Some interesting correlations between cosmological red-shift and the strength-ratio of gravitational and electric forces

Hasmukh K. Tank

Indian Space Research Organization, 22/693 Krishna Dham-2, Ahmedabad-380015 India

Abstract:

This letter reports interesting correlations between cosmological red-shift and the strength-ratio of gravitational and electric forces, which may prove to be a clue to a deeper understanding of gravitation and cosmology. Cosmological red-shift, smaller than unity, \(z_c = \Delta \lambda / \lambda_0 = [G \, m_p^2 / h \, c] \) times the luminosity-distance measured in the units of a wavelength \([D / \lambda_c] \) where \(\lambda_c = (h / m_p \, c) \), the Compton-wavelength of a fundamental-particle pi-meson. Also, the energy lost by cosmologically red-shifted photon can be viewed as due to deceleration experienced by the photon; Energy lost \((h \Delta f) = \text{mass} (h / c^2) \) times the acceleration \((H_0 \, c) \) times the luminosity-distance \(D \); where the rate of deceleration \((H_0 \, c) \) turns out to be equal to the accelerated-expansion of the universe! Thus this letter provides some interesting correlations for the experts to think further.

Detailed description:

The ‘cosmological red shift’ less than unity, is generally expressed as:

\[
z_c = \Delta \lambda / \lambda_0 = H_0 \, D / c\]

(1).

The right-hand-side of expression-1 can be written as:

\[
H_0 \, D / c = h \, H_0 / (h \, c / D)\]

Now, Steven Weinberg [1] has found an interesting relation that:

\[
m_p^3 = h^2 \, H_0 / c \, G, \quad \text{where}, \quad m_p \quad \text{is mass of a fundamental-particle, pi meson.}
\]

i.e. \(G \, m_p^2 / (h / m_p \, c) = h \, H_0 \). ...(2).

So, from the expressions 1 and 2, we get:

\[
z_c = \Delta \lambda / \lambda_0 = [G \, m_p^2 / (h / m_p \, c)] / [h \, c / D] \]. ..(3).

i.e. \(z_c = \Delta \lambda / \lambda_0 = [G \, m_p^2 / h \, c] \) \([D / (h / m_p \, c)] \), where \((h / m_p \, c) \) is a unit of distance, measured in terms of Compton-wavelength of pi-meson; and the constant \([G \, m_p^2 / h \, c] \) denotes the strength-ratio of gravitational and electric forces.

Or, in terms of energy:
\[z_c = h \Delta \nu / h \nu = [G m_p^2 / h c] [D / (h/m_p c)] . \] ……………………(4).

That is, the reduction in energy of photon due to cosmological-red-shift is proportional to the strength-ratio of gravitational and electric forces.

Alternatively, let us define \(z_e \) as:

\[z_e = [e^2 / r_e] - [e^2 / (r_e + D)] / [e^2 / (r_e + D)] , \]

where \(e \) is electric-charge, \(r_e \) is ‘classical radius of electron’ and \(D \) is ‘luminosity distance’

i.e. \(z_e = e^2 [r_e + D - r_e] [r_e + D] / [r_e (r_e + D) e^2] . \)

i.e. \(z_e = D / r_e . \)

From Dirac’s Large-Number-Coincidence, we know, that:

\((G m_e m_p / e^2) = (r_e / R_0) = (m_p / M_0)^{1/2} = 10^{-40} , \)

Where \(M_0 \) is total mass, and \(R_0 \) radius of the universe.

i.e. \(z_e = 10^{40} (D / R_0) . \) ……………………………………………………………(5)

Because: \(H_0 R_0 = c \) and \(z_c = H_0 D / c = D / R_0 . \) ………………………………………(6)

Comparing the expressions (5) and (6), we get:

\(z_c = 10^{-40} z_e . \) …………………………………………………………………………. (7)

That is: ‘cosmological-red-shift, at a distance \(D \) is \((G m_e m_p / e^2) \) times the reduction expected from the ‘electrostatic potential energy of an electron at that distance \(D \).

(ii) We can express the cosmological red-shift \(z_c \) in terms of de-acceleration experienced by the photon: [2]

For \(z_c \) smaller than unity:

\[z_c = (f_0 - f) / f = H_0 D / c \]

i.e. \((h \Delta f / h f) = H_0 D / c \)

i.e. \(h \Delta f = (h f / c^2) (H_0 c) D \) ………(8)

That is, the loss in energy of the photon is equal to its mass \((h f / c^2) \) times the deceleration \(a = H_0 c \), times the distance \(D \) travelled by it. Where: \(H_0 \) is Hubble-parameter. And the value of constant deceleration \(a \) is: \(a = H_0 c \), \(a = 6.87 \times 10^{-10} \) meter/sec², equal to the rate of said accelerated expansion of the universe!
Discussion:
Supposing there were only two atoms, of appropriate masses, in the universe, such that a photon emitted by atom-1, by partly converting its electrostatic potential-energy into a less exited atom and a photon, which gets cosmologically red-shifted while travelling a distance D and then gets absorbed by the other atom-2. This system of two atoms lost a part of their electrostatic potential energy. Will this lost energy manifest as ‘gravitational-potential-energy’ of the system of these two atoms?

Summary:
We presented here two interesting correlations, which are likely to be the clue for deeper understanding of gravitation and cosmology.

References:

Steven Weinberg “Gravitation and Cosmology” (1972) John Willy and Sons, New York

Tank, Hasmukh K. (2011) “Some clues to understand MOND and the accelerated expansion of the universe” AP&SS 336 No.2 p 341-343