A Pragmatic Approach for the use of Dempster-Shafer Theory in Fusing Realistic Sensor Data

PIERRE VALIN
PASCAL DJIKNAVORIAN
ÉLOI BOSSÉ

This article addresses the performance of Dempster-Shafer (DS) theory, when it is slightly modified to prevent it from becoming too certain of its decision upon accumulation of supporting evidence. Since this is done by requiring that the ignorance never becomes too small, one can refer to this variant of DS theory as Thresholded-DS. In doing so, one ensures that DS can respond quickly to a consistent change in the evidence that it fuses. Only realistic data is fused, where realism is discussed in terms of data certainty and data accuracy, thereby avoiding Zadeh’s paradox. Performance measures of Thresholded-DS are provided for various thresholds in terms of sensor data certainty and fusion accuracy to help designers assess beforehand, by varying the threshold appropriately, the achievable performance in terms of the estimated certainty, and accuracy of the data that must be fused. The performance measures are twofold, first in terms of stability when fused data are consistent, and second in terms of the latency in the response time when an abrupt change occurs in the data to be fused. These two performance measures must be traded off against each other, which is the reason why the performance curves will be very helpful for designers of multi-source information fusion systems using Thresholded-DS.

1. INTRODUCTION

Potential users of Dempster-Shafer (DS) theory [5, 10] are often faced at the outset with a list of its pitfalls, which they must somehow solve or at least live with:

1. When confronted with Bayesian reasoning over N identities, DS theory seems at a disadvantage. Indeed, since DS theory reasons over the power set, which has \(2^N - 1\) elements, excluding the null set, the storage of all of the intermediate fusion results and the processing of them quickly can become overwhelming, when compared to Bayesian reasoning. However, many solutions were developed from 1993 until 1997, such as those of Simard et al. [4, 11], Tessem [14], and Bauer [1]. They all involve approximation (or truncation) schemes with 3 tunable parameters, and some have been researched extensively [2, 3] as to which values are appropriate for a given situation. One therefore takes the view that this problem can be solved, and we will then focus on cases with small values of N.

2. When the evidence to be fused is too consistent, DS theory will become certain of it after a sufficient number of steps, and will have an extremely hard time to react to a sudden real change in the evidence to be fused. This was solved by Simard et al. [4, 11] by preventing the ignorance from falling below a certain threshold, hereafter called \(I_{\text{min}}\), after each fusion step, one of the three tunable parameters mentioned previously. After setting the ignorance to \(I_{\text{min}}\), all the other masses are rescaled proportionately, so that these rescaled masses now sum up to \((1 - I_{\text{min}})\). This is the approach we will follow here.

3. When evidence is too conflicting, the normalization step in DS theory can cause wild behaviours from one extreme to another. This is partially a problem in modeling the uncertainty of the data to be fused. We take the approach that the data must correctly be modeled by specifying its accuracy and certainty in a reasonable and realistic manner.

At this point, one should make more precise what is meant by data certainty and accuracy:

1. Certainty is a feature of the sensor that declares that a certain proposition is true with a given mass value \(m\). With little loss of generality, one can assume for simplicity that the sensor declares only one proposition with mass \(m\), and that the rest is assigned to the ignorance. This is likely the case, when the time allowed for decisions is critical, since it provides at each time step only one likely candidate for the declaration. In the example scenario described later, an Electronic Support Measures (ESM) sensor is likely to provide such a behaviour. In order to stress this point, the article will always mention in the text “sensor certainty.”
2. Accuracy refers here to how often the data is likely to be wrong. For example, the association mechanism that is necessary to select which sensor data is to be associated to which track can sometimes be erroneous, particularly if it is single scan in nature. Accuracy is therefore a characteristic of the fusion process, not the sensor itself. In the case of the ESM sensor, miss-associations can occur for the bearing-change (100 – Acc)% of the time. Acc% will be explored over a realistic range between 60% and 90%. If the accurate allegiance is Friend (as is the case for the first 50 time stamps), then the declarations which correspond to miss-associations are equally distributed between Neutral and Hostile. Similarly, for the last 50 time stamps when Hostile is the correct allegiance, the miss-associations are distributed evenly between Friend and Neutral.

