an 2l ′ = +  state, and it requires four ribbon operations.  But instead of showing more 
drawings, let’s just use the consolidated notation to represent the results.  As discussed earlier, 
ribbons must always be brought first past the north and then past the south pole, because the 
rotation is a positive rotation.  Doing otherwise will create further entangling, rather than 
disentangling.  As also reviewed, the temporal order with which one operates the ribbons does 
not matter because as with 1l ′ = +  the final twist results are invariant with respect to this order.  
So the five disentangling operations which can each be applied in any temporal permutation are 

{ }, , ,N N N N , { }, , ,N N N S , { }, , ,N N S S , { }, , ,N S S S and { }, , ,S S S S.  What we now have, in 

place of five more figures, are the five resulting states: 
 

{ } ( )
{ } ( )
{ } ( )
{ } ( )
{ } ( )

, , , 2 2, 2      

, , , 1  2, 1       

0 2 , , , 0     2, 0         

, , , 1    2, 1       

, , , 2    2, 2      

N N N N m l m

N N N S m l m

l N N S S m l m

N S S S m l m

S S S S m l m

 ′ ′ ′→ = + = + = +


′ ′ ′→ = + = + = +
′ ′ ′ ′→ = + → → = = + =
 ′ ′ ′→ = − = + = −
 ′ ′ ′→ = − = + = −

. (5.2) 
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So now we start to see the pattern when Orientation-Entanglement (OE) is analyzed also 
with careful consideration of Twist, for which we shall use the acronym OET.  In general, for 
OET, l ′  which represents the number of double rotations / windings is an integer which always 
has the value 0,1,2,3,...l ′ =  ( 0l ′ =  is represented by Figure 2(a) and has the singlet state 0m′ =  
with no twists), and the resultant twist of the north ribbon following disentangling ranges over 
the integers m′  for which l m l′ ′ ′− ≤ ≤ + .  So, for example, if we go next to 3l ′ = +  with three 
double windings we have seven states 0, 1, 2, 3m′ = ± ± ± .    And in general, the number of end 
states will be equal to 2 1l ′ +  for any given l ′ .  Strikingly, if we simply remove the “primes,” this 
is the same pattern seen in the orbital angular momentum and magnetization (z axis orbital 
component) of electrons in the shells of atoms, as represented by the quantum numbers l and 

( )zm l= .  And also strikingly, the azimuth angle ϕ  about which this topological winding occurs 

is the same azimuth in physical three-dimensional space through which this angular momentum 
is specified. 

 
Clearly then, OET provides the basis for asserting that vectors with orientations in the set  

4 nϕ π+  are not trivially-identical once topological OET has been considered, and that the 
differences between these inequivalent states map directly to the orbital and magnetic quantum 
structures of atoms and the nuclei and the orbital angular momentum quantum numbers which 
force exclusion.  We also note in passing that the web animation at [31] which follows the same 
winding procedure we have used here albeit displayed from a bottom perspective view, is one 
example of how OE discussions often overlook Twist: This animation performs the disentangling 
operation { },S S , so while it does indeed disentangle the threads, it still leaves the routinely-

overlooked twist which in this case is the 1, 1l m′ ′= + = −  state of Figure 5. 

 
This leads us to three questions: First, are these 0,1,2,3,...l ′ =  and l m l′ ′ ′− ≤ ≤ +  

concurrences merely coincidental, or can OET be used to provide a fully-topological 
understanding of electronic structure quantization (and by extension nuclear structure which is 
subject to similar quantized exclusion principles for proton and neutrons)?  Second, how does 
this all relate (if at all) to the DWY monopoles which motivated this discussion in the first place 
because of the need to physically-distinguish rotational states with the same OE, i.e., states 
differing by a 2π  or 4π  rotation in /ν ϕ= Λ  in (3.8)?  Third, because with the exception of 
the even denominator 2 which still needs discussion, (3.8) is an empirically-correct description 
of the observed odd-fractional FQHE denominators which apparently are observably 
topologically distinct and so can possibly be physical observables, how does this relate (if at all) 
to FQHE?  And these three questions taken together lead to a fourth question: does the high-
symmetry environment of FQHE where electrons are restrained to two dimensions at ultra-low 
temperatures approaching absolute zero reveal some type of genuine physical convergence of  
topology and atomic structure and the electric-magnetic symmetry of DWY magnetic 
monopoles, all emanating from U(1)em gauge theory? 

 
We shall address all of these questions more fully starting in section 7.  But first, we need 

to see if this topology can be further developed to map one other indispensable aspect of any 
conversation about electrons: their intrinsic spin ½. 
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6. Twist Part 2: Topological Modelling of Fermions and Conservation of 
Orbital Plus Spin Angular Momentum  
 

We found in the last section that when rotating a vector (meaning, the arrow in the N�S 
bar) through 0,1,2,3,...l ′ =  double windings (4π+  rotations), the number of double twists (4π  
twists) that remain following disentangling using one of 2 1l ′ +  available disentangling 
operations is l m l′ ′ ′− ≤ ≤ +  with the positive and negative signs representing helicity handedness 
in relation to the +z axis.  And this made us attentive to a possible connection with the analogous 

0,1,2,3,...l =   and l m l− ≤ ≤ +  in one of 2 1l +  states from atomic structure.  However, even if 
this possible connection is established to be a true connection, the finding that angles differing 
by 4π  are topologically distinct still does not entirely solve the problem of physical 
observability because the orbital angular momentum = ×L r p  to which we seek to solidify a 
connection is not by itself a physical observable.  Observables must commute with the 
Hamiltonian, and when commuted with the Dirac Hamiltonian, [ ] ( ),H i= − ×L Pα .  To fashion 

an observable angular momentum analogy, we need to also include the spin operator for which 

( ) ( )diag ,= σ σΣ  with 1
2≡S Σ , and for which [ ] ( ), 2H i= + ×S Pα .   Then, forming the total 

angular momentum 1
2= +J L L SΣ = + , we obtain [ ], 0H =J , and find that it is the total angular 

momentum J which is the conserved observable.  It is from the Casimir operator 1
2s =  in 

( )2 1s sξ ξ= +S  and from the eigenvalues 12±  in z zS sξ ξ= , that the Dirac fermions 

acquire their intrinsic spin ½.  Thus, if our goal is to develop a topological understanding of 
observable physics – as it must be – then we must advance the results of section 5 to provide a 
topological understanding of the intrinsic spin ½ of a fermion, and of the interplay between 
intrinsic spin and orbital angular momentum to conserve and render observable the total angular 
momentum.  That will be the main objective of this section.  So let us begin with the first 
question: topologically, in terms of OET, using the bar and ribbon apparatus of Figure 1(c), how 
do we represent intrinsic spin ½? 
 

We saw in the last section that each unit of a quantum number in 0,1,2,3,...l ′ =  which is 
the l analogy represented one double rotation of 4π+ , and that each unit of a quantum number in 

l m l′ ′ ′− ≤ ≤ +  which is the l m l− ≤ ≤ +  analogy represented one double twist of 4π  with 
associated handedness.  So each quantized unit corresponded with two rotations and / or twists.  
Thus, each single rotation or twist with magnitude 2π  should be represented by a half unit of a 
quantum number, i.e. by the quantum number ½ which is in fact the intrinsic spin of the electron.  
So our first conclusion is that an electron will be represented by in some way by a single rotation 
and / or twist and that the associated topological quantum number will be a half-integer.   

 
Moreover, this first conclusion is supported by our finding following (3.7) that if the 

DWY monopoles exists, then the special case in which 2ϕ π=  and 2πΛ =  has an electric 
charge equal to that of a single electron.  So there is an association already established between 
the DWY electron and 2ϕ π=  which represents a single rotation.  Specifically, throughout the 
last section, we made use of the rotation 2lϕ ϕ ′→ +  which is to say we took the apparatus of 
Figure 3(b) in some unspecified azimuth orientation ϕ  and then added a 4 lπ ′+  rotation to bring 
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the azimuth to 4 lϕ π ′+ .  But we never really stated what the orientation of the original ϕ  might 
be.  However, if it is a single DWY electron that we are rotating and then disentangling, then 
what we found following (3.7) tells us that the initial state for this electron needs to be regarded 
as 2ϕ π= .  Thus, for example, if a DWY electron with 2ϕ π=  is taken to be the initial state, 

then the rotation 4 lϕ ϕ π ′→ +  is really ( )1
22 2 4 4l lϕ π ϕ π π π′ ′= → = + = + .  

 
Now, the fact that 1

2l ′ +  naturally appears in this expression ( )1
22 4 lϕ π ϕ π ′= → = +  

a.k.a. ( )1
21 2 lϕ ϕ ′= → = +  means that the whole integer 0,1,2,3,...l ′ =  naturally gets added to 

the half integer ½ when the initial topological state is taken to be the 2ϕ π=  DWY electron.  So 

keeping in mind that spin 1
2s =  comes from the Casimir operator in ( )2 1s sξ ξ= +S , we 

posit a topological spin analog 1
2s′ = , and we rewrite the foregoing rotation as 

( )1 2 l sϕ ϕ ′ ′= → = + .  But of course the total angular momentum 3 5 71
2 2 2 2, , , ...j l s= + =  comes 

from the Casimir operator in ( )2 1j jξ ξ= +J  which combines ( )2 1l lξ ξ= +L  with 

( )2 1s sξ ξ= +S  via = +J L S  for which [ ], 0H =J .  So the topological analog to the total 

angular momentum will need to be 3 5 71
2 2 2 2, , , ...j l s′ ′ ′= + = .  That is, if the electron begins in the 

topological state with 0l ′ =  and 1
2j s′ ′= = , and then we apply 1,2,3...l ′ =  double rotations 

before disentangling the ribbons, the state we end up with will need to be characterized by 
3 5 71

2 2 2 2, , , ...j l s′ ′ ′= + =  in order to establish a suitable analog to the observable j.  This means 

that the rotation ( )1 2 l sϕ ϕ ′ ′= → = +  may be further rewritten as 1 2 1,3,5,7...jϕ ϕ ′= → = = .  

But this is just the odd-integer denominator in (3.8), and that denominator originates in the exact 
same reduced azimuth 2 1,3,5,7...jϕ ′= = .  So if we go back and use this in (3.8), we may write: 
 

3 5 71 1
2 2 2 2 2; 0, 1, 2, 3...; , , , ...; 0,1,2,3,4...;

2
j l s l s

j
ν

ϕ
Λ Λ ′ ′ ′ ′= = Λ = ± ± ± = + = = =

′
. (6.1) 

 
Now, the denominator in the fill factor is expressed directly in terms of a quantum 

number 2 1,3,5,7...jϕ ′= =  which is an odd integer, which has a topological interpretation by 
which each of these 4π -differing orientations is topologically distinct, which does correspond to 
what is observed in the FQHE, which uses the exact same reduced azimuth ϕ , and which 

analogizes to j which is a physical observable because [ ], 0H =J .  But now, how, exactly, do we 

capture all of this in the bar and ribbon apparatus of Figure 1(c)?  More precisely: how to we 
now modify the bar and ribbon apparatus of Figure 1(c) so that it properly represents all of this 
and provides an exact topological mapping to all of the angular momentum quantum numbers 
, , , , ,z zl m s j s j ?  

 
The final clue involves the z-component of these angular momenta.  The spin angular 

momentum has the eigenvalues 1
2zs = ±  emerging from z zS sξ ξ=  while the magnetization 

quantum number l m l− ≤ ≤ +  to which we analogize the double twist number l m l′ ′ ′− ≤ ≤ +  is 
the eigenvalue of the z-component of the orbital angular momentum zm l=  as obtained from 
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zL mξ ξ= .  The z-component of the conserved and observable total angular momentum is 

then obtained from z zJ jξ ξ=  with z z zJ L S= +  and z zj m s= + , with the integer plus ½  

zj j j− ≤ ≤ +  in one of 2 1j +  total angular momentum states.  Therefore, the topological analog 

to the z-axis total angular momentum will need to be z zj m s′ ′ ′= +  with zj j j′ ′ ′− ≤ ≤ +  in 2 1j ′ +  

possible twist states, where zj ′  is always an integer plus ½ and therefore 2 zj ′  is always an odd 

integer just like the FQHE denominator, aside from the denominator of 2.   
 
So to pin this all down, because the question before us is what we need to do to the 

apparatus of Figure 1(c) to model intrinsic spin, with z zj m s′ ′ ′= + , let us first set 0zs′ =  thus 

zj m′ ′=  which is not a physical electron state, but which is the model we developed in section 5 

from Figure 1(c) before starting in this section to consider intrinsic spin 1
2zs = ± .  This quantum 

number m′  in section 5 directly represented the number and handedness of the topological 
double twists following disentangling of the ribbons.  This means that if zj m′ ′=  as it was in 

section 5, then zj ′  must similarly represent double twist number and handedness subsequent to 

disentangling.  And this should not change once we introduce 1
2zs = ±  to replace the 0zs′ =  

which was implicit in section 5. 
 
So let us now consider z zj m s′ ′ ′= +  in the situation where 0m′ =  but 1

2zs = ± , for 

example, for the states 1, 0l m′ ′= + =  in (5.1) or ( )2, 0l m′ ′= + =  in (5.2).  In these states, once 

intrinsic spin is included we will have 1
2z zj s′ ′= = ± .  Topologically, this represents half of a 

right- or left-handed double twist, i.e. one right- or left-handed single twist.  So now we have our 
answer: for the topological analogy of Figure 1(c) to be able to account for intrinsic spin we must 
model the spin ½ DWY electron in its initial unrotated state with a single twist, i.e. a half double 
twist.  Because there is both spin up and spin down along the z axis, this means that we will need 
two topological models, one in which the N ribbon (which by convention represents the state of 
the Figure 1(c) apparatus given twist conservation) has a single right-handed twist and the other 
in which it has a single left-handed twist. 

 
Based on all of the above, we proceed in Figure 6 below to represent a fermion, using the 

“bar and ribbon” topological device of Figure 1(c), by introducing a single 2π  twist into each 
ribbon, but with opposite helicity as between these two ribbons so as to conserve twist.  Because 
we have adopted a convention utilizing twist conservation whereby the north ribbon specifies the 
OET handedness in relation to the +z axis, we will need two such bar and ribbon systems: one in 
which the north ribbon has one right-handed helicity twist to represent spin up, and the other in 
which it has one left-handed helicity twist to represent spin down.  We denote the right-helicity 
ribbon with one half of a right-handed double twist using the quantum number 1

2zs′ = +  and the 

left-helicity ribbon likewise as 1
2zs′ = − , and we continue the convention whereby the “north” 

ribbon represents the overall topological system.  Because we have not yet performed any 4π+  
rotations about the +z axis and then disentangled anything, these are configurations in the state

0, 0l m′ ′= = .  We have also included a second set of north (N) and south (S) references in 
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these Figures, with N placed on the OET “environment” bar and S placed in the middle of the 
OET “object” bar.  The original N�S vector maintains the reference to the original homotopic 
deformations in Figure 1 here, of MTW’s “object” and “threads” and “environment” illustration 
in Figure 31.6 of [18], into the bars and ribbons we are using here.  Meanwhile, the 
supplementary N and S provide a way of referring to the relative relationships between the OET 
“environment” bar in the north and the “object” bar in the south.  Which N and S we are talking 
about in any particular situation from here should be discernable by context. 

