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This article addresses the performance of Dempster-Shafer (DS)

theory, when it is slightly modified to prevent it from becoming too

certain of its decision upon accumulation of supporting evidence.

Since this is done by requiring that the ignorance never becomes

too small, one can refer to this variant of DS theory as Thresholded-

DS. In doing so, one ensures that DS can respond quickly to a

consistent change in the evidence that it fuses. Only realistic data

is fused, where realism is discussed in terms of data certainty

and data accuracy, thereby avoiding Zadeh’s paradox. Performance

measures of Thresholded-DS are provided for various thresholds

in terms of sensor data certainty and fusion accuracy to help

designers assess beforehand, by varying the threshold appropriately,

the achievable performance in terms of the estimated certainty,

and accuracy of the data that must be fused. The performance

measures are twofold, first in terms of stability when fused data

are consistent, and second in terms of the latency in the response

time when an abrupt change occurs in the data to be fused. These

two performance measures must be traded off against each other,

which is the reason why the performance curves will be very

helpful for designers of multi-source information fusion systems

using Thresholded-DS.
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1. INTRODUCTION

Potential users of Dempster-Shafer (DS) theory

[5, 10] are often faced at the outset with a list of its

pitfalls, which they must somehow solve or at least live

with:

1. When confronted with Bayesian reasoning over N

identities, DS theory seems at a disadvantage. In-

deed, since DS theory reasons over the power set,

which has 2N ¡1 elements, excluding the null set,
the storage of all of the intermediate fusion results

and the processing of them quickly can become over-

whelming, when compared to Bayesian reasoning.

However, many solutions were developed from 1993

until 1997, such as those of Simard et al. [4, 11],

Tessem [14], and Bauer [1]. They all involve ap-

proximation (or truncation) schemes with 3 tunable

parameters, and some have been researched exten-

sively [2, 3] as to which values are appropriate for

a given situation. One therefore takes the view that

this problem can be solved, and we will then focus

on cases with small values of N.

2. When the evidence to be fused is too consistent,

DS theory will become certain of it after a suffi-

cient number of steps, and will have an extremely

hard time to react to a sudden real change in the

evidence to be fused. This was solved by Simard et

al. [4, 11] by preventing the ignorance from falling

below a certain threshold, hereafter called Imin, after

each fusion step, one of the three tunable parameters

mentioned previously. After setting the ignorance to

Imin, all the other masses are rescaled proportion-

ately, so that these rescaled masses now sum up to

(1¡ Imin). This is the approach we will follow here.
3. When evidence is too conflicting, the normalization

step in DS theory can cause wild behaviours from

one extreme to another. This is partially a problem

in modeling the uncertainty of the data to be fused.

We take the approach that the data must correctly be

modeled by specifying its accuracy and certainty in

a reasonable and realistic manner.

At this point, one should make more precise what is

meant by data certainty and accuracy:

1. Certainty is a feature of the sensor that declares that

a certain proposition is true with a given mass value

m. With little loss of generality, one can assume for

simplicity that the sensor declares only one propo-

sition with mass m, and that the rest is assigned to

the ignorance. This is likely the case, when the time

allowed for decisions is critical, since it provides at

each time step only one likely candidate for the dec-

laration. In the example scenario described later, an

Electronic Support Measures (ESM) sensor is likely

to provide such a behaviour. In order to stress this

point, the article will always mention in the text “sen-

sor certainty.”
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2. Accuracy refers here to how often the data is likely

to be wrong. For example, the association mecha-

nism that is necessary to select which sensor data

is to be associated to which track can sometimes be

erroneous, particularly if it is single scan in nature.

Accuracy is therefore a characteristic of the fusion

process, not the sensor itself. In the case of the ESM

sensor, miss-associations can occur for the bearing-

only reports when the targets are densely found in

that bearing angle. In order to stress this point, the

article will always mention in the text “declaration

accuracy.”

One should point out at this time that any sensor will

have a value for the uncertainty (or certainty) of its dec-

laration(s), and that, however complex the association

mechanism, the association mechanism will occasion-

ally err in its contact-to-track (or track-to-track) correla-

tions, which will provide an inaccuracy in the fusion re-

sults. In this sense, the performance characteristics that

will be provided later below for Thresholded-DS can be

applied to a wide range of sensors and positional fusion

algorithms, with only very minor modifications.

2. STATEMENT OF THE PROBLEM AND SCENARIO

The selected problem was already used in publica-

tions [6—8] that addressed the use of Dezert-Smarand-

ache (DSm) theory [12, 13] and compared it to Thresh-

olded-DS. When the two approaches were compared

in these publications, the focus was on DSm perfor-

mance, while neglecting Thresholded-DS performance.

