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Abstract 

 

The Polignac prime conjecture, was made by Alphonse de Polignac in 1849. Alphonse de 

Polignac (1826 – 1863) was a French mathematician whose father, Jules de Polignac (1780-

1847) was prime minister of Charles X until the Bourbon dynasty was overthrown in1830. 

Polignac attended the École Polytechnique (commonly known as Polytechnique) a French 

public institution of higher education and research, located in Palaiseau near Paris. In 1849, 

the year Alphonse de Polignac was admitted to Polytechnique, he made what's known as 

Polignac's conjecture: 

For every positive integer k, there are infinitely many prime gaps of size 2k. 

 

Alphonse de Polignac made other significant contributions to number theory, including the de 

Polignac's formula, which gives the prime factorization of n!, the factorial of n, where n ≥ 1 is 

a positive integer. 

This paper presents a complete and exhaustive proof of the Polignac Prime Conjecture. The 

approach to this proof uses same logic that Euclid used to prove there are an infinite number of 

prime numbers. 
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Proof of Polignac's Conjecture 

 

In number theory, Polignac's conjecture states: 

 

For any positive integer k, then for any positive even number 2k, there are infinitely many prime 

gaps of size 2k. In other words, there are infinitely many cases of two consecutive prime 

numbers with difference 2k. Mathematically stated: 

 

There exist infinitely many cases where, both p and p + 2k are prime. 

 

First we shall assume that the set of Polignac Primes are finite and then we shall prove that this 

is false, which shall prove that are Polignac Primes are infinite 

 

The divergence of the harmonic series was independently proved by Johann Bernoulli in 1689 in 

a counter-intuitive manner (reference 1). His proof is worthy of deep study, as it shows the 

counter-intuitive nature of infinity. We will use Bernoulli’s proof and apply it toward proving 

the Polignac prime numbers are infinite. 

 

Let the finite set of, p, Polignac primes be listed in reverse order from the largest to smallest 

Polignac primes as follows: 

 

n1 = p1 + 2k = largest Polignac prime 

n2 = p1 = second largest Polignac prime 

n3 = p2 + 2k = third largest Polignac prime 

n4 = p2 = fourth largest Polignac prime 

. 

. 

. 

np = pp + 2k  = second smallest Polignac prime number 

np = pp = smallest Polignac prime number 
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This reverse ordering of the finite set of Polignac prime numbers is key to our proof. We assume 

that the following Polignac prime reciprocal series have a finite sum, which we call S. 

 

1

n1
+

1

n2
+  

1

n3
+ ⋯ +  

1

np
 > 

1

2n1
+

1

3n2
+  

1

4n3
+ ⋯ +  

1

mnp
 = S 

 

Where, m is the denominator factor for the smallest Polignac prime number that exists in our 

finite set. 

We now proceed to derive a contradiction in the following manner. First we rewrite each term 

occurring in S thus: 

 
1

3n2
=  

2

6n2
 = 

1

6n2
 + 

1

6n2
 ,

1

4n3
=  

3

12n3
=  

1

12n3
+  

1

12n3
+  

1

12n3
 , …,  

 

Next we write the resulting fractions in an array as shown below: 

 

 
1

2n1
   

1

6n2
  

1

12n3
  

1

20n4
  

1

30n5
  

1

42n6
  

1

56n7
 …  

 

                                    
1

6n2
  

1

12n3
  

1

20n4
  

1

30n5
  

1

42n6
  

1

56n7
 … 

 

                                           
1

12n3
  

1

20n4
  

1

30n5
  

1

42n6
  

1

56n7
 … 

 

                                                   
1

20n4
  

1

30n5
  

1

42n6
  

1

56n7
 … 

 

                                                           
1

30n5
  

1

42n6
  

1

56n7
 … 

 

                                                                                          
1

42n6
  

1

56n7
 … 

 

                                                                            
1

56n7
 … 
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Note that the column sums are just the fractions of the Polignac primes; thus S is the sum of all 

the fractions occurring in the array. As Bernoulli did, we now sums the rows using the 

telescoping technique. Next we assign symbols to the row sums as shown below, 

 

 

A = 
1

2n1
+

1

6n2
+

1

12n3
 + 

1

20n4
 + 

1

30n5
 + 

1

42n6
+  

1

56n7
 + … , 

 

 

                 B = 
1

6n2
+

1

12n3
 + 

1

20n4
 + 

1

30n5
 + 

1

42n6
+  

1

56n7
 + … , 

 

 

                 C = 
1

12n3
 + 

1

20n4
 + 

1

30n5
 + 

1

42n6
+  

1

56n7
 + … , 

 

 

                 D =  
1

20n4
 + 

1

30n5
 + 

1

42n6
+  

1

56n7
 + … , 

 

 

We now rearrange as follows: 

 

 

A = (
1

n1
−  

1

2n1
) + (

1

2n2
−

1

3n2
) + (

1

3n3
−  

1

4n3
) + (

1

4n4
 − 

1

5n4
) + … 

 