 
  Figure 6:  Topological Representation of spin s=½ DWY Electrons: (a) 

1 1
2 20, 0, ,z zl m s j′ ′ ′ ′= = = + = +  and (b) 1 1

2 20, 0, ,z zl m s j′ ′ ′ ′= = = − = −  

 
 Now, given that we intend to use the configurations of Figure 6 above to represent spin 
up and spin down fermions 1

2zs = + and 1
2zs = − , a practical question arises which may point to a 

deep physical result:  Let us suppose that the reader has built the apparatus in Figure 2(a) a.k.a. 
1(c) and now wishes produce the apparatuses of Figures 6(a) and 6(b).  Is the reader required to 
unstaple or unglue (detach) the ribbons from Figure 2(a), given them each a twist, and then 
reattach them back?  Or, can the reader merely perform some set of operations of rotation and 
disentangling to get from Figure 2(a) to Figures 6?  This is a practical question for somebody 
who lacks a staple remover, but given the topological connections we are finding between twist 
and spin it is also a deep theoretical question, namely: is there some way in which Figure 2(a) 
which represents no intrinsic spin can be topologically deformed into Figures 6 which represent 
a half unit of intrinsic spin?  That is to say, are these representations of spin 0 and spin ½ part of 
the same homotopy group and thus topologically equivalent, or, are they topologically different?  
The reason this is important is that if are eventually intending to have the number of double 
twists be a topological representation of total angular momentum about the z-axis zj , then 

Figure 2 will eventually represent spin 0 and Figures 6 will eventually represent spin ½, and so 
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the topological deformation of Figure 2 into Figures 6 would suggest that one can use 
topological deformations to go from spin 0 scalars to a spin ½ fermions and by induction to 
higher spins.  So the deep question this raises is this: can topological deformations in the three-
dimensional physical space be used to connect particles of different spins all within the same 
homotopy group, or do such different-spin particles belong to different homotopy groups 
whereby they are topologically distinct? 
 
 As it turns out – which the reader who has built Figure 2(a) can easily confirm – there are 
no OET operations about either the z or y axes that will deform Figure 2(a) into Figures 6.  The 
z-rotations have already been explored in the last section, and it turns out that rotation about the 
y axis followed by disentanglement produces results equivalent to the z rotations followed by 
disentanglement.  However, it is possible to deform Figure 2(a) into Figures 6 by rotating the 
bottom N�S bar about the x axis, and then disentangling the ribbons.  Specifically, using +x to 
define the axis of rotation, if one does a right-handed rotation of the N�S bar about the x axis 
through 2π  (one rotation not two) letting the ribbons wind once about the bar, and then 
disentangles the north ribbon over the north pole and the south ribbon over the south pole, the 
resulting configuration is 1

2zs′ = +  in Figure 6(a).  With a left-handed rotation of the N�S bar 

about the x axis through 2π  followed by the same disentangling, the result is Figure 6(b).  So 
our representation of spin 0 in Figure 2(a) can be topologically deformed into our representation 
of spin ½ in Figures 6, but only if we are permitted to rotate the N�S bar about the x axis.  If we 
are prevented from this rotation, and are only permitted rotations about y and z, then the different 
spins cannot be deformed into one another.  It is also interesting to note, although these 2π±  
spin-changing rotations about the x axis are not rotations about the azimuth ϕ  defined around 
the z axis, that after we have disentangled the ribbons, the resulting twists do become transferred 
such that their 2π±  handedness and magnitude is now oriented about the z axis.  Apparently, 
topologically, this 2π±  rotation about the x axis followed by disentangling the ribbons 
transmutes into the 2ϕ π=  azimuth which, as found after (3.7) and reviewed a few moments 
ago, is the ground state of the DWY electron. 
 

Although tangential to the main development here, we take a moment to point out how all 
of this raises the physical question whether there are natural situations in three-dimensional 
space where rotations can occur about two of the three axes but not about the third.  And in 
thinking about this question, one is drawn to the dynamical property of physical space whereby if 
one has an object with differing length > width > depth, say a length of 12 inches, a width of 6 
inches and a depth of 1 inch, and then throws that object into the air while imparting rotation, a 
stable rotation can be achieved about the length and depth axes, but not about the width axis.  So 
there is a physical precedent for “excluding” rotations about one of the three space axes.  While 
we shall not pursue this collateral question here, it is perhaps worth musing whether this 
dynamical property of three-dimensional space can help in trying to understand spin 
supersymmetry, or its apparent observed absence. 
 
 Returning now from this brief digression, let us now rotate the azimuth ϕ  of the N�S 
bar of each of Figures 6(a) and (b), which is inherently 2ϕ π= , through one 4π+  double 

winding, then disentangle the ribbons using the { },N N , { },N S  and { },S S  operations 

developed and discussed in section 5.   We can draw some more Figures for this, but that is now 
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unnecessary because we have developed some shorthand for representing the results, and 
presumably the reader has built this apparatus and so can observe these results directly.   
 

So, starting with Figure 6(a) which is in the state 1 1
2 20, 0, ,z zl m s j′ ′ ′ ′= = = + = + with 

one-half of a right-handed double twist in the north ribbon, we rotate 
2 2 4 6ϕ π ϕ π π π= → = + = , which brings about the 1l ′ =  state representing one double 

rotation.  We learned at (5.1) and (5.2) that a disentangling which equally balances N and S 
restores the original number of and handedness of double twists, i.e., leavesm′  unchanged from 
its original state.  If one carries out these above operations it will become clear that z zj m s′ ′ ′= +  

tells us the number of double twists in each final state.    Thereafter, for each of the three 
combinations of disentangling, we arrive at: 
 

{ }
{ }
{ }

31
2 2

1 1 1 1
2 2 2 2

1 1
2 2

, 1, 1, ,

0, 0, , 1 , 1, 0, ,   

, 1, 1, ,  

z z

z z z z

z z

N N l m s j

l m s j l N S l m s j

S S l m s j

′ ′ ′ ′ → = + = + = + = +
′ ′ ′ ′ ′ ′ ′ ′ ′= = = + = + → = + → → = + = = + = +
 ′ ′ ′ ′→ = + = − = + = −

. (6.2) 

 
Likewise, if we start with Figure 6(b) which is in the state  1 1

2 20, 0, ,z zl m s j′ ′ ′ ′= = = − = −  and 

again rotate  2 2 4 6ϕ π ϕ π π π= → = + =  which is represented by 1l ′ = , each of the 

disentangling options produces: 
 

{ }
{ }
{ }

1 1
2 2

1 1 1 1
2 2 2 2

31
2 2

, 1, 1, ,

0, 0, , 1 , 1, 0, ,   

, 1, 1, ,  

z z

z z z z

z z

N N l m s j

l m s j l N S l m s j

S S l m s j

′ ′ ′ ′ → = + = + = − = +
′ ′ ′ ′ ′ ′ ′ ′ ′= = = − = − → = + → → = + = = − = −
 ′ ′ ′ ′→ = + = − = − = −

. (6.3) 

 
All of the foregoing states have 3 1

2 2j l′ ′= = +  which is the maximum number of double 

twists that can remain following a maximally-stretched all-N or all-S disentangling, i.e., 
following { },N N  or { },S S  in which m′  and zs′  are both like-handed.  And there are a total of 

six (6) distinct such 3
2j ′ =  states, which is equal to the two original states of Figures 6 times the 

three distinct disentangling operations { },N N , { },N S  and { },S S  that can be done following 

2 2l ′ = +  single rotations from which there need to be two disentangling operations to disentangle 
the ribbons from one another.  (Keep in mind, again, that the final result is invariant under the 
two temporal permutations ( ),N S  and ( ),S N  of the operation set { },N S .) 

 
Let’s now start with each of Figures 6 which have 2ϕ π=  and rotate four times to 

10ϕ π=  which brings them into the 2l ′ =  state of two double azimuth rotations.  To save on 
drawings, let us simply represent the results in the same way.  Now from Figure 6(a) we have: 
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{ }
{ }
{ }
{ }
{ }

51
2 2

31
2 2

1 1 1 1
2 2 2 2

1 1
2 2

, , , 2, 2, ,

, , , 2, 1, ,  

0, 0, , 2 , , , 2, 0, ,     

, , , 2, 1, ,    

, , , 2, 2,

z z

z z

z z z z

z z

N N N N l m s j

N N N S l m s j

l m s j l N N S S l m s j

N S S S l m s j

S S S S l m

′ ′ ′ ′→ = + = + = + = +
′ ′ ′ ′→ = + = + = + = +

′ ′ ′ ′ ′ ′ ′ ′ ′= = = + = + → = + → → = + = = + = +
′ ′ ′ ′→ = + = − = + = −

′ ′ ′→ = + = − 31
2 2,     z zs j









′= + = −

.(6.4) 

 
Likewise, if we start with Figure 6(b) which is in the state  1 1

2 20, 0, ,z zl m s j′ ′ ′ ′= = = − = −  and 

again rotate to 2l ′ =  which is 10ϕ π= , each of the disentangling options produces: 
 

{ }
{ }
{ }
{ }
{ }

31
2 2

1 1
2 2

1 1 1 1
2 2 2 2

31
2 2
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z z z z

z z

N N N N l m s j

N N N S l m s j

l m s j l N N S S l m s j

N S S S l m s j

S S S S l m

′ ′ ′ ′→ = + = + = − = +
′ ′ ′ ′→ = + = + = − = +

′ ′ ′ ′ ′ ′ ′ ′ ′= = = − = − → = + → → = + = = − = −
′ ′ ′ ′→ = + = − = − = −

′ ′ ′→ = + = − 51
2 2,     z zs j









′= − = −

.(6.5) 

 
All of the foregoing states have 5 1

2 2j l′ ′= = +  which is the maximum number of double 

twists that can remain following a maximally-stretched all-N or all-S disentangling, i.e., 
following { }, , ,N N N N  or { }, , ,S S S S in which m′  and zs′  are both like-handed.  And there are 

a total of ten (10) distinct such 5
2j ′ =  states.  This is two original states times the five distinct 

disentangling operations { }, , ,N N N N , { }, , ,N N N S , { }, , ,N N S S , { }, , ,N S S S and { }, , ,S S S S 

that can be done following 2 4l ′ = +  rotations from which there need to be four disentangling 
operations (for which the permutations of N and S ordering do not change the final result) to 
disentangle the ribbons from one another. 
 
 We can next go to 14ϕ π=  which is 3l ′ =  double rotations over and above the 2ϕ π=  

initial state and will find a total of fourteen (14) distinct 7
2j ′ =  states, and the pattern will 

continue.  Indeed, in general, for any given number of double rotations 0,1,2,3...l ′ =  starting 

with the two 1
2s′ =  states shown in Figures 6(a) and (b), we will have 

3 5 71 1
2 2 2 2 2, , , ...j l s l′ ′ ′ ′= + = + =  with zj j j′ ′ ′− ≤ ≤ + , as well as l m l′ ′ ′− ≤ ≤ + .  Making use of 

1
2j l′ ′= +  there will be a total of ( ) ( )1

24 4 2 2 1j l l′ ′ ′= + = +  distinct states for any given j ′ .  So 

for respective 3 5 71
2 2 2 2, , , ...j ′ =  there will be a total of 2,6,10,14... distinct states following the 

distinct sets of disentangling operations that can be performed, and as we would hope, with the 
mere removal of the “primes” from all of the above, this precisely maps into the angular 
momentum states observed in the electronic shells of an atom.  In other words, this pattern of 
OET states – derived wholly from the topology of OET in three space dimensions – will continue 
to perfectly match the observed atomic structure for angular momentum, all the way through the 
entire periodic table. 
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These results deepen our attention to a possible connection between OET topology and 
electronic atomic structure, especially now that we have a zj ′  quantum number representing the 

total number of double twists which are observable after all disentangling has been performed, 
which analogizes to the observable zj  eigenvalues in z zJ jξ ξ=  for which = +J L S  and 

[ ], 0H =J  and for which the Casimir relationship is ( )2 1j jξ ξ= +J .  Now, by representing 

spin ½ topologically with the twists in Figures 6, the observable number of double twists in the 
topological pattern following OET, namely zj ′ , now matches up precisely with the empirically-

observable z-component of the total angular momentum, namely zj .  And in general the 

permitted states and numbers of these states also match perfectly with all of the angular 
momentum quantum numbers , , , , ,z zl m s j s j .  This renews our attention to the question whether 

OET be used to provide a fully-topological understanding of electronic structure quantization 
(and by extension nuclear structure which has a similar shell patter for each of protons and 
neutrons), and how this relates to the DWY monopoles and the odd-numbered FQHE 
denominators. 
 
7. Review of Evidence that the Quantized Fractionalized DWY Electric 
Charges may be Synonymous with FQHE Quasiparticle Charges, and a 
Proposed Experimental Test 
 
 The whole original purpose of the last two sections (which yielded some unexpected 
analogies to atomic structure) was to show that although the gauge angle Λ  and the azimuth 
angle ϕ  appearing in (7.1) involve sets of angles differing by 2π  which are geometrically 
indistinct, these angles are nonetheless topologically-distinct under OET and so can be 
physically observable, at least in terms of having this topological distinctness.  This is a 
necessary (albeit not sufficient) condition for these angles to have physically-observable 
consequences, for example, as the numerator and denominator in the fill factor /ν ϕ= Λ  of 
observed quantized and fractionalized DWY electric and magnetic charges.  In this section we 
shall review facts and evidence widely known or thought to be true, and evidence which has 
been demonstrated thus far in this paper to be true.  This evidentiary review will then lead us to 
propose an experiment to test some inferences from this evidence which inferences will be 
detailed in the next section. 
 
 To the best of our present knowledge, the Dirac-Wu-Yang (DWY) magnetic monopoles 
have never been observed.  So if they do exist, they would exist under some highly specialized 
set of physical circumstances which certainly do not include ordinary observations of electrons 
either as free fermions or bound within the electronic shells of atomic orbitals at temperatures 
not near absolute zero.  Because the DWY monopoles obey and indeed are defined by the Dirac 
Quantization and Fractionalization Condition (DQFC) which can be restated from (3.2) or (3.4) 
and (3.5) before we began to consider OET, as: 
 

; 0, 1, 2, 3...; 1,2,3,4,5,6...
2

e n

l

µ ν ϕ
π ϕ ϕ

Λ Λ= = = = Λ = ± ± ± = , (7.1) 
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and because this DQFC is symmetric under the interchange eµ ↔  of electric and magnetic 
charges, this means that the specialized set of conditions under which these monopoles do exist – 
if they exist – is one of perfect electric-magnetic symmetry in which Maxwell’s classical 
equations are J Fµ σµ

σ= ∂  and *P Fµ σµ
σ= ∂  where Fσµ  is the electromagnetic field strength 

tensor, 1
2!*F Fσµ αβσµ

αβε=  is the dual field strength tensor in flat spacetime, J µ  is the electric 

current four-density and Pµ  the magnetic current four-density.  So the DWY monopoles – if 
they exist – exist under natural circumstances which exhibit a high degree of symmetry, indeed, 
a high enough degree of symmetry to restore electric-magnetic duality to Maxwell’s equations.  
So one question now becomes, what are the candidate physical conditions under which such a 
high degree of symmetry might arise and become observable?   
 
 To the best of our knowledge, there are two natural candidate circumstances under which 
nature displays a very high degree of symmetry.  The first is at GUT energies; the second is at 
temperatures near absolute zero [27].  As discussed at the end of section 4, we expect that at 
GUT energies, and most certainly at ultra-GUT energies near the Planck scale defined by the 
Planck mass 191.22 10 GeVPM ≅ ×  in 2

PGM c≡ ℏ  where G is the Newton gravitational constant, 

there will be many symmetries that we do not observe at laboratory energies.  But U(1)em is not a 
high energy symmetry group; indeed, it arises when the electroweak (2) (1)W YSU U×  is broken 

down to U(1)em at energy scales established by the Fermi constant FG  and its associated 

relatively-low vev 246 GeVv ≅ ,  Further, the electric charge generator 3/ 2Q Y I= +  sits across 

the generators Y and 3I  of the hypercharge and weak interactions.  So GUTs are not the place to 

be looking for electric-magnetic symmetry, because U(1)em is far from having yet been “born” at 
GUT energies.  The other candidate circumstance to look for high degrees of symmetry, namely 
temperatures near 0K, on the other hand, may be an ideal place to observe a U(1)em electric-
magnetic symmetry.  Other than the Fermi energies associated with the highest occupied states, 
virtually all other energy has been entirely drained out of the electrons, and under such ultra-low 
energy conditions U(1)em is certainly very firmly established.  So if the DWY monopoles and the 
electric-magnetic symmetry they imply do exist under some specialized set of physical 
conditions, ultra-low temperatures appear to be the clearest and best candidate for being and 
providing that special set of conditions. 
 