The following scenario parameters have therefore been chosen accordingly:

1. The known ground truth is Friend (θ₁) for the first 50 time stamps of the scenario, and Hostile (θ₃) for the last 50 time stamps.
2. The percentage of correct associations is approximately Acc%, corresponding to countermeasures appearing (100 – Acc)% of the time. Acc% will be explored over a realistic range between 60% and 90%.
3. The ESM declaration has a mass of m, with the rest (1 – m) being assigned to the ignorance, reflecting a certainty percentage Cer% in the declaration. Cer% will be explored over a realistic range between 60% and 90%.

This section will show a representative example of such a scenario, but the rest of the paper addresses the general trends that can be established from 1000 Monte-Carlo runs, where a different random seed is chosen for each member of the sequence in each Monte-Carlo run.

Thresholded-DS should be able to adequately represent the main features of the ground truth (which is known in an M&S approach), namely:

1. Show stability under occasional miss-associations, namely show stability when fused data are generally consistent, specifically for the first 50 time stamps (after a short ramp-up time) and the last 50 time stamps (after the ramp-up time, or latency, due to the allegiance change).
2. Switch allegiance when the ground truth does so, namely have a reasonable measured latency in the response time (or delay, hereafter denoted Δ) when an abrupt change occurs in the data to be fused.

A typical scenario, with the random number generator set to produce on average (for a set of Monte-Carlo runs) an Acc% = 80%, is shown in Fig. 1, with the x-axis representing the time index.

For this scenario, Thresholded-DS achieves the results shown in Fig. 2, given a typical value of I_{min} = 0.02. In Fig. 2, the x-axis represents the time index, and the y-axis represents the value of basic belief assignment (or mass) associated with the given hypothesis. Note that Thresholded-DS therefore never becomes more than 98% sure of its fused result (as mentioned in the introduction).
DS never becomes confused, shows good stability when miss-associations arrive randomly spaced out, which is the case until iteration 50. It then reacts reasonably quickly and takes about 8–10 reports before switching allegiance as it should. Furthermore, after being confused for an iteration around the sequence of
Fig. 3. Good decision rate for the scenario with Acc% = Cer% = 80% and 1000 runs.

four Friend reports starting at iteration 76, it quickly reverts to the correct Hostile status.

Fig. 3 shows a sample of a good decision rate of the target identification for Thresholded-DS using an input case such as the one from Fig. 1 generated randomly 1000 times. More specifically, it is the result of a Monte-Carlo simulation run of 1000 with an ESM sensor having values of accuracy and certainty both at 80% with the DS threshold at $I_{\text{min}} = 0.05$ at every fusion step.

In order to evaluate the latency in the reaction time around iteration 50, we first determine the empirical mean averaged over time index 15 to 45 and 65 to 95, and then we subtract three times the value of the empirical standard deviation (3σ) averaged over the same interval. This interval has been chosen arbitrarily to exclude most of the instability that is mostly due to the initialization instability and the change of allegiance instability. So it will only include the instability of the decision system and the input data. The measure of latency then starts at time index 50, and ends at the time index at which the good decision rate reaches the threshold for reaction time performance shown as a horizontal line in Fig. 3. This horizontal line corresponds to the mean determined by the method above minus three standard deviations σ, which indicate the stability in the above mentioned time periods, according to the formulae for σ:

$$\sigma^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \mu)^2, \quad \mu = \frac{1}{n} \sum_{i=1}^{n} x_i.$$

The standard deviation σ tends to a fixed value as a function of increasing n, as shown in Figs. 4(a) for 100 Monte-Carlo iterations and 4(b) for 1000 Monte-Carlo iterations (0.16% in this case on the y-axis, with the x-axis being again the time index), but show less noise as n increases. This shows that σ is a dynamical feature of
the process, rather than being dependent on the number of Monte-Carlo runs.

Please note that this is just a practical definition of the latency, in order to show the trends in latency, when the parameters are varied, particularly I_{min}. Other definitions may be more appropriate for other applications.

