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Abstract – The aim of this paper is to investigate
how to improve the process of information combination,
using the Dempster-Shafer Theory (DST). In presence
of an overload of information and an unknown environ-
ment, the reliability of the sources of information or the
sensors is usually unknown and thus cannot be used to
refine the fusion process. In a previous paper [1], the
authors have investigated different techniques to evalu-
ate contextual knowledge from a set of mass functions
(membership of a BPA to a set of BPAs, relative relia-
bilities of BPAs, credibility degrees, etc.). The purpose
of this paper is to investigate how to use the contextual
knowledge in order to improve the fusion process.

Keywords: Dempster-Shafer Theory, Evidence The-
ory, Robust Combination Rule, Contextual Knowledge,
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1 Introduction
During crisis or emergency situations, the automatic

information management systems are significantly over-
loaded with pieces of information of different natures
(for example: signals intelligence - SIGINT, commu-
nications intelligence - COMINT, human intelligence -
HUMINT, electronic intelligence - ELINT, imagery in-
telligence - IMINT, measurement and signature intelli-
gence - MASINT, etc.), different structures (structured
or unstructured data), different known reliabilities (re-
liable, partially reliable or even completely unreliable)
or even unknown reliabilities. The pieces of information
have to be rapidly handled, processed, interpreted, and
combined, in order to rapidly create a situation aware-
ness picture as accurate as possible.

In such a context, the information coming from dif-
ferent sensors can be imperfect and its imperfection is
mainly due to the imperfection of the information it-
self and/or to the unreliability of the sensors/sources
of information. Different aspects of the imperfection
of the information (imprecision, uncertainty or a mix
of both) can be modelled within the Dempster-Shafer

theory (DST) also known as Evidence Theory, which is
a mathematical tool able to characterize and combine
the imperfect information.

The goal of the combination of imperfect information
is to find an accurate information, easily interpretable,
which can resume the information set to be combined.
The combination operation should be a computation-
ally tractable process. Conjunctive, disjunctive or the
normalized conjunctive (Dempster’s) combination rules
are some examples of blind combination rules, which
consider the information set as equi-reliable and the
contribution of each piece of information to the result-
ing combination is the same. This could be useful when
combining several pieces of information, obtained at dif-
ferent instants from the same sensor which has an un-
changed reliability1. However, when combining several
pieces of information from a set of sensors with different
reliabilities (known or unknown), using a blind combi-
nation rule becomes inappropriate. To overcome this
problem, Haenni [2] proposed to use discounted mass
functions2 before a blind combination, using a priori
estimations of the reliabilities of the sensors. On the
other hand, Dezert et al. [4] state that “The discounting
techniques must never been used as an artificial ad-hoc
mechanism to update Dempster’s result once problem
has arisen. We strongly disagree with the idea that all
problems with Dempster’s rule can be solved beforehand
by discounting techniques.”

The a priori estimation of the reliability of the sen-
sors/sources of information is a difficult process in a
normal context and becomes more challenging in a cri-
sis or emergency context. In [5], Florea et al. have
showed that using incorrect a priori estimations for the
reliabilities when discounting the mass functions, can

1The situation of combining several pieces of information, ob-
tained from the same sensor, at different instants, and the reli-
ability of the sensor can change in time, can be assimilated to
the combination of several pieces of information, obtained from
different sensors with different reliabilities.

2The discounting operation was first introduced by Shafer [3]
on belief functions.
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lead to lower performances than a robust combination
rule able to automatically account for the reliability of
the pieces of information.

Usually, the estimation of the reliability of the sen-
sors is realized using a priori knowledge about the sen-
sors, or the environment. A relative reliability of the
sensors can be considered to create more robust combi-
nation rules. The contextual knowledge (membership
of a BPA to a set of BPAs, relative reliabilities of BPAs,
credibility degrees, etc.), which can be obtained from a
set of mass functions, can play an important role in the
refinement of the combination process.

• can be seen as a practical way to estimate on the
fly the relative reliability of the sensors.