 In this paper thus far, we have demonstrated that DWY analysis of U(1)em gauge theory 
does lead to charge quantization and fractionalization as in (7.1), and in the last two sections, we 
have demonstrated that these quantized numerators and fractionalized denominators are 
topologically distinct and thus are eligible be physically observed, at least on a topological basis.  
Further, we demonstrated in (3.8) that if the DWY monopoles exist and if the only observed 
charges are those which can exist in a disentangled state, then /ν ϕ= Λ  in (7.1) will become 
restricted to only odd denominators 1 2 1,3,5,7,9...lϕ = + = .  Setting aside the observed even 
denominator 2ϕ =  which we shall separately consider in Section 10, it is an empirical fact that 
in FQHE, the observed states have precisely the same denominators 1 2 1,3,5,7,9...lϕ = + =  as 
are shown in (3.8), and indeed, also looking to the reduced gauge angle / 2 1,2,3...nπΛ = Λ = = , 
have precisely the same filling factors /ν ϕ= Λ  as are shown in (3.8).  So if the DWY 
monopoles exist and if the only charges observed are ones which can be disentangled without 
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counter-rotation, then electric-magnetic duality which likely can only be restored and observed 
near the high-symmetry environment of 0K will exhibit a quantization and fractionalization 
which corresponds perfectly with the FQHE which also appears only near 0K, aside from the 
denominator 2ϕ = . 
 
 The next piece of evidence utilizes the topological findings of the last two sections and 
specifically (6.1).  In order to establish that ϕ  is a topological observable which is a necessary 
(but not sufficient) condition for it to be a physical observable, we ended up showing that 

2 1,3,5,7...jϕ ′= =  which is equal to the maximum number of twists that can be observed once 

an unwound DWY electron state 1ϕ =  with 0l ′ =  hence 1
2j s′ ′= =  has been disentangled using 

only all-North or all-South disentangling operations.  So these DWY denominators 
2 1,3,5,7...jϕ ′= =  do have a definitive connection to the states of topological twist under OET.  

Additionally, these j ′  and s′  and the related topological quantum numbers , , ,z zl m s j′ ′ ′ ′  all map 

on a one-to-one basis, precisely with the angular momentum quantum numbers of the same 
labels simply without the “prime” designations.  So if it can be demonstrated by theoretical 
argument or by experimental observation or by both that the angular momentum states of 
electrons in atomic shells is topologically grounded in this mapping of , , ,z zl m s j′ ′ ′ ′  to their 

unprimed cousins , , ,z zl m s j  from atomic theory, then these denominators would be given by 

2 1,3,5,7...jϕ = =  with the “prime” removed, and would be equal to twice the total angular 
momentum of the DWY electron.  This would relate the DWY denominators to the total orbital 
angular momentum quantum numbers of the DWY electrons.   
 

Additionally, because j is obtained from the Casimir operator 2J  via ( )2 1j jξ ξ= +J , 

which operator by definition commutes with each angular momentum generator via 2, 0  = J J , 

and because = +J L S  is a conserved observable because [ ], 0H =J , this would connect the 

azimuth via 2 1,3,5,7...jϕ = =  to a total angular momentum quantum number which is not only 

a topological observable, but is also a physical observable in atomic theory because [ ], 0H =J .  

This is an additional necessary (but still not sufficient) condition for ϕ  to be a physical 
observable.  Further, if it can be theoretically or experimentally demonstrated that the angular 
momentum , , ,z zl m s j  are topologically-grounded in their , , ,z zl m s j′ ′ ′ ′  cousins of OET, then this 

would mean the DWY denominators are intimately related to the quantized states of electrons in 
atomic shells. 
 
 Finally, if we are able to relate the DWY denominators 2 1,3,5,7...jϕ ′= =  to the total 
orbital angular momentum quantum numbers j of the DWY electrons as just laid out in the last 
paragraph, and if these DWY denominators can also be connected to the FQHE denominators, 
then the FQHE denominators would become connected to total orbital angular momentum, and 
one could start to look for empirical correlations between the two.  Thus, via 2 1,3,5,7...jϕ = = , 

the FQHE states with / 3nν =  would all be states with 3
2j = , the FQHE states with / 5nν =  

would all be states with 5
2j = ,  the FQHE states with / 7nν =  would all be states with 7

2j = , 

and more generally, the FQHE states with / 2n jν =  would all be states with total angular 
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momentum j.  Thus, by testing for j in each of the FQHE fill factors / 2n jν = , and more 

generally, by testing for , , ,z zl m s j  which are related to j to see if there is an observed correlation 

between the fill factor denominator and the hypothesized-to-be-related angular momentum 
quantum numbers, we would have an experimental route for testing whether all of these 
connections among topology and atomic structure and DWY monopoles are or are not physically 
supported by the natural world.  This final observation leads us to propose an experiment.   
 
 If the one-to-one mapping developed here between the topological , , ,z zl m s j′ ′ ′ ′  and the 

atomic angular momentum quantum numbers , , ,z zl m s j  is a true physical connection, which is to 

say if the pattern of angular momentum quantum numbers is rooted in the topology of OET, then 
we would be able to remove the primes from , ,j l s′ ′ ′  in (6.1), and so rewrite (6.1) as: 
 

( ) ( )1
2

3 5 71 1
2 2 2 2 2

;
2 2 2

0, 1, 2, 3...; , , , ...; 0,1,2,3...;

j l s l

n j l s l s

ν
ϕ
Λ Λ Λ Λ= = = =

+ +

Λ = = ± ± ± = + = = =
. (7.2) 

 
So now, the odd-integer DWY denominator ( )1

22 2 1,3,5,7...j lϕ = = + =  would be 

characterized completely in terms of the observable total angular momentum quantum number j 
which is obtained from the Casimir relationship ( )2 1j jξ ξ= +J  for a total angular 

momentum = +J L S  for which 2, 0  = J J  and [ ], 0H =J  and z zjξ ξ=J .  But because 
1
2j l= +  with 0,1,2,3...l =  we can just as readily characterize the DWY denominator in terms of 

l which has the Casimir relationship ( )2 1l lξ ξ= +L .  This 0,1,2,3...l = , however, is the 

exact same l which is used to characterize atomic orbital shells with the designations s, p, d, f, 
etc., respectively named “sharp,” principal,” “diffuse,” “fundamental,” etc.  Specifically, using 
l  to denote “an electron in a particular l state,” these designations of the shell in which a 

particular electron resides are defined as 0s l≡ = , 1p l≡ = , 2d l≡ = , 3f l≡ = , etc.  But 

because ( )1
22 lϕ = + , we can also write these in terms of the DWY denominators as 1s ϕ≡ = , 

3p ϕ≡ = , 5d ϕ≡ = , 7f ϕ≡ = , etc.   

 
This means that if the DWY monopoles are observed anywhere in the natural world, then 

the whole number charges 1ϕ =  with v n=  should exhibit properties reminiscent of s shell 
electrons; the 1/3 unit charges with 3ϕ =  thus / 3v n=  should exhibit properties reminiscent of 
p shell electrons; the 1/5 unit charges with 5ϕ =  thus / 5v n=  should exhibit properties 
reminiscent of d shell electrons; and the 1/7 unit charges with 7ϕ =  thus / 7v n=  should 
exhibit properties reminiscent of f shell electrons; and so on. 
   
 Consequently, the proposed experiment, in principal is rather simple:  We already know a 
great deal about the behaviors of electrons in atomic shells.  For example, [32] and similar 
references which are available illustrate the real wavefunctions of various s, p, d, f electronic 
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states.  Additionally, we know that there are two (2) distinct electronic states in the s shell with 
1ϕ = , namely 1

20; 0; zs l m s≡ = = = ± .  There are six (6) distinct electronic states in the p 

shell with 3ϕ = , namely 1
21; 1 1; zp l m s≡ = + − ≤ ≤ + = ± , see also their topological cousins 

with 1l ′ = +  in (6.2) and (6.3).  There are ten (10) distinct electronic states in the d shell with 
5ϕ = , namely 1

22; 2 2; zd l m s≡ = + − ≤ ≤ + = ± , see also their topological cousins with 2l ′ = +  

in (6.4) and (6.5).  And there are fourteen (14) distinct electronic states in the f shell with 7ϕ = , 

namely 1
23; 3 3; zf l m s≡ = + − ≤ ≤ + = ± .  In general, ( )1

22 4 4j lϕ = = +  is the number of 

distinct states for any given l.  So if the various fill factors ( )1
2/ 2n lν = +  of the DWY 

monopole were to be observed somewhere in the natural world, and if the person observing these 
fill factors was to give the name “quasiparticles” to the charges that exhibit these quantized 
fractional fill factors, then the quasiparticles with the fill factor ( )1

2/ 2n lν = +  for any given l 

would be expected to come in ( )1
22 4 lϕ = +  “varieties,” i.e., a number of varieties which is 

equal to twice the denominator, where by “varieties,” we mean distinct states according to 
fermion Exclusion Principles. 
 
 So now the question becomes under what conditions in the natural world, one might be 
able to observe charges with the fill factors ( )1

2/ 2n lν = + .  We know that if the atomic quantum 

numbers , , ,z zl m s j  are topologically rooted in OET, then ( )1
2/ 2n lν = +  are the fill factors of 

the DWY monopoles.  But we also know that with the exception of the odd denominator 2, this 
is precisely the set of fill factors that is observed in the FQHE, where these fractionalized 
charges are in fact referred to as quasiparticles.  So the question is whether these DWY 
monopole quantized fractionalized charges are in fact synonymous with the FQHE quantized 
fractionalized charges.  Based on the foregoing evidence, one might well suspect that these are 
one and the same, but it is not possible at this juncture to do more than make the inference from 
all of the evidence discussed above that these might be one and the same.  There are good 
arguments which can be made in support of this inference and these will be elaborated in the 
next section.  And then in section 9 we shall endeavor to theoretically prove this inference by 
showing how a low-temperature duality symmetry can in fact be broken at higher temperatures 
consistently with the well-established non-observation of magnetic monopoles in daily 
experience.   
 
 But the most important direct proof or disproof of this inference, would be found not in 
in theoretical argumentation, but in the observation or non-observation of FQHE quasiparticles 
which for odd numbered denominators in the fill factor ( )1

2/ 2n lν = +  which exhibit properties 

reminiscent of electrons with orbital angular momentum l, including exhibiting ( )1
22 4 lϕ = +  

distinct fermion exclusionary states for any given l hence fractional denominator ( )1
22 lϕ = + .  

If such a correlation was to be observed between the FQHE denominators and the orbital 
quantum number l thus the atomic s, p, d, f etc. shell states, not only would this confirm that the 
odd-denominator DWY states are one and the same as the odd-denominator FQHE states and 
thus confirm the existence of DWY U(1)em magnetic monopoles near 0K in certain 
superconductors subjected to large perpendicular magnetic fields and so evidence – for the first 
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time since Maxwell’s day – the existence of U(1)em magnetic monopoles and electric / magnetic 
duality in the physical environment of temperatures near 0K.  Because such an observed 
correlation would have also been based upon having connected the topological OET quantum 
numbers , , ,z zl m s j′ ′ ′ ′  to the atomic angular momentum quantum numbers , , ,z zl m s j , this would 

confirm that atomic structure, and by implication nuclear structure, can be explained entirely on 
the basis of the topological OET characteristics of the three-dimensional physical space of four-
dimensional spacetime.  This in turn would affirmatively answer Misner, Thorne and Wheeler 
[18] by showing that orientation-entanglement analysis does have a very “detectable difference 
in the physics” that shows up at the root of atomic and nuclear structure, and it would 
compellingly validate Ross’ belief [28] that the OE relationships have a tremendously important 
“topological role in physics.”  And at the most fundamental level of theoretical physics, it would 
extend the reach of geometrodynamic principles into the atoms and nuclei at the heart of the 
material universe and advance the view that one day it will become possible to fully explain the 
entirety of the natural world on the basis of no more and no less than spacetime geometry itself, 
and the topological OET features which are inherent to this geometry. 
 

These are the reasons why it would be a valuable and worthwhile to conduct experiments 
to closely observe the odd-denominator FQHE quasiparticles to seek correlations to atomic 
angular momentum electronic shell structure.  Now, let us examine more closely, some of the 
theoretical inferences which make it very plausible that such an experiment would yield positive 
results to confirm all of these connections. 
 
8. Three Theoretical Inferences from the Evidence:  Correlations between 
Topology and Atomic Structure, Correlations between Topological Freedom 
and Temperature, and the Identification of DWY Monopoles with FQHE; and 
Principles of Topological Least Action 
 
 As developed in the previous two sections the topological quantum numbers , , ,z zl m s j′ ′ ′ ′  

which summarize what happens under OET and the disentangling of various entangled states 
map directly on a one-to-one basis to the angular momentum quantum numbers , , ,z zl m s j  seen 

in the electronic shell structure of atoms.  Also, the azimuth ϕ  used to define the former 
topological numbers has exactly the same physical meaning as the azimuth ϕ  about which the 
latter angular momentum is defined.  Therefore, the first theoretical inference we shall make, or 
the first evidence-informed hypothesis if one prefers, is the following: 
 

Inference 1: Orientation-Entanglement-Twist (OET) has direct, physical relevance 
to and indeed is the topological basis for why the angular momentum quantum 
numbers , , ,z zl m s j  have the values and interrelationships that they do have.  In 

other words, the one-to-one mapping between the topologically-evidenced 
, , ,z zl m s j′ ′ ′ ′  and the experimentally-evidenced , , ,z zl m s j  is not just a happenstance 

concurrence.  Rather, the experimental latter is a direct and immediate 
consequence of the topological former.   
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As we have already done in (7.2) in the last section, once it has been made, this inference / 
hypothesis allows us to remove the “primes” from all topological quantum numbers and now 
regard these as the angular momentum quantum numbers of electrons in atomic shells and of 
protons and neutrons in nuclear shells. 
 
 Although this mapping between , , ,z zl m s j′ ′ ′ ′  and , , ,z zl m s j  was found because of the need 

to topologically-distinguish angular orientations differing from one another by 2π  sans 
entanglement and 4π  accounting for entanglement to provide a necessary foundation for the 
fractional numerators nΛ =  and denominators ϕ  in the DWY monopoles to be possible 
physical observables, it is critical to understand that this topological-to-angular momentum 
mapping is totally and entirely distinct from the DWY monopoles.  It would have been entirely 
possible, without even a whisper about DWY monopoles, to have simply taken up Ross’ call in 
[28] to “further work on the OE relations themselves and their topological role in physics,” gone 
back to Figure 1(a) which is Figure 31.6 of MTW’s [18], show that Figure 1(c) topologically 
deforms from and so belongs to the same homotopy group as Figure 1(a), and then proceed to 
analyze OET as we did in sections 5 and 6.  Then, having each quantized integer represent one 
double winding rotation or double twist, and using single offsetting twists (net helicity zero) as in 
Figures 6 to represent an electron, we would have assigned the electron a reduced azimuth 1ϕ =  
to represent the topological dimensional transmutation which occurs after a 2π±  rotation about 
the x axis followed by disentangling the ribbons transfers the single rotation about x into a single 
twist along z, as reviewed after Figures 6.  Then, we would have rotated the N�S vector by 

1,2,3,4...l ′ =  double rotations, and after any specific double winding, disentangled the N and S 
ribbons using various combinations of the N and S disentangling operations.  Doing so, we 
would have found that the total number of double twists z zj m s= +  and the combinations of 

operations which led to those double twists could be characterized for  0l ′ =  double rotations by 
1
20; 0; zs l m s′ ′ ′ ′≡ = = = ± ;  for 1l ′ = +  double rotations by 1

21; 1 1; zp l m s′ ′ ′ ′≡ = + − ≤ ≤ + = ± ; 

for 2l ′ = +  double rotations by 1
22; 2 2; zd l m s′ ′ ′ ′≡ = + − ≤ ≤ + = ± , and for 3l ′ = +  by 

1
23; 3 3; zf l m s′ ′ ′ ′≡ = + − ≤ ≤ + = ± , etc.  And we then would have seen that these , , ,z zl m s j′ ′ ′ ′   

topological quantum numbers map precisely with the atomic , , ,z zl m s j  angular momentum 

quantum numbers and would have been asking as we are presently whether this is a coincidence 
or a real physical connection. 
 