3. NUMERICAL GRAPHICAL RESULTS FROM MONTE-CARLO RUNS

This section shows the graphs for stability in the first subsection and reaction time latency (or delay) in the second subsection, for 1000 Monte-Carlo runs, for various values of the threshold in Thresholded-DS. Since one has three parameters to vary (certainty, accuracy, and I_{min}), the presentation in this section focuses on showing the stability (in Subsection 3.1), and the reaction time latency (in Subsection 3.2) as a function of certainty and accuracy, with different figures corresponding to different choices for values of I_{min}.

3.1. Stability

For an increase in the threshold of the minimum ignorance of 0.01 for each different figure, we have the following results for the standard deviation σ indicative of stability, for $I_{\text{min}} = 0.01$ (Fig. 5), $I_{\text{min}} = 0.02$ (Fig. 6), $I_{\text{min}} = 0.03$ (Fig. 7), $I_{\text{min}} = 0.04$ (Fig. 8), and $I_{\text{min}} = 0.05$ (Fig. 9).
Any much smaller value than 0.01 would result in too much rigidity when an allegiance changes, resulting in longer reaction time latency or delay (as will be shown in the next subsection). These figures show that any much larger result than 0.05 adversely affects stability, as can be seen when comparing Fig. 9, which becomes concave and has higher σ over all of the values of certainty and accuracy, with Fig. 5, which is convex and has lower σ over all of the values of certainty and accuracy. The intermediate figures show the slow deterioration in stability as I_{\min} increases.

3.2. Reaction time latency

For an increase in the threshold of the minimum ignorance of 0.01 for each different figure, we have the following results for the reaction time latency (or delay Δ) in time units of the simulation scenario, with $I_{\min} = 0.01$ (Fig. 10), $I_{\min} = 0.02$ (Fig. 11), $I_{\min} = 0.03$ (Fig. 12), $I_{\min} = 0.04$ (Fig. 13), and $I_{\min} = 0.05$ (Fig. 14). Again this corresponds to 1000 Monte-Carlo runs.

These figures show that much smaller values of I_{\min} than 0.01 result in too much rigidity when an allegiance changes, resulting in longer reaction time latency or...
delay. This is clearly seen by the much higher values for the delays in the surface of Fig. 10 when compared to Fig. 14, over all of the values of certainty and accuracy.

This is particularly notable for low values of certainty and accuracy: the delay exceeds 25 time units (or more than half the total time to recover from an allegiance change) when compared to Fig. 14, where it is about 20 time intervals. The effect is also very noticeable for high accuracy values (towards the reader). The intermediate figures show the slow improvement in the reaction time latency as I_{min} increases.

4. ANALYSIS OF THE GRAPHICAL RESULTS IN ORDER TO IDENTIFY TRENDS

The large amount of graphical data shown in the previous section can be interpreted rather simply for the instability (in Subsection 4.1 for Figs. 5–9) and reaction time latency Δ (in Subsection 4.2 for Figs. 10–14). Although the trends discussed in the following subsections can be phrased rather straightforwardly, the trends themselves are non-linear, as can be seen by close inspection of the figures in the previous section.

4.1. Instability

Analysis of the performance measure of stability (or instability) of the Thresholded-DS system can identify the following trends from our various simulations shown in the last section.

1. For a fixed value of certainty, the value of instability increases when the accuracy decreases.
2. For a fixed value of accuracy, the value of instability increases when the certainty increases.
3. For fixed values of certainty and accuracy, the value of the instability increases when the value of the total ignorance threshold I_{min} is increased.
4. A change in accuracy affects more the instability than the certainty does.
5. Lower values of instability (good) are achieved with higher accuracy and lower certainty, and vice versa.

4.2. Reaction time latency

Analysis of the performance measure of reaction time latency (or delay Δ) of the Thresholded-DS system can identify the following trends from our various simulations shown in the last section.