• can be incorporated directly in the combination
rule to increase its robustness. A first step in de-
veloping such a robust combination rule was real-
ized in [5]. A weighted sum of the conjunctive and
disjunctive combination rules was proposed, with
weighting coefficients which are dependent of the
conjunctive conflict between the mass functions to
be combined. However, the robust combination
rule (RCR) should not consider the conjunctive
conflict as the only dissimilarity measure between
mass functions.

• can be used to identify the unreliable sensors in or-
der to refine the combination process accordingly.

In a previous paper [1], we have investigated and
classified the different dissimilarity measures, according
to different situations, in order to correctly understand
the contextual knowledge obtained from a set of mass
functions. Some techniques to relate the dissimilarity
measures to relative reliability measures have also been
investigated. In this paper we propose to investigate
more thoroughly how to use the obtained contextual
knowledge in order to improve the combination process.

This paper is divided as follows. In Section 2 we recall
our classification of the dissimilarity measures, intro-
duced in [5] and according to the different information
sources (presented in Section 3). Section 4 presents
an improved fusion mechanism, which considers the
contextual knowledge in order to identify the defective
sources of information. Section 6 is the conclusion.

2 Dissimilarity measures
The idea of measuring the dissimilarity between mass

functions (BPA - basic probability assignments) in the
DST is not new. A first measure of dissimilarity in
the DST is the conjunctive conflict between BPAs and
was first introduced by Shafer in [3]. However, Liu [6]
and Martin et al. [7] show that the conjunctive con-
flict proposed by Shafer is not always an adequate met-
ric to measure the dissimilarity between two BPAs. In

the last decades, different measures of conflict and dis-
tances have been proposed to better characterize the
relations and the dissimilarities between BPAs [7–11].
Even more, some authors [7, 12–14] propose to charac-
terize the intrinsic conflict of a BPA, before characteriz-
ing the conflict between several BPAs. In the rest of the
paper we will generally refer to the entire set of metrics
as to dissimilarity measures between BPAs. Shafer’s
conflict will be referred to as conjunctive dissimilarity,
to make a clear difference with the global measures of
conflict proposed by Liu [6] and Martin et al. [7]. The
relation between the two pieces of information plays
an important role in the definition of the dissimilarity
measure between the two pieces of information. Thus,
two different classes of the dissimilarity measures can
be considered, based on the similar/dissimilar classifi-
cation of sensors. A distance measure should be used
to measure the dissimilarity between sensors provid-
ing information about the same attribute (similar sen-
sors). Sensors providing information about different
attributes are called dissimilar sensors, and the dis-
similarity measure to be used should be a conjunctive
dissimilarity measure. Luo and Kay [15] refer to these
classes of sensors in terms of redundant/complementary
sensors. A recent survey of the dissimilarity measures
according to this classification was proposed by Florea
and Bossé in [1].

3 Sensors, reliability and combi-

nation
A sensor capable to provide information about a spe-

cific characteristic/attribute of an object/a situation is
called a simple sensor. A thermometer is an example
of such a simple sensor. A sensor capable to provide
information about distinct characteristics/attributes of
the same object/situation, is called a complex sen-

sor or a collection of simple sensors. A radar which
can provide information about the range, altitude, di-
rection, or speed of a moving target or a human which
can provide information about the colours, dimensions,
time, sounds, or even opinions, beliefs, etc. are exam-
ples of complex sensors.

While the simple sensors can be characterized as re-
liable or unreliable and the degrees of reliability of
such sensors could be time-variant or time-constant, the
complex sensors are more difficult to characterize from
the reliability/unreliability point of view. If there is no
a priori knowledge about the correlations between the
simple sensors composing a complex sensor, the simple
sensors should be considered completely independent.