 So because this mapping between , , ,z zl m s j′ ′ ′ ′  and , , ,z zl m s j  is entirely independent and 

distinct from anything having to do with DWY monopoles or FQHE, and is simply the 
consequence of “closely studying the OE relations themselves and their topological role in 
physics” per [28], we can evaluate this first theoretical inference that , , ,z zl m s j′ ′ ′ ′  and , , ,z zl m s j  

are genuinely physically connected without any thought or reference whatsoever to DWY 
monopoles or FQHE.  So, setting aside any thought of DWY monopoles or FQHE, and thinking 
solely about atomic (and if we wish, nuclear) structure, is this a plausible inference? 
 
 At present, the , , ,z zl m s j  angular momentum quantum numbers (taken also with the 

principal number n not yet examined, which will make its topological appearance in section 9) 
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with 0,1,2,3...l =  and l m l− ≤ ≤ +  and 1
2zs = ±  and z zj m s= +  (and l n< ) are simply a set of 

rules that are required to enforce Exclusion of electronic states in atomic shells.  But these rules 
are heavily validated empirically by the structure of the Periodic Table of the Elements itself.  If, 
as a theoretical physicist one adopts the creditable view which has been taken by the likes of 
Einstein [21] and Weyl [22], [23], [24] and Wheeler [19], [20] that geometry and by extension 
topology should eventually be understood to furnish the basis for explaining all of physical 
reality, then on broad, fundamental geometrodynamic and topological principles, there would 
have to be some geometric or topological explanation for the precise , , ,z zl m s j  observed in 

atomic structure, even if that explanation is not presently known.  If one further credits the study 
of orientation-entanglement in [18] as being a primary approach to understand the topology of 
the physical three-dimensional space of spacetime, and then finds as we have done here that this 
topology produces a set of , , ,z zl m s j′ ′ ′ ′  which map precisely to , , ,z zl m s j , the inference that these 

are connected to one another appears almost inescapable.  For, if this mapping between 
, , ,z zl m s j′ ′ ′ ′  of OET and , , ,z zl m s j  of angular momentum each using the same azimuth ϕ  is not 

the reason why the , , ,z zl m s j  are empirically observed to be they are, then what is the reason?  

 
 So if this inference is correct and the , , ,z zl m s j′ ′ ′ ′  of OET are in fact the foundation for the  

, , ,z zl m s j  observed in atoms, what things can we learn from the topology which might better 

inform our understanding of electrons in atomic shells, and thereafter allow us to account for 
DWY monopoles and FQHE?  To consider his, let us return to Figures 6, and more carefully 
walk through the process already somewhat reviewed in section 5, of rotating the N�S vector 
through 1l ′ = +  double winding about the z axis.  It is advisable for the reader to have 
constructed this bar and ribbon apparatus and use it to confirm what is about to be discussed. 
 

The first thing to notice is that this operation makes use of all three of the x, y, z spatial 
dimensions.  The ribbons are aligned parallel with the z axis, and the rotation 4ϕ ϕ π→ +  takes 
place through the x-y plane.  Now as we started to discuss following Figure 2, if we think of 
Figures 6 as if the N�S bar (OET “object”) was the seat of a child’s swing and the ribbons were 
a pair of “chains” (OET “threads”) which have offsetting twists (total twist conservation) and 
which hang from the top bar which is the “fulcrum” of the swing (OET “environment”), then 
after we have done this rotation, if we now “let go” and give the swing seat freedom to rotate in 
the x-y plane, then under the force of “gravity,” the swing seat will start to rotate about the z axis 
oppositely to how it was originally wound, it will go somewhat past its original configuration 
due to its rotational inertia, and it will thereafter slow to a stop.  Then it will reverse direction, 
and do this through a few pendulous cycles until the damping effect of friction has drawn off all 
energy and the swing seat has returned to its initial state of Figures 6, which initial state we may 
think of energetically as a “ground state.”  
 

But as before, let us say we do not let the N�S vector rotate any more.  Instead, let us 
remove the degree of freedom along the y axis and lock everything into the two-dimensional x-z 
plane, not allowing the N�S vector to rotate back.  That is, let us now “freeze,” pun very 
intended, the OET “object” in relation to its “environment.”  What will happen then?  As 
discussed following Figures 3, if we do permit a small y ε= ±  ribbon incursion into the y axis 
simply to allow the ribbons to be moved around the N�S bar which is now immobilized from 
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rotating relative to the environment bar, then – by virtue of having done a 4π+  rather than a 
2π+  rotation – we can still disentangle the ribbons from one another and end up back at a 

disentangled state.  But, depending upon what ribbon operations we use to disentangle, if we do 
not balance the number of operations using the N ribbon with the number of operations using the 
S ribbon, then we will introduce some additional double twists which were not there at the start.  
And if we regard a less-twisted ribbon as representing a lower energy state than a more-twisted 
ribbon, then we will not have returned fully to the ground state.   For, rather than getting back to 

1
20; 0; zs l m s′ ′ ′ ′≡ = = = ±  where each ribbon had no twists other than the single twist used to 

represent spin ½, we will end up with an 1m′ = ±  double twist.  And if the original twist 1
2zs′ = ±   

aligns with the 1m′ = ± , then we will have 3
2z zj m s′ ′ ′= + = ±  totaling three single twists, rather 

than 1
2zj ′ = ±  and one single twist that we started out with.  And this state with 

1
21; 1 1; zp l m s′ ′ ′ ′≡ = + − ≤ ≤ + = ± , when 3

2zj ′ = ±  with a pair of three offsetting twists, will be 

energetically elevated from the ground state 1
20; 0; zs l m s′ ′ ′ ′≡ = = = ±  with its pair of single 

offsetting twists. 
 
What we are able to deduce from all of this, are an apparent set of topological “least 

action” or “least energy” or “topological geodesic” dynamical principles which it is helpful to 
keep in mind as we think about how to relate the OET topology to temperature which is a driving 
variable in FQHE, and thus think about temperature topologically:  

 
Topological Least Action Dynamical Principles: If an N�S bar has been rotated 
from its ground state through an even number of rotations in the x-y plane and 
had its ribbons become entangled with one another as a result, and if nothing 
prevents the N�S bar from rotating back, then this bar will naturally rotate back 
to its ground state with no entanglement.  However, if there is a force which 
prevents the N�S bar from disentangling by a counter-rotation through the x-y 
plane, then that N�S bar will still naturally evolve to become disentangled by a 
passing the ribbons around the N�S bar with a small but finite y ε= ±  incursion 
into the y axis, so long as there is nothing also preventing this small y ε= ±  
incursion.  Further, if this small y ε= ±  incursion is permitted, this disentangling 
through ribbon passage around the N�S bar will occur even if the net result of 
this disentangling is that more twists are created.  Therefore, disentangled ribbons 
generally define a lower energy state than entangled ribbons, irrespective of 
twists.  Finally, if 0ε =  and no incursion is permitted into the y axis whatsoever, 
then the bars and ribbons will become completely frozen as is, with no entangling 
or disentangling occurring at all. 
 
How do we know this is true?  If our first theoretical inference is correct that , , ,z zl m s j  

emanate from the topological , , ,z zl m s j′ ′ ′ ′ , then we know that this is true from the , , ,z zl m s j  

structure of the atoms themselves in the periodic table.  Why?  If the electrons in the atoms 
preferred to remain in states of topological entanglement, i.e., if states of greater entanglement 
had lower energy than states with additional twists, then we would not observe such things as p 
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shell electrons with the states 1
21; 1 1; zp l m s≡ = + − ≤ ≤ + = ±  or d shell electrons with 

1
22; 2 2; zd l m s≡ = + − ≤ ≤ + = ±  with z zj m s= + , etc., given that when the primes are returned 

to these quantum  numbers, we have z zj m s′ ′ ′= +  representing the number of offsetting double 

twists at the end of the disentangling process.  The fact that we do observe 3
2zj = ±  

corresponding to 3 twists in some of the p electrons, and do observe 3 5
2 2,zj = ± ±  corresponding 

to 3 or 5 twists in some of the d electrons, and do observe 3 5 7
2 2 2, ,zj = ± ± ±  corresponding to 3, 5 

or 7 twists in some of the f electrons, all of which are more twists than the single twist 
1
2z zj s= = ±  of the 1

20; 0; zs l m s≡ = = = ±  individual Figure 6 electrons that we started with, 

tells us that to maintain exclusion, nature will disentangle the electrons and put them into states 
with extra twists instead of leaving them entangled, if it can, i.e., if it is allowed a small y ε= ±  
incursion into the y axis to disentangle ribbons.  Because nature will always migrate to the 
lowest permitted energy state when it can, the fact that we do observe 3 5 7

2 2 2, ,zj = ± ± ±  tells us 

that disentangled states have a lower energy than states which remain entangled.  States such as 
those with 3 5 7

2 2 2, ,zj = ± ± ±  are the elevated energy states that fermions are required to enter into 

when they assemble into atomic systems, in order to satisfy the requirement that they maintain 
Exclusion.  And in all of this, physical principles of least action and lowest energy are seen to 
correspond to topological principles of least entanglement and least twist and a priority for least 
entanglement over least twist which means generally that less energy is needed to maintain twist 
than to maintain entanglement.  (One can suppose that there are some cases where nature might 
prefer a small entanglement over a very large number of twists, but for the cases studied here that 
does not appear to have presented itself.)  
 
 With this introduction to topological dynamics, let us now talk about what happens when 
an electron is added to an orbital shell of an atom, or conversely, when it is removed from a 
shell.  Energetically, of course, some amount of ionization energy needs to be provided for the 
electron to join the atom, and these required ionization energies have been well-catalogued 
empirically, see, e.g., the web references [33] in graphical form and [34] in tabular form.  But 
our interest in this discussion is to understand the topological processes which occur when an 
electron joins or leaves an atom.  And to use a concrete example, let us suppose that we are 
starting off with a fluorine F nucleus that has nine (9) protons, but the orbital structure only has 
eight (8) electrons, so this atom is positively ionized and needs to secure a ninth electron to 
achieve neutrality.  The reason we choose F, is that this is the first element for which at least one 
of the electrons must have a total angular momentum 3

2zj = ± , which corresponds to three-halves 

of a topological double twist 3
2zj ′ = ± , which is a conserved observable, and which is larger than 

the 1
2z zj s= = ±  of a free electron and in particular has more one more double twist than the 

electrons in Figure 6.   
 

So, introducing the principal quantum number n with l n<  as usual, the first two 
electrons which bring us through H and He have 1 1

2 21 1, 0, 0, ,z zs n l m s j≡ = = = = ± = ± .  The 

next two electrons which pass Li and Be if they keep to the lowest energy states have 
1 1
2 22 2, 0, 0, ,z zs n l m s j≡ = = = = ± = ± .  The next two electrons for B and C with 
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1 1
0 2 22 2, 1, 0, ,z zp n l m s j≡ = = + = = ± = ±  for the first time have a non-zero l, which means 

topologically, their N�S bar (whatever that corresponds to in physical reality) has been wound 
through 1l ′ = +  double rotations.  The 0 subscript in 0p  designates 0m= .  But then, once the 

two bars have been given a frozen alignment, the disentangling would take place using a 
balanced { },N S  operation, yielding 0m′ =  new twists, so that the total number of double twists 

remains at 1
2zj ′ = ± .    For N and O we must have 1 1

1 2 22 2, 1, 1, ,z zp n l m s j− ≡ = = + = ± = = ±∓  

which for the first time introduces a non-zero 1m= ± , (the 1 subscript in 12p − ).  But if the spin 
1
2zs = ∓  is aligned opposite to m (the – subscript in 12p − ), we will still have 1

2zj = ± , which still 

corresponds to 1
2zj ′ = ±  of a double twist.  It is only for F that for the first time, we must have at 

least one 31
1 2 22 2, 1, 1, ,z zp n l m s j+ ≡ = = + = ± = ± = ±  electron, and this electron will have the 

topology of 3
2zj ′ = ±  double twists, or three single twists. 

 
 So, when this 12p +  electron with topological 3

2zj ′ = ±  is added to create a neutral F atom, 

what happens, topologically?  Energetically, we can refer to [34] and find out that 17.4228 eV of 
energy is provided to a free 1s electron topologically represented by Figures 6, which energy 
enables the electron to elevate into 12p +  and join the F.  If we had a Ne nucleus with ten (10) 

protons but only nine (9) electrons thus positively ionized, and wanted a tenth electron to join, 
then another 1s electron would need to be given an even larger 21.5645 eV of energy and turned 
into the second 12p +  electron in Ne, also with the 3

2zj ′ = ±  topology of three full twists.  But the 

question we are driving at is topological: what do these ionization energies purchase, 
topologically?  What they purchase is a 4ϕ ϕ π→ +  rotation of the free 1s electron through a 

1l ′ = +  double winding.  Once this double winding has occurred, the electron is suited to join the 
atom because it has sufficient l ′ .  (This is the case for the earlier 1l ′ = +  electrons in Li, Be, B, 
C, N, O also, but these still could maintain 1

2zj ′ = ±  and so did not need quite as much energy to 

add a full double twist.  For example, the new electron in N needs 14.5341 eV and that in O 
needs 13.6181 eV.)   
 

Now, however, for the electron to join the atom after the 4ϕ ϕ π→ +  rotation has been 
purchased with some ionization energy, any further rotation must cease, and the N�S “object” 
bar needs to become fixed relative to its “environment.”  After all, this electron is now joining an 
atom, and as such, it is no longer free, but will have to fall in line as part of a group of electrons 
in orbital shells and so will have its freedom to reorient with respect to its environment, i.e., the 
rest of the atom, wholly or partially removed.  This is a very important point, because this tells 
us for an electron to join an atom, it must surrender a degree of freedom, at least insofar as its 
N�S “vector bar” is no longer able to fully rotate through the x-y plane.  Finally, because 
entanglement is still an elevated energy state which will be lowered by topological least action if 
possible, so long as there remains some freedom for a small y ε= ±  incursion along the y axis, 
the ribbons can still be disentangled, but with the result that there may be some additional twists 
that were not present when the electron was a free electron.  So, some of this ionization energy 
also purchases the latitude for the y ε= ±  spacing needed for disentangling.  And in the end, 
after everything is disentangled, some of this energy will be stored in the extra topological twists 
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that were not present when the 1 1
1 2 22 2, 1, 1, ,z zp n l m s j− ≡ = = + = ± = = ±∓  electrons were free 

1 1
2 20, 0, ,z zl m s j= = = ± = ±  electrons. 

 
With this background, let us now start to think again about low-temperature FQHE where 

the electrons are tightly constrained to two dimensions.  As a result of the discussion just 
concluded, we understand that in any temperature environment, simply by being in the shells of 
atoms, electrons are already somewhat topologically constrained to two dimensions, because 
their N�S vector bars are not permitted to make full rotations in the x-y plane.  But, in this still-
unfrozen (i.e., not yet near 0K state), there is still enough freedom in the y dimension 
schematically represented as y ε= ±  for the ribbons to disentangle themselves from the higher 
energy state in which they are entangled with one another, into the lower energy states where 
they are no longer entangled but may gain some extra topological twists which they did not have 
when the electron was free.  It may well be and very likely is the case even when the electrons 
are in the shells of atoms, that some limited rotation is still permitted through the x-y axis.  But 
this permitted albeit limited rotation – to whatever degree it is permitted – is insufficient for the 
electron to disentangle by undergoing a 4ϕ ϕ π→ −  rotation to undo the original 4ϕ ϕ π→ +  
rotation like the child’s swing will do if one simply lets go.  So having the ribbons / threads 
disentangle is the next best choice, and this puts the electron into its observed exclusionary 
quantum states as has been reviewed. 
 