It became quickly clear that, if one did not insist on

conformance to STANAG 1241 [9] (which only DSm

can provide), Thresholded-DS theory performed quite

well. This article aims to fill this gap by exploring at

much greater length the stability and response time of

the theory for various threshold levels Imin in terms of

sensor data accuracy and declaration certainty.

A possible illustration of the problem chosen is

through the fusion of three types of ESM reports: Friend

(*gq1), Neutral (μ2), or Hostile (μ1). Since N = 3, the
first pitfall of DS theory mentioned in the introduction is

avoided, and no approximation schemes are necessary.

The approach followed in this article will be to study

the ESM problem using a Modeling and Simulation

(M&S) approach, first on specific representative scenar-

ios, followed by a thousand Monte-Carlo runs to con-

firm the conclusions that can be reached.

The list of the prerequisites that any scenario must

address are:

² Should have a clearly defined ground truth, which is
sufficiently complex to test stability and latency in the

response time.

² Should contain sufficient miss-associations, leading
to values of average fusion accuracy that are in a

realistic range.

² Should only provide partial knowledge about the

ESM sensor declaration and to varying degrees,

which therefore leads to sensor uncertainty (or sensor

certainty) values that are in a realistic range.

The following scenario parameters have therefore

been chosen accordingly:

1. The known ground truth is Friend (μ1) for the first
50 time stamps of the scenario, and Hostile (μ3) for
the last 50 time stamps.

2. The percentage of correct associations is approxi-

mately Acc%, corresponding to countermeasures ap-

pearing (100¡Acc)% of the time. Acc% will be ex-

plored over a realistic range between 60% and 90%.

If the accurate allegiance is Friend (as is the case

for the first 50 time stamps), then the declarations

which correspond to miss-associations are equally

distributed between Neutral and Hostile. Similarly,

for the last 50 time stamps when Hostile is the cor-

rect allegiance, the miss-associations are distributed

evenly between Friend and Neutral.

3. The ESM declaration has a mass of m, with the rest

(1¡m) being assigned to the ignorance, reflecting a
certainty percentage Cer% in the declaration. Cer%

will be explored over a realistic range between 60%

and 90%.

This section will show a representative example of

such a scenario, but the rest of the paper addresses the

general trends that can be established from 1000 Monte-

Carlo runs, where a different random seed is chosen for

each member of the sequence in each Monte-Carlo run.

Thresholded-DS should be able to adequately rep-

resent the main features of the ground truth (which is

known in an M&S approach), namely

1. Show stability under occasional miss-associations,

namely show stability when fused data are generally

consistent, specifically for the first 50 time stamps

(after a short ramp-up time) and the last 50 time

stamps (after the ramp-up time, or latency, due to

the allegiance change).

2. Switch allegiance when the ground truth does so,

namely have a reasonable measured latency in the

response time (or delay, hereafter denoted ¢) when

an abrupt change occurs in the data to be fused.

A typical scenario, with the random number gener-

ator set to produce on average (for a set of Monte-Carlo

runs) an Acc%= 80%, is shown in Fig. 1, with the x-

axis representing the time index.

For this scenario, Thresholded-DS achieves the re-

sults shown in Fig. 2, given a typical value of Imin =

0:02. In Fig. 2, the x-axis represents the time index,

and the y-axis represents the value of basic belief as-

signment (or mass) associated with the given hypothe-

sis. Note that Thresholded-DS therefore never becomes

more than 98% sure of its fused result (as mentioned in

the introduction).
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Fig. 1. Typical scenario with Acc%= 80%.

Fig. 2. Thresholded-DS for the typical scenario with Acc%= 80% and Cer% = 70%.

DS never becomes confused, shows good stabil-

ity when miss-associations arrive randomly spaced out,

which is the case until iteration 50. It then reacts rea-

sonably quickly and takes about 8—10 reports before

switching allegiance as it should. Furthermore, after be-

ing confused for an iteration around the sequence of
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Fig. 3. Good decision rate for the scenario with Acc%= Cer%= 80% and 1000 runs.

four Friend reports starting at iteration 76, it quickly

reverts to the correct Hostile status.

Fig. 3 shows a sample of a good decision rate

of the target identification for Thresholded-DS using

an input case such as the one from Fig. 1 generated

randomly 1000 times. More specifically, it is the result

of a Monte-Carlo simulation run of 1000 with an ESM

sensor having values of accuracy and certainty both at

80% with the DS threshold at Imin = 0:05 at every fusion

step.