3.1 Similar Sensors

We define a set of similar sensors as a set of sim-
ple sensors which are observing the same character-
istic/attribute of the same static or dynamic situa-
tion/object. We do not need any a priori information
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about the attribute studied by the sensors or any other
a priori data bases, since we can rely on the corrobora-
tion of the sensors. Such fusion process can be seen as
an unsupervised fusion process. The BPAs associ-
ated to pieces of information coming from similar sen-
sors can and have to be compared through a distance
measure and not through the conjunctive dissimilarity
measure. One of the distance measures proposed for
example in [7–11] can thus be used in such a situation.

The similarity of the sensors should also be reflected
in the following aspects :

• The BPA obtained after the combination should
be the closest (according to a specified distance
measure) to the set of BPAs to be combined.

• A measure of relative reliability or membership de-
gree of a BPA to the set of the BPAs should be
based on the distance measure between each pair
of BPAs.

• The initial BPAs which are not close (in terms
of the distance measure) to the combined BPA,
should be seen as “unreliable” and could be tem-
porarily discarded from the combination process,
in order to refine it.

3.2 Dissimilar Sensors

We define a set of dissimilar sensors as a set of simple
or complex sensors which are observing the same static
or dynamic situation but from several points of view
(several characteristics/attributes). Thus, the corrob-
oration of the sensors cannot be validated in absence
of data bases and a priori knowledge. We can consider
such a fusion process as a supervised fusion process.
In fact, in this situations, the data bases and the a pri-
ori knowledge are needed to correctly discriminating
the frame of discernment for the given fusion problem.

In this situation, a distance is inappropriate to be
used to measure the dissimilarity between BPAs, since
the dissimilar sensors are measuring different charac-
teristics. Independently of the chosen metric proposed
in [7–11], the distance between two pieces of informa-
tion such as “the object is yellow” and “the object is
round” is important. But this does not mean that the
two pieces of information are not in agreement. In
such a situation, when dissimilar information have to be
fused, the agreement between the pieces of information
should be measured through the conjunctive dissimilar-
ity measure and not through a distance. The conjunc-
tion of information (the object is yellow and round) is
then evaluated: Is there any possible yellow and round
object in our data base ? If the data base contains
round objects as well as yellow objects but there are
no yellow and round objects, a conflict raises which is
characterized by a conjunctive dissimilarity measure.

The dissimilarity of the sensors should thus be re-
flected in the combination process:

• The BPA obtained after the combination should be
the closest (according to the conjunctive dissimilar-
ity measure) to the set of BPAs to be combined.

• A measure of relative reliability or membership de-
gree of a BPA to the set of the BPAs should not
be based only on the conjunctive dissimilarity mea-
sure between each pair of BPAs. Given three BPAs
m1, m2 and m3, such that the conjunctive dis-
similarity measures k2(m1,m2) = k2(m1,m3) =
k2(m2,m3) = 0, a total conflict between the three
BPAs can sometimes arise (k3(m1,m2,m3) = 1).
From this point of view, the conjunctive dissimi-
larity measure is completely different from a mean
distance to be used for the similar sensors.

• The initial BPAs which are not close (in terms of
the conjunctive dissimilarity measure) to the com-
bined BPA, should be identified as “unreliable”
and could be temporarily discarded from the com-
bination process, in order to refine it.

3.3 Hybrid Sensors Fusion Model

Until now, the Fusion Community have concentrate
its efforts to find the best combination rule which can
perform in any given situation [5, 16, 17]. A general
fusion model should rather depend on the problem we
are facing, and thus should act to reflect the relation
between the different sensors : similar or dissimilar.

We propose here a Hybrid Sensor Fusion (HSF)
model which is represented by the architecture from
Figure 1. First, information from similar sensors are
fused together using a Similar Sensors Fusion (SSF)
model and second, the resulting information is fused
using a Dissimilar Sensors Fusion (DSF) model.

Thus, instead of trying to find a combination rule
which adapt to most of the situations, it is important
to correctly design the problem and use the appropri-
ate fusion model for each situation. The HSF model
depicted in Figure 1 allows :

• to integrate sensors which can provide only one
piece of information.

• to integrate sensors which can provide more than
one piece of information (over the time). When
redundant pieces of information are provided, the
resulting BPA should not be affected. The only
change should be in the resulting reliability of the
SSF process.