 So now, let’s discuss temperature and heat generally, with an eye firmly pealed on 
FQHE.  Undoubtedly, the removal of heat from any object removes energy and removes some 
freedom to move about in the physical three-dimensional space of spacetime.  Through the 
Boltzmann relationship E kT=  one can obtain the energy equivalent E of a given temperature T.  
A gas which is cooled has less energy and reduces the physical agitation of its atoms and 
molecules in the x-y-z physical space.  When the gas is cooled enough to phase transition to 
liquid, there is a further reduction of freedom in the physical space.  When the liquid turns solid, 
various crystalline or lattice or similar structures are formed and there is even less spatial 
freedom.  And when all heat is removed and the temperature approaches absolute zero, the 
spatial freedom is at an absolute minimum and the only energy left in an electron is the Fermi 
energy of the state it occupies (and of course its rest mass).  And for a superconductor exhibiting 
FQHE, in this state near 0K with large perpendicular magnetic fields applied, the electrons or 
quasiparticles are understood to be tightly restricted to two dimensions.  But what is really 
happening here, topologically?  More directly to the point, we have articulated the theoretical 
geometrodynamic view that all of nature ought to be understood based on geometry and the 
topological properties of geometry.  So: what is the correct topological understanding of heat 
and of temperature which measures heat? 
 
 Clearly, the very act of joining an atomic shell removes from an electron as represented 
in Figures 6, some topological freedom to move about in the y-dimension, but leaves enough 
residual freedom in the y-dimension at least for the ribbons or “threads” which connect the 
electron to its environment to become disentangled, and presumably for some limited rotation in 
the x-y plane, but just not enough for a full rotation which would allow a 4 lϕ ϕ π ′→ +  rotation 
to simply reverse itself via 4 lϕ ϕ π ′→ − .   We have spoken abstractly of this residual freedom in 
terms of a y ε= ±  incursion into the y-axis, which is certainly needed for ribbons to disentangle.  
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But now let’s progress this discussion further.  Is this length ε  which we are schematically using 
to represent freedom in the y dimension a fixed number, or can it vary?  And if it can vary, in 
relation to what physical observables might ε  vary?  Given all that we have just reviewed, heat 
and temperature would certainly be good candidates.  So let us now introduce our second 
inference or informed hypothesis: 
 

Inference 2: The magnitude of topological freedom which an electron has to 
operate in the y dimension i.e., in all three space dimensions, correlates not only 
with whether it is free or in an atomic shell, but also with heat and / or 
temperature.  

 
How might this work?  Let’s start with very high temperatures, where many elements are 

in plasma phase, and where the defining feature of the plasma is rampant ionization.  What is 
plasma?  It is a phase of matter in which electrons are freed from their nuclei and float around in 
something of a soup and are exceptionally responsive to electromagnetic forces.  And, 
topologically, what is ionization?  As just discussed, when we add an electron to an atom which 
changes the atom’s ionization, we supply enough ionization energy to rotate through 

4 lϕ ϕ π ′→ + , hitch the electron up to the rest of the atom by removing enough of its x-y 
rotational freedom to stop it from unwinding via 4 lϕ ϕ π ′→ − , and then disentangle the ribbons 
instead.  So reversing course, how might we now remove an electron from a neutral atom and 
create an ionized state, and so do with enough atoms to create a plasma with a high degree of 
ionization?  Simply, provide enough heat to restore the freedom of many electrons to rotate 
through the x-y plane fully without restriction so they can uncouple from the atoms and become 
the freely-flowing electrons of a plasma.  So in the highest temperature extreme of a plasma, the 
schematic ε  in y ε= ±  is not a small length, it is a large length.  Specifically, it is large enough 
so that there is complete x-y-z freedom and the electrons can topologically rotate in the x-y plane 
at will and so ionize in and out of atoms equally at will. 
 
 At the other extreme is 0K.  Between plasma phase and solids near 0K, the schematic ε  
in y ε= ±  goes from offering no y-axis restriction, i.e. complete 3-dimensional freedom to 
electrons in the plasma phase, to some y-axis restriction sufficient to keep the electrons bound to 
the atoms in a gas or liquid or solid state with ε  growing smaller and smaller as the temperature 
decreases, to no y-axis freedom at all at 0K.  So stopping short of trying to quantify this for the 
moment, we certainly expect qualitatively that a decrease in temperature and / or heat will 
correlate with a decrease in the y ε= ±  freedom afforded to an electron and that the transition 
from ultra-high to ultra-low temperatures is topologically understood as a transition from 
electrons with unrestricted x-y-z freedom to some restriction along the y axis to rigid, frozen 
two-dimensional constraint that entirely removes all access to the y-dimension.   So what 
happens at absolute zero?  Now 0ε = .  There is no freedom whatsoever for anything topological 
to utilize the y dimension.  There is no permitted rotation whatsoever of the N�S vector in 
relation to the environment i.e. relative to the rest of the atom and its nuclei.  And very 
importantly, there is no movement whatsoever of the ribbons / threads through the y-dimension.  
If something is entangled it stays entangled.  If something is not tangled but is twisted, it stays 
not tangled but twisted.  Whatever it is, it continues to be.  Everything is – to use a very apt 
descriptor – entirely frozen at 0K.  To the question of why there is an absolute zero of 
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temperature in the first place, the topological OET answer is this: absolute zero is reached when 
an OET object is given no latitude at all to rotate into the y dimension, and the threads which 
connect that object to its environment also have no freedom to move at all into the y dimension.  
It is a complete and total freezing of an electron which has some temperature-correlated three-
dimensional freedom at higher temperatures, to an electron entirely topologically restrained to 
two dimensions at 0K.  So throughout the entire transition from high to low temperature during 
which the y-freedom goes from being unrestricted to being more and more restricted, the final 
transition is to 0ε =  at 0K.  Now the ribbons can no longer move at all into the y dimension.  
Now, there is a qualitative change that has occurred from any other state where 0ε >  because 
even the ribbons / threads cannot move.  Now the entire OET for each electron is frozen into the 
two dimensional x-z plane.   
 
 If we think of this total removal of freedom in the y-dimension as a very tight “tuning” of 
the electron’s topological properties which removes extraneous topological activity in the y 
dimension – sort of like tightly tuning a bobsled to the tracks on which it slides to minimize 
extraneous jostling movement normal to the tracks and ensure a smoother ride with less 
resistance – then we can think about the superconductivity observed in certain metals at low 
temperature as the result of fine tuning the electron topology tightly into two dimensions:  By 
fine tuning the electron topology in relation to its environment by removing the y-dimension 
freedom, so too are removed the frictional forces and therefore resistance that is observed absent 
this fine tuning.  If the electrons are the bobsled “object” and the superconducting metal is the 
tracks “environment” and the resistance arises from the OET relationship between the object and 
its environment, then near 0K the electron objects are tightly tuned to the their environmental 
tracks by the complete removal of the y freedom and thus the resistance of jostling between 
object and environment is also removed.   
 

All of this provides a qualitative, topological understand of superconductivity.  So now, 
what about DWY monopoles and FQHE?  And how do we make this all quantitative?  We have 
demonstrated that if DWY monopoles exist and their implied electric / magnetic symmetry exists 
under some physical conditions, then their electric and magnetic charges will be quantized and 
fractionalized.  We have also demonstrated that if these DWY charges are all to be in 
disentangled states, then the fractional denominators for these charges will be odd integers, see, 
e.g., (7.2).  In sum: if the DWY monopoles exist near 0K in disentangled states only, then 
quantized fractionalized charges with only odd integer denominators will be observed near 0K.  
And, if DWY monopoles exist and the only permitted entangled state is 2ϕ =  (which is 
entangled because this state is a 2 4ϕ π ϕ π= → =  rotation of the electron through 2π  which 
state cannot be OE disentangled), then the quantized fractionalized charges will have only odd 
denominators, with the exception of the even denominator 2.  Finally, it is empirically-
established that FQHE is a near-0K quantized, fractionalized charge phenomenon which does 
exhibit only odd integer denominators, with the exception of the exclusive even denominator 2. 
 
 All of this evidence leads us to make a third evidence-based inference which we shall 
pursue quantitatively in the next section:   
 

Inference 3: DWY monopoles and electric / magnetic symmetry do exist in nature 
under some physical conditions, and the physical conditions under which they 
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exist is in certain materials near 0K.  Thus, near 0K, one of the symmetries 
restored is the electric-magnetic symmetry which gives rise to the formation of 
DWY monopoles with quantized fractionalized odd-denominator charges as 
found in (7.2).  The electrons underlying these DWY monopoles must be 
topologically disentangled, with the exception that the only permitted entangled 
state is 2ϕ = , and therefore, the observed charges will have the only odd 
denominators, with the exception of the even denominator 2.  Because this 
precisely maps to both the conditions under which FQHE is observed and to the 
quantitative features of FQHE, we infer that these are not separate and distinctive 
phenomena: rather, they are one and the same phenomenon.   

 
As a consequence of this inference, what we ordinarily think of as fractionally-charged 

quasiparticles, are instead seen to be ordinary electrons with a quantized fractional charge which 
is ( )1

2/ 2 / 2n l n jν = + =  with the orbital quantum number 0,1,2,3...l =  based on (7.2).  In other 

words, / 3nν =  quasiparticles are electrons in the 1l =  orbital angular momentum state which 
were topologically rotated through 1l ′ =  double windings prior to joining an atomic shell, which 
are now frozen into their orientation and entanglement with all y-freedom removed, 0ε = .  And 

/ 5nν =  quasiparticles are electrons in the 2l =  orbital state following 2l ′ =  double windings, 
frozen to 0ε = , etc. 
 
 The challenge which we now take up in the next section, is to understand how it is that 
we can pass between a state near 0K where DWY monopoles do exist and so the gauge theory 
inexorably leads to quantized fractionalized charges, to the observed states at all other 
temperatures where there have never been monopoles observed and charges are quantized but 
not fractionalized (other than fractionally-charged quarks, of course, which come from 

3/ 2Q Y I= +  and not FQHE).  One might picture that topologically, the “pinching” of the 

ribbons when 0ε =  at 0K with all topological freedom in the y dimension completely removed 
somehow causes the electric and magnetic fields to start to do strange things so that the magnetic 
fields suddenly exhibit net non-zero surface fluxes F µ=∫∫�  and the charges suddenly become 

quantized independently of 3/ 2Q Y I= +  and also become fractionalized.  And the OET 

topology provides us a backdrop, because we know we are looking at a situation in which the 
“N�S object” bars and ribbons at the bottom (south side) of Figures 6 are completely fixed and 
permitted no independent freedom in relation to the “environment” bars at the top (north side) of 
Figures 6.  But to fully work this through, the question of how a transition might occur between 
no monopoles and no fractionalization in most physical situations, to there being monopoles and 
FQHE fractionalization in certain materials near 0K, is best approached by returning to U(1)em 
gauge theory, and the DWY monopoles already studied in sections 1 through 3.   
 
9. How DWY Monopoles and Charge Quantization and the FQHE near 
0K, Symmetry Break into a Thermal Residue and Energy Quantization and 
Atomic Shell Structure at Larger Temperatures 
 
 Let us now return to section 1 and retrace our development very carefully to see if we can 
garner a better topological understanding of how the DWY monopoles might come into being 
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including a restoration of electric / magnetic symmetry near 0K.  Topologically, we now 
understand that near 0K the electrons become topologically confined to the x-z plane without any 
freedom of incursion whatsoever into the y dimension and the south “object” bars in Figures 6 
become completely immobilized in relation to the north “environment” bars.   
 

We start with equation (1.3), ( )/ / 2i ie de ie dµ π ϕ− Λ Λ = , because if equation (1.3) is true, 

then restating (3.2), it is also true that the electric charge e and the magnetic charge µ  will be 

related to one another by ( )2 /e n lµ π=  where n and l are both integers.  This would mean three 

things all at once: if (1.3) is true, then 1) there is an electric / magnetic duality symmetry because 

( )2 /e n lµ π=  is invariant under e µ↔  interchange; 2) these charges are quantized because n is 

an integer; and 3) these charges are fractionalized because l is also an integer.  This of course is 
the Dirac Quantization and Fractionalization Condition (DQFC).  In section 1 we segregated the 
study of the DQC and so developed 2e nµ π=  in (1.6) without the fractionalization to keep 
section 1 limited only to what is already well known and widely accepted.  But in reality, beyond 
this pedagogically-motivated segregation of the DQC from the full DQFC, there is nothing that 
prevents us from asserting that if (1.3) is true, then ( )2 /e n lµ π=  is true.  Equation (1.3) is 

solved by (1.4), and (1.4) is in turn fully solved for all states in (3.1) by ( )2 /e n lµ π= .  

Logically, the electric / magnetic symmetry and the quantization and fractionalization all emerge 
together.  The quantization can only be separated from the fractionalization by what is 
effectively restricting consideration to 1l = .  Later, we connected these quantum numbers 

/ /n l ϕ= Λ  to the topology of physical x-y-z space and showed for example that if we restrict 
ourselves to only disentangled electronic states there would only be odd denominators.  But it is 
the DQFC ( )2 /e n lµ π=  of (3.2) which is the raw logical conclusion flowing from (1.3). 

 
 The reason this is important is because in everyday experience, we do not observe 
electric magnetic symmetry, and we do not observe charge fractionalization (pace quark 
charges).  We only observe charge quantization and that is for a different reason, namely because 
of the electric charge generator 3/ 2Q Y I= +  emerging from electroweak symmetry breaking.  

While ( )2 /e n lµ π=  may be true under some specialized set of physical conditions, and while 

we have inferred and are presently working to develop the view that this is true near 0K and is 
observed as the FQHE, we can state with certainty that ( )2 /e n lµ π=  is not true in general, 

because it is not observed in general.  If we look only at the logical implication relations A B→ , 
then what we found earlier is ( ) ( )/ / 2 2 /i ie de ie d e n lµ π ϕ µ π− Λ Λ   = → =   .  The 

contrapositive ~ ~B A→  of this is ( ) ( )~ 2 / ~ / / 2i ie n l e de ie dµ π µ π ϕ− Λ Λ  = → =    .  In all 

known observations to date, certainly in observations away from 0K, we have found that 

( )2 /e n lµ π=  is not observed, i.e. ( )~ 2 /e n lµ π =  , because electric / magnetic duality is and 

charge fractionalization is not generally observed.  So the logical conclusion from contrapositive 

logic is that generally, ( )~ / / 2i ie de ie dµ π ϕ− Λ Λ =  .  That is, equation (1.3) is not true as a 

general rule because there is neither observed electric / magnetic duality nor any fractionalization 
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as a general rule.  And if the inference is correct that the DQFC is only manifest near 0K, then 

( )/ / 2i ie de ie dµ π ϕ− Λ Λ =  can also only be true near 0K.  So there must be something that is 

routinely being overlooked not only by this author but by everyone else in the DWY monopole 
derivation, before we even get to (1.3).  Thus, we need to return to section 1 and scour 
everything that gets us to (1.3) in light of all we have learned here since (1.3), to find out what is 
being missed. 
 
 Specifically, if the third inference in the last section is correct that the DWY monopoles 
are physically real near 0K and responsible for FQHE, then ( )/ / 2i ie de ie dµ π ϕ− Λ Λ =  is also 

physically true, but only near 0K.  So as we carefully turn over how we got to (1.3), we need to 
look for anything that is assumed to be generally true, when in fact it is only true near 0K.  So 
let’s start to scour.   
 

