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Abstract—We propose a solution to the Vehicle-Born Impro-
vised Explosive Device problem. This solution is based on a
modelling by belief functions, and involves the construction of
a combination rule dedicated to this problem. The construction
of the combination rule is made possible by a tool developped
in previous works, which is a generic framework dedicated
to the construction of combination rules. This tool implies a
tripartite architecture, with respective parts implementing the
logical framework, the combination definition (referee function)
and the computation processes. Referee functions are decisional
arbitrament conditionally to basic decisions provided by the
sources of information, and allows rule definitions at logical level
adapted to the application. We construct a referee function for the
Vehicle-Born Improvised Explosive Device problem, and compare
it to reference combinaton rules.
Keywords: Threat Assessment, Referee Function, Dezert
Smarandache Theory, Belief function.

Notations

• I[boolean] is defined by I[true] = 1 and I[false] = 0 .
Typically, I[x = y] = 1 when x = y, and = 0 when
x 6= y,

• x1:n is an abbreviation for the sequence x1, · · · , xn . Sim-
ilarly,

∑
i=1:n xi means x1 + · · ·+xn . This abbreviation

also holds for other operators.

I. INTRODUCTION

Belief Functions [1], [2] are often promoted as alternative
approaches for fusing information, when the hypotheses for a
Bayesian approach cannot be precisely stated. When manipu-
lating belief-based information, the interpretation of the belief
combination rules may be difficult, when conflicts are notably
involved. In the recent literature, there has been a large amount
of work devoted to the definition of new fusion rules [3]–
[12] , in order to handle the conflict efficiently. The choice
for a rule is often dependent of the applications and there is
not a systematic approach for this task. Somehow, it appears
also that this choice of a rule implies the choice of decision
paradigm in order to handle the conflict.

This paper will present belief based solution to the Vehicle-
Born Improvised Explosive Device problem (VBIED). The
VBIED is a challenge which has been proposed to the commu-
nity of uncertain reasoning during the conference Fusion’2010.
The VBIED results in a decision issue between conflictual
information. Thus, it is an interesting problem for challenging

belief combinations rules. There has already been a proposal
for a belief-based approach to VBIED [22], and our approach
will be inspired from this work. However, while our approach
is notably simplified, it also addresses the problem with a
different philosophy. More precisely, while in [22] the authors
apply different existing rules (typically, Dempster-Shafer and
PCR rules) to the problem, in our approach we propose a
construction of a rule on the basis of the problem setting.

This rule construction is made possible by the use of a frame-
work for generic implementation of combination rules. This
approach implies a tripartite architecture, with respective parts
implementing the logical framework, the combination rule
definition (referee function) and the computation processes.
The combination rule definition is obtained by implementing a
referee function. Referee functions are decisional arbitraments
conditionally to basic decisions provided by the sources of
information. It is defined at logical level. It is shown that
referee functions [13] are sufficient for a definition of most
combination rules. Then, a generic implementation of the rule
is made possible on the basis of an algorithmic extension
implementing the referee function. In this paper, we propose
the construction of a referee function specially for the VBIED.

Section II makes a quick introduction of belief functions.
Section III presents the Vehicle-Born Improvised Explosive
Device problem (VBIED) and how it may be interpreted by
means of belief functions. Section IV recalls the principle of
the referee function approach. Section V defines a referee
function for the VBIED. Section VI presents the results of
an actual implementation. Section VII concludes.

II. A SHORT INTRODUCTION TO BELIEF FUNCTIONS

Belief functions are formalisms for defining and manipu-
lating information with uncertainty and imprecision. On some
aspects, belief functions could be seen as a generalization of
probabilistic representations of the information. Belief func-
tions are defined on logical structures, such as powersets [1],
[2] or equivalently on Boolean algebras. However, some
extensions of the theory have been proposed [20], [21], by
considering distributive lattices. For this quick introduction,
our presentation is restricted to the powerset G = 2Ω, i.e. the
set of subsets of Ω. In this case, the set Ω is the frame of
discernment of our problem. These definition are generalized
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to other lattice structures by replacing 2Ω by lattices.
a) Basic Belief Assignment: A basic belief assign-

ment(bba) m represents both the uncertainty and the impreci-
sion of the information. It is the assignment of belief mass to
each non-∅ propositions of G = 2Ω, that is the mapping from
elements of G onto [0, 1] such that:

m(∅) = 0 and
∑
X∈G

m(X) = 1 . (1)

A focal element X is an element of G such that m(X) 6=
0. Bba seems quite similar to a probabilistic distribution. A
probabilistic distribution are defined on points (or singleton),
while a bba may put basic belief on any proposition. This is
how a bba manipulate both the uncertainty and the imprecision
of the information. In particular, it is possible to define total
ignorance by setting m(Ω) = 1 and m(X) = 0 otherwise.