1. For a fixed value of certainty, the value of the delay increases when the accuracy decreases.
2. For a fixed value of accuracy, the value of the delay increases when the certainty decreases.
3. For fixed values of certainty and accuracy, the value of the delay increases when the value of the total ignorance threshold I_{min} is decreased.

4. A change in accuracy affects more the delay than the certainty does.
5. Lower values of delay (good) are achieved with higher accuracy and higher certainty, and vice versa.

Points 3 in the above two lists clearly show that a compromise must be achieved when using Thresholded-DS between being responsive to any real change in the data, yet not being too responsive to fluctuations in the data, due to either poor sensor data certainty or fusion accuracy. In general, a high value for I_{min} will tend to respond to a stream of false reports rather quickly (bad) but will be very responsive to a real change in the data (good). A low value for I_{min} will provide excellent stability (good), but will react slowly to a real change in the data (bad).

The trends shown above are correct over the vast majority of the 16 points shown in the preceding Figs. 5–14. Only the exact values are shown in those figures, without the estimated errors from the Monte-Carlo runs. The following Fig. 15 shows such a compromise as a function of I_{min}, for a value of $\%\text{Acc} = \%\text{Cer} = 80\%$ with an estimate of errors, which cannot easily be portrayed in Figs. 5–14. The vertical axes represent σ (in % on the left) and Δ (in time units of the simulation) on the right, with the dashed lines showing approximate error bars given the limited number of Monte-Carlo runs (about 1000 runs). The figure shows that the interval $I_{\text{min}} \in [0.025, 0.04]$ with a best value around 0.0325 can be selected.

5. CONCLUSIONS

This paper has provided performance measures of Thresholded-DS for various thresholds in terms of sensor data certainty and fusion accuracy to help designers assess beforehand, by varying the threshold appropriately, the achievable performance in terms of the estimated certainty and accuracy of the data that must be fused, i.e., an operating point for the application. The threshold that the designers can choose according to figures similar to Fig. 15 depends on appropriate
definitions for sensor certainty and latency (or delay) for their given application. Reasonable values were chosen here for an ESM application. In real applications, one should have an independent way of assessing the sensor certainty and the fusion accuracy in real-time. The Monte-Carlo runs provide the operating points, but it has to be assumed that the user can assess these operating points by monitoring the performance of the sensor as the mission develops (for example on well-isolated targets), and has calibrated the performance of the association mechanism in various conditions, which any manufacturer of such software should have done.

The performance measures are twofold, first in terms of stability when fused data are consistent, and second in terms of the latency in the response time when an abrupt change occurs in the data to be fused. These two performance measures must be traded off against each other, which is the reason why the performance curves will be very helpful for designers of identification fusion using Thresholded-DS.

REFERENCES

[1] M. Bauer

Truncated Dempster-Shafer optimization and benchmarking.

Optimization and benchmarking of truncated Dempster-Shafer for airborne surveillance.

Managing evidential reasoning for identity information fusion.
Optical Engineering, special section on sensor fusion, 37, 2 (Feb. 1998), 391–400.

Upper and lower probabilities induced by multivalued mapping.

Analysis of information fusion combining rules under the DSm theory using ESM inputs.
In 10th International Conference on Information Fusion, 2007.

Desert-Smarandache theory applied to highly conflicting reports for identification and recognition—Illustrative example of ESM associations in dense Environments.

[8] P. Djknavorian, P. Valin and D. Grenier
Fusion of ESM allegiance reports using DSmT.

[9] NATO Standardization Agreement (STANAG)
NATO standard identity description structure for tactical use.
STANAG 1241 (ed. 4), October 16, 1996.

[10] G. Shafer
A Mathematical Theory of Evidence.

Fusion of ESM, radar, IFF and other attribute information for target identity estimation and a potential application to the Canadian Patrol Frigate.

[12] F. Smarandache and J. Dezert (Eds.)
Advances and applications of DSmT for information fusion. vol. 1, American Research Press, 2004.

[13] F. Smarandache and J. Dezert (Eds.)

[14] B. Tessem
Approximations for efficient computation in the theory of evidence.
Artificial Intelligence, 61 (June 1993), 315–329.