We know that F dA=  is a generally true relationship, because its consequences are 
observed throughout electrodynamics and in quantum physics, and that dd=0 is a mathematical 
identity of differential forms geometry which is also true in general.  We also know that 

/i iA A A e de ie− Λ Λ′→ = +  in (1.1) is a correct and generally-true statement of how a gauge field 
transforms, due to the gauge symmetry which is manifest throughout nature generally.  We know 
that if a magnetic charge exists it will be defined by Fµ = ∫∫�  and that using 

( )/ 4 cosF d dµ π θ ϕ=  in this surface integral properly reproduces Fµ = ∫∫�  because  

( ) ( ) 2

0 0
/ 4 cos / 4 cosd d d d

π π
µ π θ ϕ µ π θ ϕ=∫∫ ∫ ∫�  which evaluates upon definite integration to 

( ) 2

0 0
/ 4 cos

π πµ π θ ϕ µ= .  Further, because F dA=  and dd=0 we know that 

( ) ( ) ( )/ 4 cos / 4 cosF dA d d d K dµ π θ ϕ µ π θ ϕ= = = −  will be correctly reproduced with any 

constant K in ( )( )/ 4 cosA K dµ π θ ϕ= − .  Of course, these relationships containing µ  

presuppose a magnetic charge µ , but that is the proposition being tested, not an oversight in 
logic.   Finally, because general coordinate invariance allows us any choice of coordinates, we 
can choose ( )( )/ 4 cos 1NA dµ π θ ϕ= −  and ( )( )/ 4 cos 1SA dµ π θ ϕ= +  to avoid any 

indeterminacy at the north and south poles, and this too is not limited to any special circumstance 
such as 0K.  And therefore, ( )/ 2S NA A dµ π ϕ− =  is a proper statement of a perfectly general 

relationship between these two coordinate patches in a generally valid and fully determinate 
system of coordinates.  So with all of these ingredients being correct and generally true, what are 
we missing? 
 
 Starting with ( )/ 2S NA A dµ π ϕ− = , we can easily rewrite this as ( )/ 2S NA A dµ π ϕ= +  

as in (1.2), and we are still on terra firma.  But now, when we take the next step and regard 

S NA A′≡  as simply a gauge-transformed state NA′  of NA , and proceed to write 

( )/ 2N NA A dµ π ϕ′ = + , the problem begins.  For as soon as we write ( )/ 2S NA A dµ π ϕ= +  in 

the form of the gauge transformation ( )/ 2N NA A dµ π ϕ′ = + , then the combination with the 

certainly-true /i iA A A e de ie− Λ Λ′→ = +  in (1.1) leads us to (1.3), and (1.3) in turn inexorably 
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leads us to electric magnetic duality and fractionalized charges that we do not generally observe.  
So what is wrong here?  Why is it a misstep to regard SA  as a gauge-transformed NA , i.e., to 

assume that S NA A′≡ , at least in general?  What if, as a general rule, in the physical world, there 

actually is no gauge transformation by which the north patch can be transformed into the south 
patch? What if these north and south patches of the gauge field A A dxµ

µ=  are observably-

distinct in general and their observable distinctness is only removed near 0K?  Or, going back to 
topology, what if the north environment bars and the south object bars in Figures 6 have some 
freedom relative to one another in general, and only have their mutually-separate freedoms 
removed near 0K? 
 
 In other words, might it be that NA  can only be gauge transformed into SA  in the limited 

environment of temperatures near 0K, and might it be that otherwise, in the physical world not at 
0K, there is an observable distinctness between the NA  and SA ?  And might it be that this is 

topologically represented by the immobilization between the OET “object” and the OET 
“environment” near 0K juxtaposed against the relative freedom between the object and its 
environment in the physical world not at 0K?  Let us study this possibility more closely. 
 
 When we assumed to arrive at (1.3) that S NA A′≡ , we were assuming that these two 

gauge field patches over the closed surface F µ=∫∫�  surrounding the magnetic charge µ  differ 

from one another by nothing more than a gauge transformation.  Written using the vector 
potentials as S N NA A Aµ µ µ µ′= = + ∂ Λ , this S NA A′≡  is an assumption that the gauge potentials 

on the two patches about what then turns out to be an electric and magnetic charge, differ by 
nothing more than the gradient µ∂ Λ  of a local unobservable phase ( )xµΛ .  And because ( )xµΛ  

is not observable, we are assuming that there is no observable distinction between the gauge 
fields on the two patches.   But suppose these north and south gauge field patches are observably 
distinct, in physical reality.  Suppose that in physical reality S NA A′≠  as a general rule, i.e., that 

there is no gauge transformation that can get us from NA  to SA  or vice versa.  Suppose instead 

that the assumption S NA A′≡  is only true and thus permitted close to 0K, and that other than at 

0K there is no transformation whatsoever by which the north coordinate patch can be gauge 
transformed into the south patch.   
 

Quantitatively, suppose instead that N SA Aµ µ µε′ = +  for the gauge field of each charge, 

where µε  is some four-vector which cannot be expressed merely as the gradient µ∂ Λ  of an 

unobservable local phase ( )xµΛ  and so cannot simply be gauged away into µ∂ Λ .  Using the 

one-form dxµ
µε ε= , this may be written as N SA A ε′ = + , and the deliberate analogy is to the 

y ε= ±  spatial freedom except when 0ε =  near 0K which we used during our topological 

discussions.  The gauge transformation (1.1) is still /i i
N NA A e de ie− Λ Λ′ = +  for the north patch, 

and the north and south patches are still related by ( )/ 2S NA A dµ π ϕ= + .  But now, rather that 
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assuming as we did at (1.3) that S NA A′≡ , we are assuming that in general, N SA A ε′ = + , where 

0dxµ
µε ε= ≠  in general and is a physical observable. 

 
Because the gauge field Aµ  has physical dimensions of energy, this new vector µε  will 

likewise have physical dimensions of energy.  The form of energy represented by Aµ  is electrical 

potential energy, so if NA µ  and SA µ  differ by more than just a gauge transformation, this tells us 

that the form of energy represented by µε  must be a different form of energy.  And given the 

context of this discussion, the suspicion which we now need to confirm is that µε  represents heat 

energy.  If µε  does represent heat energy then we would have 0µε =  at 0K, and N SA Aµ µ µε′ = +  

would become N SA Aµ µ′ =  at 0K, and the DQFC would come to life at 0K, and we could 

understand the FQHE using the DWY monopoles at 0K.  And then we would be saying that the 
north and south gauge patches NA  and SA  differ from one another by merely a gauge 

transformation in the absence of all heat, but differ from one another by more than a gauge 
transformation in the presence of heat energy represented by µε .  And this would in some way 

help to unify U(1)em electromagnetic gauge theory with thermodynamics.  So let’s now develop 
this formally. 
 
 First we may write ( )/ 2S N NA A A dε µ π ϕ′= − = +  by combining the two expressions 

containing SA .  Then, writing this as ( )/ 2 /i i
N N NA A d A e de ieµ π ϕ ε − Λ Λ′ = + + = +  which also 

employs the gauge transformation /i i
N NA A e de ie− Λ Λ′ = + , and eliminating NA  yields: 

 
1

2
i ie de d

ie

µ ϕ ε
π

− Λ Λ = + . (9.1) 

 
This is the generalization of ( )/ / 2i ie de ie dµ π ϕ− Λ Λ =  in (1.3), to the circumstance where there 

is an observable distinctness between the north and south gauge patches which cannot be gauged 
away by a gauge transformation.  Based on all we have discussed, we expect that ε  will be 
temperature dependent, i.e. that ( )Tε ε= , and that at absolute zero, (0K) 0ε = .  Thus, very close 

to 0K, (9.1) will become ( )/ / 2i ie de ie dµ π ϕ− Λ Λ = , and based on what was discussed at the start 

of this section this will mean that ( )2 /e n lµ π=  near 0K.  This in turn will mean that there will 

be an electric / magnetic symmetry near 0K with quantized fractionalized charges.  And as also 
discussed, if the only permitted states are disentangled states, this will yield only odd 
denominators just like in the FQHE.  And if we also permit a single entangled state 2ϕ =  
(which we shall study in the next section), then this would entirely reproduce the observed 
FQHE in all respects, with only the denominators 1,2,3,5,7,9...ϕ = . 
 
 With (9.1) however, we now have a way to study what happens away from 0K, in the 
physical domains where we do not observe magnetic monopoles, or fractionalized charges other 
than those of the quarks.  So let us find the solutions to (9.1).  First, related in some to-be-
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determined way to ( )Tε , let us posit a “thermal function” ( )Tτ  which is also a function of 

temperature. Then, working from the earlier solution (1.4), and using the reduced azimuth 
/ 2ϕ ϕ π=  which we have previously related to the orbital and angular momentum quantum 

numbers via ( )1
22 2j lϕ = = + , see (7.2), let us write: 

 

( ) ( ) ( ) ( )exp exp exp exp exp
2

i ie ie ie ie ie ie
ϕµ τ µϕ τ µϕ τ
π

 Λ = + = + = 
 

 (9.2) 

  
If we then place this into the left hand side of (9.1), we obtain: 
 
1

2 2
i ie de d d d

ie

µ µϕ τ ϕ ε
π π

− Λ Λ = + = + . (9.3) 

 
Therefore, (9.2) is the solution to (9.1) on the condition that: 
 

d dx dxµ µ
µ µε τ ε τ= = = ∂ , (9.4) 

 
or in tensor language: 
 

µ µε τ= ∂ . (9.5) 

 
So the vector ( )Tµε  is the spacetime gradient of a thermal scalar ( )Tτ , i.e., it is some sort of 

thermal function gradient. The relationshipN SA A ε′ = +  between the north and south gauge field 

patches is equivalent to ( )N S SA A A Tµ µ µ µ µε τ′ = + = + ∂ .  But the scalar ( )Tτ  is an observable 

function of temperature, unlike the unobservable phase ( )xµΛ  in the gauge / phase 

transformation ( )A A xµ
µ µ µ′ = + ∂ Λ . 

 
Now, let’s get to work on the solution (9.2).  If we first approach this purely 

mathematically, and if we consider only orientation whereby ( )exp ieµϕ  for any of 

0,1,2,3...ϕ =   is regarded to be equal to ( )exp ieµϕ  for any other 0,1,2,3...ϕ = , then: 

 
( ) ( ) ( ) ( ) ( ) ( ) ( )1 exp exp 1 exp exp 2 exp exp 3 exp ...ie ie ie ie ie ie ieτ µ τ µ τ µ τ⋅ = ⋅ = ⋅ = ⋅ . (9.6) 

 
Were we to then divide out the new term ( )exp ieτ  from each of the above, we would arrive at 

exactly what we found in (3.1), which yields the DQFC of (3.2), namely ( )2 /e n lµ π= .  But the 

thermal function ( )Tτ  was supposed to get rid of the fractionalized charge and break the electric 
magnetic symmetry at higher temperatures, because that is what we observe at higher 
temperatures.  So what have we missed now? 
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 We regarded ( )Tτ  as a function of temperature, but we also now know that the azimuth 

is in general related to electron angular momentum by ( )1
22 2j lϕ = = + , see (7.2).  Keeping in 

mind that ( )Tτ  is a function used to characterize the thermal character of individual charges, 

which means that it specifies the degree to which the NA  and SA  for an individual DWY 

electron cannot be gauge-transformed into one another, and because individual electrons are 
distinguished from one another by their orbital and principal quantum numbers, let us now 
regard ( )Tτ  to be a function not only of temperature, but also of the ( )1

22 2j lϕ = = +  of that 

DWY electron. That is, we now regard this thermal scalar to be a ( ),Tτ ϕ , so that its gradient 

( ) ( ), ,T Tµ µε ϕ τ ϕ= ∂  is similarly a function of ( )1
22 2j lϕ = = + .  To make this explicit, let us 

now write (9.2) as: 
 

( ) ( )exp exp ( , )i ie ie Tµϕ τ ϕΛ = +  (9.7) 

 
 Next, recall that back at (3.7) we determined that topologically, 1ϕ =  represents the 

electron bar and ribbon systems of Figures 6, and that ( )1
22 2j lϕ = = +  with 1

2s =  in general.  

The states which are not entangled are 0,1,2,3...l =  i.e., 1,3,5,7...ϕ = .  We also know that 
0ϕ =  represents 0s= , which is not an electron at all, but is the spinless (twistless) bar and 

ribbon apparatus of Figure 2(a).  So because 0ϕ =  is no electron charge at all, we regard 
( , )Tτ ϕ  to be always equal to zero for 0ϕ = , i.e., ( , 0) 0Tτ ϕ = = .  Thus, regarding any 

( ) ( )exp exp ( , )ie ie Tµϕ τ ϕ  for a disentangled electron 1,3,5,7...ϕ =  to be equal to 

( ) ( )exp exp ( , )ie ie Tµϕ τ ϕ  for any other disentangled electron, and also equating this to the 

0ϕ =  function ( ) ( ) ( )exp 0 exp ( , 0) 1 exp 2ie ie T i nµ τ ϕ π⋅ = = = , we now write (9.7), contra 

(9.6), in a way that the thermal scalar τ  does not factor out, as: 
 

( ) ( ) ( ) ( )
( ) ( )

exp exp 2 1 exp 1 ( , 1) exp 3 ( , 3)

exp 5 ( , 5) exp 7 ( , 7) ...

i i n ie ie T ie ie T

ie ie T ie ie T

π µ τ ϕ µ τ ϕ
µ τ ϕ µ τ ϕ

Λ = = = ⋅ + = = ⋅ + =

= ⋅ + = = ⋅ + =
 (9.8) 

 
We may then extract the equivalent, disentangled states: 
 

2 ( , )n e e Tπ µ ϕ τ ϕΛ = = ⋅ +  (9.9) 
 
where ( )1

22 2 1,3,5,7...j lϕ = = + = .  In terms of magnetic charge, and mindful that the reduced 

gauge angle / 2 nπΛ = Λ = , we then restructure (9.9) into: 
 

2 ( , )T

e

π τ ϕµ
ϕ ϕ
Λ= − . (9.10) 

 
 Now let us consider two specializations of (9.10).  By design, we expect the thermal 
function ( , )Tτ ϕ  to be zero at T=0K, i.e., (0K, ) 0τ ϕ = , which means that over a spacetime 
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region where the temperature is 0K everywhere at all times, ( )0K, 0µ µε τ ϕ= ∂ =  and 

0dxµ
µε ε= = .  This corresponds to the topological 0ε =  in y ε= ± .  So at absolute zero, where 

(0K, ) 0τ ϕ = , (9.10) becomes: 
 

u

2
u

e

πµ ν
ϕ
Λ= = , (9.11) 

  
or, in terms of the electric charge, 
 

u

2
e e

π ν
ϕ µ
Λ= = , (9.12) 

 
with /ν ϕ= Λ  and u 2 /u eπ=  and u 2 /e π µ= , just as before.  Because 0,1,2,3...Λ =  and the 

disentangled states are 1,3,5,7...ϕ = , and because these states are all topologically observably 
distinct based on OET, (9.12), which is a near-0K specialization of (9.10), describes exactly what 
is observed in the FQHE, if we take the single additional step of permitting 2ϕ =  as the only 
allowed entangled electron state.  Again, we shall look more closely at 2ϕ =  in the next 

section.  In this state, ( )2 /eµ π ϕ= Λ , there is quantization, there is fractionalization, there is 

an electric / magnetic symmetry under eµ ↔  interchange, and the untangled charge states have 
fill factors with the odd denominators found in the FQHE. 
 