From basic belief assignments, other belief functions can be
defined such as credibility and plausibility.

b) Credibility: The credibility represents the intensity
that the information given by one expert supports an element
of G, this is a minimal belief function given from a bba for
all X ∈ G by:

bel(X) =
∑

Y⊆X,Y 6=∅

m(Y ). (2)

c) Plausibility: The plausibility represents the intensity
with which there is no doubt on one element. This function is
given from a bba for all X ∈ G by:

pl(X) =
∑

Y ∈G,Y ∩X 6=∅

m(Y ). (3)

Being given several pieces of information encoded in the belief
function formalism, it is often necessary to combine these
pieces of information in order to produce a fused information
and make a decision. In the literature, several combination
rules exist, and we present in this short introduction the rule
of Dempster-Shafer.

d) Combination rules: Today there is a lot of combina-
tion rules in the belief functions framework. Most of them
are based on the conjunction of the focal elements in order
to increase the belief on the most precise elements of the
power set. Dempster-Shafer rule is given for two basic belief
assignments m1 and m2 and for all X ∈ G by:

mDS(X) =
I[X 6= ∅]mc(X)

1− Z
, (4)

where:

{
Z = mc(∅) ,
mc(X) =

∑
Y ∩Z=X m1(Y )m2(Z) .

(5)

Z can be interpreted as a non-expected solution and is
generally called the global conflict of the combination or the
inconsistence of the combination. The interpretation of Z and
the transfer of this belief on other elements of the powerset
gave birth to several combination rules [3]–[12].

In the next section, we present the Vehicle-Born Improvised

Explosive Device problem and propose a formalization of this
problem by means of Belief functions. In the forthcoming
sections IV and V, we will present an approach for defining
a combination rule for this problem.

III. THE VEHICLE-BORN IMPROVISED EXPLOSIVE DEVICE
PROBLEM

This problem (VBIED) has been proposed during con-
ference FUSION’2010 as a challenge for evaluating various
approximate reasoning approaches.

e) Description of the VBIED problem: We will only
describe the first part of this problem.
• Concern: Vehicle-Born Improvised Explosive Device at-

tack on an administrative building B.
• Prior information: We consider an Individual A under

surveillance due to previous unstable behaviour, who
drives customized white Toyota vehicle.

• Observation done at time t − 10min : From a video
sensor on road that leads to building B, one has observed
a White Toyota 200m from the building B travelling in
normal traffic flow toward building B. We consider the
following two sources of information based on this video
observation:

– Source 1: An Analyst 1 (10 years experience) analy-
ses the video and concludes that individual A is now
probably near building B.

– Source 2: An Automatic Number Plate Recognition
(ANPR) system analyzing same video outputs 30%
probability that the vehicle is individual A’s white
Toyota.

• Observation done at time t − 5min : From a video
sensor on road 15km from building B, one gets a video
that indicates a white Toyota with some resemblance to
individual A’s white Toyota. We consider the following
third source of information available:

– Source 3: An Analyst 2 (new in post) analyses
the video and concludes that it is improbable that
individual A is near building B.

• Question: Should building B be evacuated?
NOTE: Deception (e.g. individual A using different car, false
number plates, etc.) and biasing (on the part of the analysts)
are often a part of reality, but they are not part of this example.

Dezert and Smarandache proposed [22] a solution to this
problem based on belief functions. Our approach will be based
on a similar, but simplified, formalization of the problem by
means of basic belief assignment. However, our answer to
this problem will be based on the construction of a new
combination rule. This rule will be constructed from the
logical structure of the VBIED problem.

f) The logical structure: The logical framework of our
problem is the free Boolean algebra generated by the atomic
propositions A, V,B.
• The proposition A means that the suspicious individual

has been observed, while A means the negation of this
fact,
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• The proposition V means that the White Toyota Vehicle
has been observed, while V means the negation of this
fact,

• The proposition B means an observation near the building
B, while B means the negation of this fact.

We may consider a pessimistic, temperate and optimistic
attitude for diagnosing a potential danger:
• Pessimistic attitude: A danger is diagnosed by the

proposition:

(A ∩ V ∩B) ∪ (A ∩ V ∩B) ∪ (A ∩ V ∩B) ,

which means one of the following cases:
– (A ∩ V ∩ B) : The suspicious individual has been

seen with a white Toyota near the building,
– (A ∩ V ∩ B) : The suspicious individual has been

seen near the building,
– (A ∩ V ∩B) : The white Toyota has been seen near

the building.
• Temperate attitude: A danger is diagnosed by the

proposition:

(A ∩ V ∩B) ∪ (A ∩ V ∩B)

• Optimistic attitude: A danger is diagnosed by the propo-
sition A ∩ V ∩B
g) Defining the belief assignments: We propose an en-

coding of the hypotheses of the problem into basic belief
assignments as follows:
• Prior information: It is assumed that the suspicious

individual is driving the white Toyota, i.e. A ∩ V . The
bba m0 for the prior is defined by:

m0(A ∩ V ) = 1 .