In order to evaluate the latency in the reaction time

around iteration 50, we first determine the empirical

mean averaged over time index 15 to 45 and 65 to 95,

and then we subtract three times the value of the em-

pirical standard deviation (3¾) averaged over the same

interval. This interval has been chosen arbitrarily to ex-

clude most of the instability that is mostly due to the

initialization instability and the change of allegiance in-

stability. So it will only include the instability of the

decision system and the input data. The measure of

latency then starts at time index 50, and ends at the

time index at which the good decision rate reaches the

threshold for reaction time performance shown as a hor-

izontal line in Fig. 3. This horizontal line corresponds

to the mean determined by the method above minus

three standard deviations ¾, which indicate the stability

in the above mentioned time periods, according to the

formulae for ¾:

¾2 =
1

n¡ 1
nX
i=1

(xi¡¹)2, ¹=
1

n

nX
i=1

xi:

The standard deviation ¾ tends to a fixed value as a
function of increasing n, as shown in Figs. 4(a) for 100
Monte-Carlo iterations and 4(b) for 1000 Monte-Carlo
iterations (0.16% in this case on the y-axis, with the x-
axis being again the time index), but show less noise as
n increases. This shows that ¾ is a dynamical feature of

Fig. 4. (a) (top) and (b) (bottom). Standard deviations ¾ for

stability (in %).
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Fig. 5. Measure of stability ¾ for Imin = 0:01.

Fig. 6. Measure of stability ¾ for Imin = 0:02.

the process, rather than being dependent on the number
of Monte-Carlo runs.
Please note that this is just a practical definition of

the latency, in order to show the trends in latency, when
the parameters are varied, particularly Imin. Other defi-
nitions may be more appropriate for other applications.

3. NUMERICAL GRAPHICAL RESULTS FROM
MONTE-CARLO RUNS

This section shows the graphs for stability in the first
subsection and reaction time latency (or delay) in the
second subsection, for 1000 Monte-Carlo runs, for var-
ious values of the threshold in Thresholded-DS. Since
one has three parameters to vary (certainty, accuracy,
and Imin), the presentation in this section focuses on
showing the stability (in Subsection 3.1), and the re-
action time latency (in Subsection 3.2) as a function
of certainty and accuracy, with different figures corre-
sponding to different choices for values of Imin.

3.1. Stability

For an increase in the threshold of the minimum

ignorance of 0.01 for each different figure, we have the

Fig. 7. Measure of stability ¾ for Imin = 0:03.

Fig. 8. Measure of stability ¾ for Imin = 0:04.

Fig. 9. Measure of stability ¾ for Imin = 0:05.

following results for the standard deviation ¾ indicative

of stability, for Imin = 0:01 (Fig. 5), Imin = 0:02 (Fig. 6),

Imin = 0:03 (Fig. 7), Imin = 0:04 (Fig. 8), and Imin = 0:05

(Fig. 9).
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Fig. 10. Reaction time latency or delay for Imin = 0:01.

Fig. 11. Reaction time latency or delay for Imin = 0:02.

Any much smaller value than 0.01 would result in

too much rigidity when an allegiance changes, resulting

in longer reaction time latency or delay (as will be

shown in the next subsection). These figures show

that any much larger result than 0.05 adversely affects

stability, as can be seen when comparing Fig. 9, which

becomes concave and has higher ¾ over all of the values

of certainty and accuracy, with Fig. 5, which is convex

and has lower ¾ over all of the values of certainty

and accuracy. The intermediate figures show the slow

deterioration in stability as Imin increases.

3.2. Reaction time latency

For an increase in the threshold of the minimum

ignorance of 0.01 for each different figure, we have

the following results for the reaction time latency (or

delay ¢) in time units of the simulation scenario, with

Imin = 0:01 (Fig. 10), Imin = 0:02 (Fig. 11), Imin = 0:03

(Fig. 12), Imin = 0:04 (Fig. 13), and Imin = 0:05 (Fig. 14).

Again this corresponds to 1000 Monte-Carlo runs.

Fig. 12. Reaction time latency or delay for Imin = 0:03.

Fig. 13. Reaction time latency or delay for Imin = 0:04.

Fig. 14. Reaction time latency or delay for Imin = 0:05.

These figures show that much smaller values of Imin
than 0.01 result in too much rigidity when an allegiance

changes, resulting in longer reaction time latency or
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delay. This is clearly seen by the much higher values for

the delays in the surface of Fig. 10 when compared to

Fig. 14, over all of the values of certainty and accuracy.