 The other specialization of (9.10) is at warmer temperatures.  The magnetic charge µ  in 

(9.11) is based supposing that Fµ = ∫∫� , and then asking via the use of gauge theory, what 

would happen if these magnetic charges were to exist under some set of physical circumstances?  
We see that what would happen, is that we would observe a charge fractionalization which looks 
very much like the FQHE near 0K.  But because we do not ever observe a magnetic charge at 
warmer temperatures, this means that 0Fµ = =∫∫�  except in the FQHE environment.  So, let’s 

simply go to (9.10) and set 0µ = , which we regard as an act of “breaking the electric / magnetic 
symmetry” and entering a thermal environment with ( , ) 0Tτ ϕ ≠ , and find the result.  With 

0µ =  but ( , ) 0Tτ ϕ ≠ , (9.10) now becomes 
 

2 2 2 2

( , ) ( , ) ( , 2 ) ( ,2 1)
e n n n

T T T j T l

π π π π
τ ϕ τ ϕ τ τ

= Λ = = =
+

, (9.13) 

 
where we have also used 2 2 1j lϕ = = +  to introduce the angular momentum Casimir quantum 
numbers j and l.  Isolating the thermal scalar instead, and also using the DQC magnetic charge 
unit u 2 /u eπ= , this becomes: 

 

u

2
( , , ) ( , , 2 ) ( , , 2 1)T n T n j T n l n n

e

πτ ϕ τ τ µ= = + = = , (9.14) 
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where we have now written this as ( , , )T nτ ϕ  in recognition that this thermal function is also a 
function of the quantum number nΛ =  as well as 2 2 1j lϕ = = + . 
 
 Now, there are some notable similarities between the low-temperature (9.11) and (9.12) 
which are responsible for the FQHE and the higher-temperature (9.13) and (9.14). These 
parallels are highlighted if we write the near-0K (9.11) and (9.12) to show the FQHE and its 
electric / magnetic duality including DWY electric magnetic charges with 1,2,3,4...Λ =  and 

1,2,3,5,7,9...ϕ =  (all disentangled odd denominators except 2ϕ =  to be reviewed in the next 
section) as: 
 

2eµ π
ϕ
Λ= , (9.15) 

 
and then write (9.14) in parallel form including nΛ =  as: 
 

( , , )
2

T n
e

τ ϕ π
ϕ ϕ

Λ= . (9.16) 

 
We see that when the low temperature symmetry breaks including breaking the duality 
symmetry, the magnetic charge µ  is replaced by ( , , ) /T nτ ϕ ϕ  which has the dimensionality 
and character of a magnetic charge but is instead a thermal scalar charge.  So in an extremely 
fundamental way, the magnetic monopole charges µ  that appear right at 0K and motivate 
FQHE, turn into a thermal charge ( , , ) /T nτ ϕ ϕ  at higher energies.  Given that 

( , , ) /T nµ τ ϕ ϕ→  once we rise from 0K and break the low temperature duality symmetry, and 
given that ( , , )T nτ ϕ  is fundamentally a thermal scalar, we may unify Maxwell’s 
electromagnetic theory with thermodynamic theory in a very deep way at the microscopic level 
of individual electrons by understanding that heat itself is what replaces the magnetic monopoles 
of 0K once the temperature rises.  Thermal energy, which of course pervades natural experience, 
is the form in which we observe the broken residue of the DYW magnetic monopoles that give 
rise to FQHE very close to absolute zero. 
 
 Now we return to (9.5) where we found that the thermal scalar ( , , )T nτ ϕ  is related by 

µ µε τ= ∂  to the µε  which via N SA Aµ µ µε′ = +  specifies the extent to which the north gauge 

patch cannot be gauge transformed into the south patch and vice versa.  This dxµ
µε ε=  was 

developed to formally represent the topological freedom y ε= ±  which the “ribbons and bars” of 
Figures 6 are given for OET rotation and disentangling.  Now, in (9.14), we have found that 

( , , ) 2 /T n n eτ ϕ π= .  Se we can directly determine from this, that: 
 

2

1 2 1 2 1 2
( , , ) ( , , ) 2

4 4 2
T n T n n n e n e n e

e e gµ µ µ µ µ µ
π πε ϕ τ ϕ π

π α π
 = ∂ = ∂ = − ∂ = − ∂ = − ∂  − 

, (9.17) 
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where we have also included the running electromagnetic coupling 24 eπα = , and in the final 
expression included the one-loop g-factor “anomaly” for an individual electron / 2 1 / 2g α π= +  
first found by Schwinger in [35].  The above is in natural units 1c= =ℏ , but with these two 

fundamental constants restored /e e c→ ℏ  is a dimensionless number.  So as already discussed, 

µε  has a mass dimension of +1, i.e., it has dimensions of energy.  But because 2 2 1j lϕ = = + , 

aside from being a function of the quantum numbers n and j , ( , , )T nµε ϕ  is also a function of 

temperature.  Thus, as an energy-dimensioned four vector with thermal character, we anticipate 
that µε  will bear some discernable relation to the energy equivalent of any given temperature, 

E kT= , and as we anticipated, that ( , , )T nµε ϕ  is a form of heat energy which separates the 

north and south gauge patches by more than a gauge transformation.  While ( )2 / 2 861.023g − ≅  

at 1/137.036α ≅  for low probe energy is a large number, 0eµ∂ ≅  is a very small number at low 

energy, i.e., the running electromagnetic charge / coupling is very flat at low energy and does not 
start a discernable ascent until energies start to reach the GeV domain.  So at 0K where 

0E kT= = , we also expect that 0µε = , consistent with how this is ε  is understood to analogize 

to the topological y ε= ± . 
 

Additionally, because the energy dimensioned ( )4 2 / 2n e g nµ µπε = − ∂ − ∝  is quantized 

in proportion to n = Λ , it is clear that n defines a quantized energy level.   Because ( , , )T nµε ϕ  

is also a function of the angular momentum Casimir quantum numbers 2 2 1j lϕ = = + , and 
because the principal quantum number n also specifies quantized energy levels and is the only 
atomic number that we have not yet attempted to topologically explain, and because n µε∝  and 

µε  is an energy distinct from the electromagnetic potential and appears to be a thermal energy at 

least in part, we shall now add a fourth evidence-informed inference to the three inferences in 
section 8: 
 

Inference 4:  At finite, non-zero temperatures, after the electric / magnetic duality 
is broken and the magnetic charge µ  has been replaced by its “thermal residue” 

( , , ) /T nτ ϕ ϕ , the reduced gauge angle n = Λ  is one and the same as the 
principal quantum number seen in atomic structure.  
 
With this final inference our topological understanding of atomic structure is complete.  

All of the angular momentum quantum numbers l, s, j, m, zs  and zj  have already been 

understood in terms of OET rotations and “thread” twists of an OET “object” relative to its 
“environment.”  But the gauge angle n = Λ  has also been present all along as an integer 
quantum number which brings about the quantization of charge in DWY monopole theory.  
Now, when we break the low temperature symmetry and the magnetic monopole µ  becomes a 

thermal residue ( , , ) /T nτ ϕ ϕ , the thermal residue gradient ( , , ) ( , , )T n T n nµ µε ϕ τ ϕ= ∂ ∝ , 

which is an energy, becomes quantized in proportion to this very same  n = Λ , so that this same 
n now brings about the quantization of energy in the electron shells of atoms.   
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So what we now see is that at ultra-low temperatures, the reduced gauge angle n = Λ  is 
responsible for quantization of charge in the DWY monopoles and supplies the numerator in the 
FQHE.  But at higher temperatures after the electromagnetic duality is broken, the reduced gauge 
angle n = Λ  now becomes responsible for quantization of energy in atomic shells, and becomes 
the principal quantum number in atomic structure.  And this energy quantization driven by the 
principal quantum number, is also related via the temperature T dependence of ( , , )T nµε ϕ , to 

the “freedom” which the electron has to operate topologically spatially perpendicularly to its 
two-dimensional restraint at 0K.  Therefore, ( , , )T nµε ϕ  which should be further studied, 

appears to be a measure of the intrinsic heat content of that electron, and therefore a microscopic 
thermodynamic variable.  Whether µε  contains energy content from a form other than heat we 

leave as a question for separate consideration.  But what we do know for certain about µε  is that 

it does include heat energy, and it does not include electromagnetic potential energy. 
 
To the extent that this thermal magnetic charge residue ( , , )T nτ ϕ  and its energy-

dimensioned gradient ( , , ) ( , , )T n T n nµ µε ϕ τ ϕ= ∂ ∝ , as it may be further developed, proves 

capable of explaining the existence of heat at the microscopic level of individual electrons, and 
to the extent that this microscopic understanding of heat for individual electrons can be related to 
the usual statistical understanding of heat based on the movement of collective systems, one may 
be able to entertain the prospect that the very existence of heat energy in the universe is the 
observed residue of the U(1)em magnetic charges that exist near 0K but quickly disappear to be 
replaced by heat energy once the low-temperature duality symmetry is broken.  It certainly 
appears to be true that at least some of the heat energy in the universe is from the magnetic 
monopole residue ( , , ) /T nµ τ ϕ ϕ→ .  The question being posed here, is whether in some 
fashion, all of the heat energy in the universe can be traced back to this magnetic monopole 
residue.  If so, it would be rather ironic to find that the long-pursued magnetic monopole makes 
its presence observably detectable, as a thermal energy residue that animates all of nature. 
 

With the connection between 0K and other higher temperatures developed in this section, 
we now understand that at 0K there is indeed a duality symmetry between electric and magnetic 
charges, that DWY U(1)em magnetic monopoles do exist, and that these electric and magnetic 
charges are observed via the FQHE fill factor /ν ϕ= Λ  with integer numerators 

0,1,2,3...nΛ = =  and with odd-integer denominators ( )1
22 2 1,3,5,7...j lϕ = = + =  shown in 

(7.2), with the exception of the even denominator 2ϕ =  which we shall examine in detail next.  
We also now understand that once the temperature rises from 0K the electric-magnetic duality 
becomes broken and the magnetic monopole charge µ  is replaced by a “thermal residue” charge 

( , , ) /T nτ ϕ ϕ  which is a function of temperature T, the same nΛ =  which is the FQHE 

denominator, and the same ( )1
22 2 1,3,5,7...j lϕ = = + =  which is the FQHE numerator.  The 

gradient nµ µε τ= ∂ ∝ Λ =  of this thermal residue, which is an energy-dimensioned four-vector, 

has its energy quantized in proportion to n, and taken together with all the other topological 
connections to the angular momentum quantum numbers l, s, j, m, zs  and zj , this appears to 

qualify nΛ =  at higher temperatures as the principal quantum number in atomic shell structure.  
So just as the DWY monopoles become a thermal residue at higher temperatures, so too does the 
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DWY electric and magnetic charge quantum number nΛ =  become the principal energy 
quantum number for atomic (and presumably nuclear) orbital shells. 

 
If we do identify n from the DWY monopoles as the principal quantum number in this 

way, there is one question raised by the empirical data that still needs to be considered.  In 
atomic systems, the principal quantum number constrains the orbital quantum number by the 
relationship l n< .  But if we write the FQHE fill factor /ν ϕ= Λ  as ( )1

2/ 2n lν = +  with 

nΛ =  and ( )1
22 lϕ = + , then we see that there are some observed FQHE states which violate 

this constraint.  For example, if 1n l= =  we obtain 1/ 3ν = , which violates l n<  but is clearly 
observed.   The same is true, for example, of 2 / 5ν =  with 2n l= =  and of 3 / 7ν =  with 

3n l= = , which are also observed.  If one were to observe 1/ 5ν =  with 1n =  and 2l = , or 
1/ 7ν =  or 2 / 7ν =  with 1n =  and 2n =  respectively but 3l =  in both cases, then we would 

actually be observing states for which n l< .  So the question: how might the constraint l n<  at 
higher temperatures be removed near 0K? 

 
There appear to be two interrelated explanations of how this could be the case.  First, at 

low temperature, n measures charge quantization.  It is only at higher temperatures after the 
duality symmetry has been broken that it starts to measure energy quantization.  So even if n l<  
is a constraint once n begins to measure energy quanta, that may not mandate that n l<  still has 
to apply when n is measuring charge not energy quantization.  Second, and closely related, is the 
fact that even at low temperatures, fermions still must satisfy the Exclusion principle.  And in 
atoms at low temperatures, electrons in the atomic shells of these atoms still must have quantum 
numbered states available into which they can elevate to satisfy exclusion.  So if n is 
proportional to heat energy, and if there is no heat energy at 0K, and if n is removed as an energy 
quantum number and converted over to a charge quantum number at 0K, then the electrons still 
must be able to enter states of 0l >  to satisfy Exclusion, even when there is no heat so n would 
become zero if it was still a measure of heat, but because there is no heat n has now converted 
over from a measure of heat to a measure of charge.  Put differently, once n is no longer an 
exclusionary quantum number measuring heat energy but is simply a measure of charge 
quantization, fermions still need to enter elevated states to satisfy Exclusion, and so l will 
decouple from n and states for which l n=  and even l n>  will now be permitted. 
 
 The final piece of the puzzle which now needs to be explained, is the even-numbered 
FQHE denominator 2ϕ = . 
 
10. Paired, Entangled Electron States with Even-Integer FQHE 
Denominator 2, why Larger Even-Integer FQHE Denominators are not 
Observed, and some Additional Proposed Experimental Tests 
 
 Based on (9.11) and (9.12), which was the earlier (7.2), we now know that when the 
thermal scalar ( , , ) 0T nτ ϕ = , in other words, at or very near 0K, there is an electric / magnetic 
duality symmetry, 2 /eµ π ϕ= Λ  with a fill factor /ν ϕ= Λ , with 0,1,2,3...Λ = , and, if the 
DWY electrons are to exist in disentangled states only, 1,3,5,7...ϕ = .  All of this accords 
perfectly with the quantized and odd-fractionalized FQHE with one exception: the empirical 
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evidence that 2ϕ =  is also an observed state [6], [7], [8], [9], [10], and that this is the only even 
denominator state observed.  So the empirical evidence is telling us that at 0K, the DWY 
electrons are indeed all in disentangled states, with the singular exception of 2ϕ = .  Therefore, 
let is make use of this empirical observation to try to understand, theoretically, what motivates 
this pattern of observation for the even-denominator FQHE, as well as the observed absence of 
any other even-integer denominators. 
 
 We used the first of four evidence-based inferences made in sections 8 and 9 to introduce 
the view that the observed angular momentum quantum numbers , , ,z zl m s j  in atomic orbital 

shells is a consequence of precisely-analogous , , ,z zl m s j′ ′ ′ ′  numbers used to summarize OET 

topology because of a precise one-to-one mapping between these.  Once this connection was 
made, we came to understand that the azimuth angle 2 2 1 2 2j l l sϕ = = + = +  in terms of the 

Casimir numbers j and l where the Casimir 1
2s = , because 2 2 1 2 2j l l sϕ ′ ′ ′ ′= = + = +  based on 

the topology to which this maps.  Therefore 1,3,5,7...ϕ =  corresponds to 3 5 71
2 2 2 2, , ,j =   and 

0,1,2,3...l = .  So what does it means when we empirically observe 2ϕ = ?   
 