• to independently design a SSF model for a group
of similar sensors without affecting the rest of the
system. Such a subsystem should be easily plugged
directly into the DSF model (see for example the
SSF5). The combination rule to be used in a SSF
model should be chosen according to the group of
sensors and to the attribute they characterize. In
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Figure 1: Hybrid Sensor Fusion (HSF) model

this way, the integration of new subsystems should
be facilitated.

• to continuously refine the initial reliabilities of the
sensors, according to the global combination pro-
cess (the feedback is represented by the dashed
lines).

• to combine the pieces of information at a SSF node
in a sequential mode.

• to combine the pieces of information at the DSF
node in a batch or a sequential mode. If the se-
quential mode is used, the time stamp associated
to the piece of information provided by a SSF node
could be (according to each application) :

– the acquisition time of its last piece of infor-
mation.

– the average acquisition time of all of its pieces
of information. If the average is equal for two
or more SSF points, the acquisition time of
their last pieces of information can then be
considered.

• to combine the pieces of information at a SSF node

in a batch mode, if the similar sensors are providing
only one piece of information.

• to design an order insensitive3 combination process
by imposing any basic associative operators (con-
junctive, disjunctive or Demspter’s rules of combi-
nation) at any SSF and DSF nodes.

• to recover any basic associative combination rule,
by setting identical combination rules in all the
SSF and DSF models and chose not to use any
feedback to refine the reliabilities.

This architecture has some drawbacks. The compu-
tation complexity of the combination process increases,
especially due to the continue refinement. The order
insensitive combination process, which are not asso-
ciative, cannot be computed by a recursive algorithm,
which leads also to an increase of the computation com-
plexity.

3Here, the distinction between an associative and an order in-
sensitive combination process becomes more clear. An associative
combination process is a recursive order insensitive combination
process, which allows to compute the final combined BPA, at
time N , m

N = m1 ⊕m2 ⊕ · · · ⊕mN from the last acquired BPA
mN and the final combined BPA from time N − 1, as follows:
m

N = m
N−1 ⊕mN = (m1 ⊕m2 ⊕ · · · ⊕mN−1)⊕mN .
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4 Reliability refinement
The effective evaluation of the reliability of the sen-

sors is an difficult process. As shown in Florea et al. [5],
the incorrect evaluation of the reliability degrees of the
sensors can lead to lower performance results of the
combination process. In literature, several situation
have been observed:

• Each sensor is supposed to have a known reliability
degree Rel(i).

• If the reliability of the sensors is unknown, the sen-
sors are considered equi-reliable, during the entire
combination process. If the reliability degrees are
required, a unitary reliability is then considered.

• The reliability of the sensors is not changing during
the time.

These considerations are restrictive and prevent the
fusion systems to be flexible. To overcome this problem,
we propose to consider that each sensor is supposed to
have an initial reliability degree Rel0(i), independent
of the pieces of information it provides. We suppose
that the initial reliability degrees can be refined during
the combination process, from the contextual knowl-
edge extracted from the relations between the BPAs to
be combined. This continue refinement involves several
distinct steps, which are closely related to the different
feedback loops presented in Figure 1:

• FORWARD : We associate to the results obtained
at each SSF node a reliability degree, since each
SSF node can be considered as a new sensor for
the DSF node. These reliability degrees should
be strongly related to the dissimilarity measures
(distance measures) associated to the combination
results from each SSF node.

• BACKWARD : The first refinement of the relia-
bility degrees of the sensors is performed at each
SSF node. If the combination is realized in a batch
mode, than the refinement is realized only once. If
the combination is realized in a sequential mode,
the refinement is realized at each update of the
combination process.

• FORWARD : We associate to the results obtained
at the DSF node a reliability degree. This relia-
bility degree should be strongly related to the dis-
similarity measure (conjunctive dissimilarity) asso-
ciated to the combination result at the DSF node.

• BACKWARD : We refine the reliability degrees
of the SSF nodes according to the relations be-
tween the conjunctive dissimilarities involved in
the computation of the combination result at the
DSF node.