 

Since, n1 > n2 > n3 > n4 

 

A = 
1

n1
+ (

1

2n2
 −  

1

2n1
) + (

1

3n3
−

1

3n2
) + (

1

4n4
 − 

1

4n3
) + (

1

5n5
− 

1

5n4
) + … 

 

 

Since,  (
1

2n2
 −  

1

2n1
) > 0 , (

1

3n3
−

1

3n2
) > 0 , (

1

4n4
 − 

1

4n3
) > 0 , (

1

5n5
− 

1

5n4
) > 0 

 

 

Then, A > 
1

n1
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B = (
1

2n2
−

1

3n2
) + (

1

3n3
−  

1

4n3
) + (

1

4n4
 − 

1

5n4
) + (

1

5n5
−  

1

6n5
)… 

 

 

Since, n1 > n2 > n3 > n4 , the same rearranging that we did with A can be done with B.  

 

 

Then, B > 
1

2n2
 

 

 

C = (
1

3n3
−  

1

4n3
) + (

1

4n4
 − 

1

5n4
) + (

1

5n5
−  

1

6n5
) + (

1

6n5
−  

1

7n5
) … 

 

 

Since, n1 > n2 > n3 > n4 , the same rearranging that we did with A can be done with C.  

 

 

Then, C > 
1

3n3
 

 

 

D = (
1

4n4
 − 

1

5n4
) + (

1

5n5
−  

1

6n5
) + (

1

6n5
−  

1

7n5
) +  (

1

7n6
−  

1

8n6
)  … 

 

 

Since, n1 > n2 > n3 > n4 , the same rearranging that we did with A can be done with D.  

 

 

Then, D > 
1

4n4
 

 

 

and so on. Thus the sum S, which we had written in the form A + B + C + D + … , turns out to 

be greater than 

 

                                      S >  
1

n1
+  

1

2n2
+  

1

3n3
+  

1

4n4
+ ⋯  

 

 

At the start we had defined S to be the following finite series, 
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S = 
1

2n1
+

1

3n2
+  

1

4n3
+ ⋯ +  

1

knp
 

 

 

 

And we defined that,  
1

n1
+  

1

n2
+  

1

n3
+  

1

n4
+ ⋯ > S = 

1

2n1
+

1

3n2
+  

1

4n3
+ ⋯ 

 

 

However, we just proved that S > 
1

n1
+ 1

2n2
+ 1

3n3
+ 1

4n4
+ ⋯ > 𝑆 = 

1

2n1
+

1

3n2
+

 
1

4n3
+ ⋯ +  

1

knp
 

 

 

However, this is a contradiction, since in the finite realm S can’t be equal to and greater than 
1

2n1
+

1

3n2
+  

1

4n3
+ ⋯ +  

1

knp
 at the same time. Therefore, S must be infinite. 

 

Now we can rewrite the S, the Polignac prime series as, 

 

S > 
1

n1
+  

1

2n2
+  

1

3n3
+  

1

4n4
+ ⋯ > 

1

2n1
+

1

3n2
+  

1

4n3
+ ⋯ +  

1

knp
 = S  

 

This implies that S > S 

 

However, no finite number can satisfy such an equation. Therefore, we have a contradiction and 

must conclude that S = ∞. Remember our definition of S from the above series: 

 

1

n1
+

1

n2
+  

1

n3
+ ⋯ +  

1

np
 > S = ∞ 

 

Therefore, 
1

n1
+

1

n2
+  

1

n3
+ ⋯ +  

1

np
 > ∞ 
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Therefore, we have proven that the reciprocal Polignac prime series diverges to infinity.  

Obviously, this cannot possibly happen if there are only finitely many Polignac prime 

reciprocals, therefore the Polignac prime reciprocals are infinite in number. Since the Polignac 

prime reciprocals are infinite in number, the Polignac prime numbers must be infinite as well.  

This proof shows the shows the counter-intuitive nature of infinity, and why it has taken so long 

to prove the Polignac primes are infinite.  

Our proof of infinite Polignac primes also proves several other Conjectures since Polignac 

primes are generalized form of other conjectures. For k = 1, the Polignac primes become the 

Twin Prime Conjecture and proves there are an infinite number of twin primes. For k = 2, the 

proof of the Polignac Conjecture proves there are infinitely many Cousin Primes (p, p + 4). For 

k = 3, proof of the Polignac Conjecture proves there are infinitely many Sexy Primes (p, p + 6). 

 

The author expresses many thanks to the work of Johann Bernoulli in 1689, without his work 

this proof would not have been possible. It was solely through the study of Johann Bernoulli’s 

work that the author was inspired to see this divergent proof. The author would also like to 

express many thanks to Shailesh Shirali’s work in which he documented Johann Bernoulli’s 

work in the most fascinating and interesting way. 
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