Topologically, although we are entangling the DWY electrons with 2ϕ = , they are still 

intrinsic spin ½, electrons, so their spin Casimir 12s =  will not change.  Any changes will be to 

the other angular momentum quantum numbers.  Based on 2 2 2j l sϕ = = + , this topologically 

entangled state 2ϕ =  has 1j =   and 1
2l s= = .  So this entangled state is a boson state with total 

observable angular momentum Casimir 1j =  in ( )2 1j jξ ξ= +J .  We also know that  

( )2 1l lξ ξ= +L  and ( )2 1s sξ ξ= +S .  So along the z-axis, the observed eigenvalues will 

be 1
2zL mξ ξ ξ= = ±  and 1

2z zS sξ ξ ξ= = ± .  As a shorthand, let us now define 
1
2m m↑ ≡ = + , 1

2m m↓ ≡ = − , 1
2s zs↑ ≡ = + , and 1

2s zs↓ ≡ = − .  Therefore, the four 

possible state combinations are ,
zm s↑ ↑ , ,

zm s↑ ↓ , ,
zm s↓ ↑  and ,

zm s↓ ↓ .  Then, because 

z zj m s= + , we can group these into the familiar triplet and singlet states:  

 

( )

( )

1
2

1
2

1, 1 ,                    

1, 0 , ,

1, 1 ,                    

0, 0 , ,

z

z z

z

z z

z m s

z m s m s

z m s

z m s m s

j j

j j

j j

j j

 = = + ≡ ↑ ↑

 = = ≡ ↑ ↓ + ↓ ↑


= = − ≡ ↑ ↑

= = ≡ ↑ ↓ − ↓ ↑

. (10.1) 

 
This pattern will be familiar because it is the pattern of spin ordinarily found in massive vector 
bosons, with a spin 1 triplet which includes two transverse and one longitudinal polarization, as 
well as a scalar 0j =  singlet. 
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 So, the empirically-observed 2ϕ =  FQHE denominator is telling us that the even 
denominator 2ϕ =  is evidencing a boson spin state consisting of entangled electrons, with three 
spin 1 degrees of freedom and a single spin 0 degree of freedom.  At the same time, all of the 
odd FQHE denominators are evidencing individual entanglement-free electron states of 

1,3,5,7...ϕ =  which we know respectively as s, p, d, f… electrons. 
 
 This allows us to expand the experiment proposed in section 7:  It has already been 
suggested to closely study the observed FQHE charge states for correlations between the 

1,3,5,7ϕ =  FQHE denominators and the known observed characteristics of the s, p, d, f 
electrons, respectively.  A further empirical prediction from (10.1) is that close experimental 
study of the 2ϕ =  even-denominator states should demonstrate that these are boson states in 
which two electrons have become entangled together, i.e., these are electron pair states, and that 
these pair states when studied closely experimentally should correlate with the boson spin pattern 
of (10.1).  While the “Cooper pairs” model of electron pairing [36] may well come to mind, for 
the moment let us not be that specific.   What does seem to be clear, is that there the 2ϕ =  states 
do involve boson spins in which two electrons become paired by entanglement, and that these 
should exhibit angular momentum characteristics which are decidedly-distinct from the angular 
momentum characteristics of all the odd-integer denominator states. 
 
 Further, now that section 9 has made clear how the FQHE can indeed be regarded as a 
consequence of the electric / magnetic duality of FQHE because we have shown how this duality 
can be broken at higher temperatures so that the monopoles are no longer observed and leave in 
their place a thermal reside observed as heat, although these monopole charges may be slight in 
relation to the applied perpendicular magnetic fields, it would be worthwhile to see if some 
clever experiment can be designed to filter out the noise of the experiment from the signal of the 
monopoles so that these monopoles might be directly detected. 
 
 Returning to the 1,3,5,7ϕ =  FQHE denominators and their correlation with s, p, d, f 
electrons, let us predict one further correlation that should be experimentally observable.  With 
all electrons in the lowest permitted Exclusionary states, the elements from 1H through 20Ca 
(with Z=1 and Z=20 respectively) will only contain s and p electrons for which 1,3ϕ = .  The 
elements from 21Sc through 56Ba must all naturally contain some p electrons for which 5ϕ = , 
even before any magnetic field is applied which could excite higher orbits.  And once we enter 
the Lanthanides at 57La, then there must also naturally be some f electrons for which 7ϕ = , 
before anything else happens.  Now, the FQHE is not observed in free space; it is observed in 
certain superconducting metals, see for example, the partial listing of simple-structure 
superconductors at [37] which also lists highest transition temperatures and critical magnetic 
fields.  So if the FQHE denominator is in fact tied to the s, p, d, f… states of electrons, then more 
electrons with larger l and therefore larger ϕ  will naturally be made available by metals which 
contain heavier elements than those with lighter elements.   
 

With this in mind, the final correlation proposed for experimental observation is to 
characterize the observed FQHE in relation to the elements in the particular superconducting 
metals used to discern this effect.  The prediction is that metals which contain elements with 
higher Z on the periodic table, will all be metals in which larger FQHE denominators reveal 
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themselves more readily in response to smaller applied perpendicular magnetic fields.  
Specifically, one does not need to rely as much on the magnetic fields to raise the orbital levels 
into the fractional states, because there are already electrons at higher orbitals in the natural state 
of these metals.  Thus, for example, the list at [37] shows that all of 57La, 70Yb, 72Hf, 73Ta  74W, 
75Re, 76Os, 77Ir, 80Hg, 81Tl, 82Pb 90Th, 91Pa, 92U or compounds containing these are 
superconductors, and these will all naturally contain f electrons for which 3l =  and 7ϕ = .  
Because it takes a larger perpendicular magnetic field to generate the FQHE states which display 
smaller fractions, this correlation would suggest that the larger denominators can be brought into 
observation with smaller applied magnetic fields in high-Z superconductors such as 82Pb or 90Th 
with naturally-provided d-state and f-state electrons, than in low-Z superconductors with 13Al or 
14Si or 22Ti or various carbon compound superconductors which have a natural surfeit of d and f 
electrons.  Perhaps 82Pb (lead) with a fairly high critical temperature 7.19K and a fairly small 
critical magnetic field 0.08T is a good element to use to see how readily the large-denominators 
states can be produced with smaller magnetic fields.   

 
The other factor that will correlate with generating larger ϕ  with smaller magnetic fields 

will be how tightly bound the d and f electrons are to their atoms.  The more the d or f electrons 
are accessible at the outer shells with smaller energies, the more readily the application of a 
magnetic field will be able to stimulate them to displaying their higher orbitals via the FQHE.  In 
this regard, the Lanthanoid superconductors which have f-electron binding energies of 5.57 to 
6.25 eV [33], [34] may prove to be the best candidates for generating high ϕ  fractions with 
smaller applied magnetic fields. 
 
 The final question as regards the observed FQHE denominators, is why 2ϕ =  is the only 
observed denominator, and why we do not observe any other even denominators 4,6,8...ϕ =  

which via 2 2 1 2 2j l l sϕ = = + = +  would correspond to 2,3,4...j =  and 3 5 7
2 2 2, , ...l = .  This is 

answered by reference to quantum statistics and the Exclusion Principle:  For multiple electrons 
to exist as part of a single quantum system, each of the electrons must have a set of quantum 
numbers which differs from the quantum number set of any other electron in the same system, 
and this requirement remains in place even near 0K.  This is why, for example, electrons still 
maintain a non-zero Fermi energy to be able to occupy exclusionary states, even at 0K.  So in 
any given principal shell n, once there are two s electrons with 1ϕ =  and 0l =  and 1

2j = , in 

order to add a third electron we must put that new electron into a p state with 1l =  and 3
2j = , 

which corresponds with 3ϕ =  and 1l =  and 3
2j = .  In short, we must have higher-j states to 

satisfy Exclusion in larger systems of electrons.  And near 0K, this raises the Fermi level.  On the 
other hand for bosons there is no such requirement.  One can have as many bosons as one would 
like with 2ϕ =  and the 1j =  spin characteristics of (10.1) all in the same system, without ever 
having to supply a 4ϕ =  and 2j =  or any higher spin state boson.  Because nature always 
seeks the lowest energy state and because larger-j states require more energy than smaller-j states 
as evidenced by the ionization energies [33], [34], the higher-denominator 4,6,8...ϕ =  boson 
states are not required by Exclusion, and they are not favored energetically, so they are not 
observed in the FQHE. 
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11. Summary and Conclusion, and Consolidation of Experimental 
Predictions 
 

A complete analysis of the gauge symmetries of Dirac Monopoles following the approach 
pioneered by Wu and Yang [15], [16] (DWY monopoles) results in an electric / magnetic duality 
symmetry with charges that are quantized and fractionalized according to the Dirac Quantization 
and Fractionalization Condition (DQFC) ( )2 /eµ π ϕ= Λ , where / 2 0,1,2,3...πΛ = Λ =  is a 

reduced gauge angle and / 2 1,2,3,4...ϕ ϕ π= =  is a reduced azimuth angle following the DWY 
analysis, see (3.4) and (3.5).  When orientation alone is considered, these angles differing by 2π  
are geometrically indistinct from one another.  However, when topological Orientation-
Entanglement as taught by Misner, Thorne and Wheeler [18] is accounted for, and when we also 
account for the topological twisting of the threads following various disentangling operations, 
then all angles differing from one another by 2π  and even by 4π  are seen to be observably 
topologically distinct based on Orientation-Entanglement and Twist (OET).  Moreover, when we 
characterize the various topological OET states based on rotations through 4 lπ ′  where 

1,2,3...l ′ = , followed by disentangling of the rotated state, we unexpectedly discover that this 

OET topology can be characterized by a set of quantum numbers , , , , ,z zl m s s j j′ ′ ′ ′ ′ ′  representing 

rotation and twist which map precisely, on a one-to-one basis, to the , , , , ,z zl m s s j j  observed in 

the orbital, spin and total angular momentum of electrons in atomic shells.  Finding that the 
topology of a free electron is represented by 1ϕ = , and if the DQFC ( )2 /eµ π ϕ= Λ  is applied 

only to states which differ from this by integer multiples of 4π+  and so have the same 
orientation-entanglement “version” as 1ϕ = , then the denominators 1,3,5,7...ϕ =  will be 
restricted to odd integers only, and this provides a topological explanation for the similar odd-
integer denominators of FQHE.  At the same time, the only observed even-FQHE denominator 

2ϕ =  is seen to correspond to the spin 1 boson states (10.1), and the absence of larger even-
integer FQHE denominators is understood on the basis that whereas fermions are subject to 
quantum Exclusion, bosons are not. 

 
The central conceptual hurdle in this development is the fact that all of the foregoing is 

rooted in the DWY analysis which predicts the DQFC ( )2 /eµ π ϕ= Λ  and therefore a duality 

symmetry under e µ↔  electric / magnetic charge interchange, and the fact that magnetic 
charges are definitively not observed, at least (if FQHE is connected to the DWY DQFC) in any 
environment other than near 0K.  A related conceptual hurdle rests in fact that the DWY analysis 
involves three-dimensional systems of electrons whereas electrons in superconducting materials 
subjected to ultra-low temperature and large perpendicular magnetic fields in the FQHE 
environment are substantially restricted to two spatial dimensions.  The OET topology does 
allow us to understand qualitatively, how a lowering of temperature correlates with a gradual 
restriction in, and eventual removal of, one space degree of freedom from these electrons.  But to 
make the quantitative connection required to completely clear these hurdles, it is necessary to 
recognize that there is a hidden assumption that goes into the usual DWY analysis, namely, that 
the south patch of the gauge field SA  differs from the north patch NA  by nothing more than a 

gauge transformation, and so can be represented by /i i
S N NA A A e de ie− Λ Λ′= = + .  Specifically, 
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this assumption leads by inexorable logic to the Dirac prediction of electric / magnetic duality, 
and because such a duality is not physically observed (at least at temperatures not near 0K), this 
means by contrapositive logic that S NA A′=  is a flawed assumption (again, at least at 

temperatures not near 0K).  As a result, we are required by the empirical evidence of no observed 
duality a.k.a. no observed magnetic monopoles to modify this assumption into a new supposition 
that ( )N SA A Tε′ = + , where ( )T dxµ

µε ε=  is a physically-observable function of temperature 

which is equal to zero at 0K, but otherwise nonzero, and where ( )Tµε  has physical energy 

dimensionality but represents heat and possibly other forms of energy other than the 
electromagnetic gauge potential Aµ .  Thus, at all temperatures but 0K, there is an observable 

physical difference between the north and south DWY gauge field patches.  With this 
modification, we find in (9.9) that the DQFC generalizes to 2 ( , )n e e Tπ µ ϕ τ ϕΛ = = ⋅ +  where 

µ µε τ= ∂  and where ( , )Tτ ϕ  is a thermal scalar which is a function of temperature as well as of 

the topological winding reduced azimuth ϕ  (and also of n).  At 0K, ( , , ) 0T nτ ϕ =  which 
recovers the DQFC 2 n eπ µ ϕ= ⋅  and leads to the FQHE as discussed in the previous paragraph.  

But when the low-temperature duality is broken and the magnetic monopoles 0F µ= =∫∫� ,  the 

DQFC is replaced by 2 ( , , )n e T nπ τ ϕ= , which means that ( , , ) /T nµ τ ϕ ϕ→  becomes a 
“thermal residue” of the magnetic charge µ  once the temperature rises from 0K and the electric 
magnetic duality symmetry is broken. 

 
The experimental tests proposed at the end of section 7 for the odd-FQHE denominators 

1,3,5,7...ϕ =  and also in section 10 for the even denominator 2ϕ =  and high-Z 
superconductors are intended to validate not only the overall inference that the DQFC 

( )2 / 2eµ π ϕ πν= Λ =  is responsible for the FQHE, but also, the first inference in section 8 that 

the angular momentum quantum numbers observed in the electronic structure of atomic shells 
(and by extension in nuclear structure) are a direct consequence of the OET topology.  This is 
because, if the DQFC truly is responsible for the FQHE, and if the OET topology really is 
responsible for atomic structure, then because the reduced azimuth ϕ  in the FQHE fill factor 

/ν ϕ= Λ  is thereby related by 2 2 1 2 2j l l sϕ = = + = +  to the Casimir quantum numbers for 
total, orbital and spin angular momentum, the odd-integer FQHE denominators 

1,3,5,7,9,11...ϕ =  will characterize electrons in the respective orbital angular momentum states 
0,1,2,3,4,5...l =  for which the respective shorthands s, p, d, f, g, h are customarily employed.  

And, this also means that the 2ϕ =  denominator will characterize a pair of entangled electrons 
forming boson states summarized by (10.1).   
 

All of this is consolidated into Figure 7 below, which is reproduced from [38], [39] and 
adapted from Figure 3 in [40], and which contains added annotations showing how each 
fractional denominator 1,3,5,7,9,11...ϕ =  is expected to correlate with the orbital angular 
momentum states of s, p, d, f, g, h  electrons and how 2ϕ =  is expected to correlate to spin 1 
boson polarization states.  The experiments proposed here, are then easily summarized: each of 
the odd-denominator fractional states shown in Figure 7 is predicted to correlate to the angular 
momentum states signified by the s, p, d, f, g, h, annotations, and the single state with even 
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denominator 2ϕ =  is predicted to correlate to the angular momentum states of a spin 1 boson.  
The 2 / 3 6 / 9ν = =  state may be of special interest, because it can be generated by both p orbital 
and g orbital electrons, and so it can be predicted that both of these orbital characteristics may be 
correlated to 2 / 3ν = .  Experimental tests which observe these angular momentum correlations 
would support the theoretical results presented here; while a finding that these correlations do not 
exist would provide contradiction to these theoretical results.  Additionally, because 
superconductors with large Z on the periodic table naturally contain more d and f shell electrons 
than smaller-Z elements before any magnetic field is ever applied, it is predicted that the larger 
denominator FQHE states such as 5,7,9,11...ϕ =  can be stimulated with smaller applied 
magnetic fields using higher-Z versus lower-Z superconductors, which is illustrated by the 
horizontal arrows showing how large-Z materials should stretch the magnetic field axis to the 
right, i.e., move the observation of smaller fractional charges to the left along the  magnetic field 
axis.  Finally, if the “noise” of the large perpendicular magnetic fields introduced in the FQHE 
experiments can somehow be separated from the “signal” of the DWY magnetic monopoles 

F µ=∫∫�  which are predicted by these results to exist near 0K and be tied to the FQHE by 

( )2 / 2eµ π ϕ πν= Λ =  – which might be assisted by the use of high-Z materials, then these 

experiments should most certainly also seek to directly observe these magnetic monopoles, 
which have been the object of inquiry and pursuit since ever the time of Maxwell and Heaviside. 

 
Figure 7: Figure 1: Fractional Quantum Hall Effect, reproduced from [38], [39], and adapted 

from [40], with added annotation 
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