• BACKWARD : We refine the reliability degrees of
the sensors, according to the refined reliabilities of
the SSF nodes.

In a static fusion process we can loop this algorithm
several times until stabilization, while in a dynamic fu-
sion process, the new reliabilities can be used for the
next combination step.

5 Identifying reliable sensors
Let Sk , 1 ≤ k ≤ K be a set of sensors providing

a set M = {m1,m2, . . . mM} of BPAs. The sensors
should be either similar or dissimilar (corresponding to
the SSF or the DSF models), but not a mix of both sim-
ilar and dissimilar (corresponding to the HSF model).
We denote by Sk(M ) the set of BPAs from M which
are generated by the sensor Sk. The number of mass
functions does not necessarily correspond to the num-
ber of sensors, and some particular situations can be
encountered:

• the entire set of BPAs is provided by the same
sensor (S1(M ) = M ), or

• each BPA is provided by a different sensor (each
sensor is providing only one piece of information
and |Sk(M )| = 1,∀1 ≤ k ≤ K).

We propose the algorithm depicted in Figure 2 in
order to identify the “reliable/unreliable” sensors for
static or dynamic modes of the SSF and DSF fusion
models. The following steps are considered:

• Compute the membership degree MD(mi) of each
BPA to the entire set M of BPAs. Different tech-
niques from [1] can be used for the SSF and DSF
models respectively. If the MD(mi) exceeds a
given threshold (depending on the technique em-
ployed), we say that mi corroborates the set M of
BPAs. The set C of BPAs which corroborates the
set M is then identified.

• For a given sensor Sk, and from the membership
degrees associated to the pieces of information it
generates, we propose several definitions for the
corroboration degree:

– as the ratio between the number of corrobo-
rative BPAs inside Sk(M ) and the number of
BPAs generated by Sk:

CRB1(Sk) =
|Ak|

|Sk(M )|
(1)

where Ak = {mi|MD(mi) ≥ threshold,mi ∈
Sk(M )}.

– as the ratio between the overall membership
degree and the number of BPAs generated by
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Figure 2: SSF/DSF fusion models with identification of reliable/unreliable sensors

Sk:

CRB2(Sk) =

∑

mi∈Sk(M )

MD(mi)

|Sk(M )|
(2)

• From the corroboration degree (CRB1 or CRB2

or even a combination of both), and from any ex-
ternal a priori knowledge (if available), we can up-
date the reliability of the sensors (using a backward
propagation described in Section 4).

• If the reliability degree of a sensor is inferior to
a given threshold4, we state that Sk is a defec-
tive (unreliable) sensor and we discard from C

(or weight accordingly) all the BPAs provided by
Sk. In a sequential fusion process, the evaluation
of the reliability/unreliability of a sensor is a dy-
namic process which implies only a temporarily
discard of the BPAs (until the sensor is provid-
ing a new BPA, and the system re-evaluates the
reliability/unreliability of the sensor).

The most reliable result of the combination of the
BPAs from the set M is the BPA m∗ resulting from
the combination of the BPAs from the set C . The com-
bination technique is depending on the chosen model,
SSF or DSF respectively.

A recent work by Blasch [18] investigates a fusion
reliability metric, as a combination of accuracy, confi-
dence and timeliness. This metric can be used in future
works to demonstrate the performance of the proposed
fusion system.

6 Conclusions
The main contribution of this paper is to consider the

combination process not from the point of view of an
unique combination rule to be used in all fusion situa-
tions. Instead, a hybrid and flexible fusion model is pro-

4We consider a reasonable threshold to be equal to 80%.

posed, as a mix of operators able to integrate both sim-
ilar and dissimilar sensors. We have also investigated
how to improve the combination process, by consider-
ing the contextual knowledge. The reliability degrees
of the sensors are thus refined, using forward and back-
ward propagations between the different components
of the design. In a future paper we will compare the
performances of this new design through Monte-Carlo
simulations.
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