This is particularly notable for low values of cer-

tainty and accuracy: the delay exceeds 25 time units (or

more than half the total time to recover from an alle-

giance change) when compared to Fig. 14, where it is

about 20 time intervals. The effect is also very notice-

able for high accuracy values (towards the reader). The

intermediate figures show the slow improvement in the

reaction time latency as Imin increases.

4. ANALYSIS OF THE GRAPHICAL RESULTS IN
ORDER TO IDENTIFY TRENDS

The large amount of graphical data shown in the

previous section can be interpreted rather simply for

the instability (in Subsection 4.1 for Figs. 5—9) and

reaction time latency ¢ (in Subsection 4.2 for Figs. 10—

14). Although the trends discussed in the following

subsections can be phrased rather straight-forwardly, the

trends themselves are non-linear, as can be seen by close

inspection of the figures in the previous section.

4.1. Instability

Analysis of the performance measure of stability

(or instability) of the Thresholded-DS system can iden-

tify the following trends from our various simulations

shown in the last section.

1. For a fixed value of certainty, the value of instability

increases when the accuracy decreases.

2. For a fixed value of accuracy, the value of instability

increases when the certainty increases.

3. For fixed values of certainty and accuracy, the value

of the instability increases when the value of the

total ignorance threshold Imin is increased.

4. A change in accuracy affects more the instability than

the certainty does.

5. Lower values of instability (good) are achieved with

higher accuracy and lower certainty, and vice versa.

4.2. Reaction time latency

Analysis of the performance measure of reaction

time latency (or delay ¢) of the Thresholded-DS sys-

tem can identify the following trends from our various

simulations shown in the last section.

1. For a fixed value of certainty, the value of the delay

increases when the accuracy decreases.

2. For a fixed value of accuracy, the value of the delay

increases when the certainty decreases.

3. For fixed values of certainty and accuracy, the value

of the delay increases when the value of the total

ignorance threshold Imin is decreased.

Fig. 15. Reaching a compromise for low ¾ and low ¢.

4. A change in accuracy affects more the delay than the

certainty does.

5. Lower values of delay (good) are achieved with

higher accuracy and higher certainty, and vice versa.

Points 3 in the above two lists clearly show that a

compromise must be achieved when using Thresholded-

DS between being responsive to any real change in the

data, yet not being too responsive to fluctuations in the

data, due to either poor sensor data certainty or fusion

accuracy. In general, a high value for Imin will tend

to respond to a stream of false reports rather quickly

(bad) but will be very responsive to a real change in the

data (good). A low value for Imin will provide excellent

stability (good), but will react slowly to a real change

in the data (bad).

The trends shown above are correct over the vast ma-

jority of the 16 points shown in the preceding Figs. 5—

14. Only the exact values are shown in those figures,

without the estimated errors from the Monte-Carlo runs.

The following Fig. 15 shows such a compromise as

a function of Imin, for a value of %Acc =%Cer = 80%

with an estimate of errors, which cannot easily be

portrayed in Figs. 5—14. The vertical axes represent ¾

(in % on the left) and ¢ (in time units of the simulation)

on the right, with the dashed lines showing approximate

error bars given the limited number of Monte-Carlo runs

(about 1000 runs). The figure shows that the interval

Imin 2 [0:025,0:04] with a best value around 0.0325 can
be selected.

5. CONCLUSIONS

This paper has provided performance measures of

Thresholded-DS for various thresholds in terms of sen-

sor data certainty and fusion accuracy to help designers

assess beforehand, by varying the threshold appropri-

ately, the achievable performance in terms of the esti-

mated certainty and accuracy of the data that must be

fused, i.e., an operating point for the application.

The threshold that the designers can choose accord-

ing to figures similar to Fig. 15 depends on appropriate
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definitions for sensor certainty and latency (or delay) for

their given application. Reasonable values were chosen

here for an ESM application. In real applications, one

should have an independent way of assessing the sen-

sor certainty and the fusion accuracy in real-time. The

Monte-Carlo runs provide the operating points, but it

has to be assumed that the user can assess these operat-

ing points by monitoring the performance of the sensor

as the mission develops (for example on well-isolated

targets), and has calibrated the performance of the as-

sociation mechanism in various conditions, which any

manufacturer of such software should have done.

The performance measures are twofold, first in terms

of stability when fused data are consistent, and second

in terms of the latency in the response time when an

abrupt change occurs in the data to be fused. These two

performance measures must be traded off against each

other, which is the reason why the performance curves

will be very helpful for designers of identification fusion

using Thresholded-DS.
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