This information is assumed to be known with a great
reliability and we will characterize this reliability by a
probability p0 near 1 that the information is reliable: p0 =
1 − α with α = 5%. The quite small value of α means
that this information is considered as almost sure.

• Source 1: Source 1 is considering probable that the
individual is near the Building. This information will be
modelled as follows:

m1(A ∩B) = 75% and m1(Ω) = 25% .

This information is considered as highly reliable, and this
reliability is characterized by p1 = 90%.

• Source 2: Source 2 is an automated system (ANPR)
which is assumed to provide a probabilistic information.
The provided information is that individual and vehicle
has been seen with a probability of 30%, which is
encoded as follows:{

m2(A ∩ V ) = 30%
m2((A ∩ V ) ∪ (A ∩ V ) ∪ (A ∩ V )) = 70% .

This information is considered as fully reliable, and this
reliability is characterized by p2 = 100%.

• Source 3: Source 3 is considering as improbable that the
individual is near the Building. This information will be
modelled as follows:

m3(A ∩B) = 25% and m3(Ω) = 75% .

The Analyst is new in the post and this information will
be characterized by a temperate reliability p3 = 50%.

Our purpose now is to define a combination rule for fusing
this information, to fuse it, and to evaluate the fused belief on
proposition: (A ∩ V ∩B) ∪ (A ∩ V ∩B) ∪ (A ∩ V ∩B) ,

(A ∩ V ∩B) ∪ (A ∩ V ∩B) ,
(A ∩ V ∩B) .

From this information, we will decide for an evacuation or
not.

Our work is based on the java toolbox Referee toolbox, which
allows the implementation of new fusion rules by defining
them by means of referee functions. The next section will
quickly introduce the toolbox by explaining its architecture,
the notion of referee functions, and how it is possible to build
new rules for combining belief functions.

IV. REFEREE FUNCTIONS

The java toolbox Referee toolbox is the implementation of
previous works [13], [14] in the domain of belief functions. It
is downloadable at address:

http://refereefunction.fredericdambreville.com/releases

It implements the concept of referee function, which allows
a possible generic implementation of combination rules. The
toolbox is based on a tripartite architecture, with respective
parts implementing the logical framework (logical compo-
nent), the combination definition (referee component), and
the belief-related processes (belief component); figure 1. The

Figure 1. A tripartite architecture

logical framework represents the information while considered
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without its uncertainty. Typical logical frameworks are pow-
ersets, which are Boolean algebras. However, lattices are also
useful frameworks and actually generalize the Boolean alge-
bras; hyperpowersets are examples of lattices. The combina-
tion definition is obtained by implementing referee functions.
Referee functions are decisional arbitraments at the logical
level, conditionally to basic decisions provided by the sources
of information. It is shown that a definition of the referee
function is sufficient for defining most combination rules. The
belief-related processes deal with all belief computations. That
means the computation of the plausibility and the credibility
from the basic belief assignments, as well as the computation
of the combination rules defined by the referee functions.
By the way, the belief-related processes also deal with the
complexity of the combination rules and implements approx-
imation methods for resolving these issues. A more detailed
description of this architecture can be found in [14].

A. Logical component
The logical component constitutes one of the three part of

our system. While the combination of Dempster-Shafer [1],
[2] is generally defined over powersets, the combination rules
are defined on the basis of logical operators and properties
which are not necessary inherent to powersets, nor Boolean
algebras. Extensions of the theory have been proposed on
the basis of distributive lattices [20]. Hyperpowersets [21] are
also distributive lattices. Most variants of evidence theory are
built on logical structures which are instances of complete
(in general finite) distributive lattices. In the Referee Toolbox,
the logical component handles these structures in a generic
manner, especially considering the logical notions from the
general viewpoint of complete distributive lattices. A short
definition of these notions is given in appendix A.

In the present work, the logical component in use is a Boolean
algebra, which is a structure equivalent to the powersets.

B. Belief component
The belief component is the main algorithmic part of our

system. It is the part of main interest in this works, since
it will allow us the definition of combination rules from the
setting of the VBIED problem. It interacts with both the logical
and referee component. It implements all the belief-related
processes. A detailed description of the component is available
in [22] and we will not present in details this component, since
it is not directly useful here. However, it is noticed that this
component implements the following tasks:
• Computation of the credibility from the bba,
• Computation of the plausibility from the bba,
• Generic combination processes for computing combina-

tion rules defined by a referee function.
The generic combination processes handle the combinatorics
of the combination. In order to do that, two approximation
paradigms are implemented:
• Generic combination processes based on a sampling. The

principle is then to approximate the bba by a Monte-Carlo
method,

• Generic combination processes based on a summariza-
tion [16]–[19]. The principle is to reduce the size of the
set of focal elements by simple approximations which
decease the information. Typically, one may transfer the
negligible basic belief assignments of two propositions to
the union of these propositions. It is this implementation
which will be used in the present work.

The previous components are the algorithmic framework of the
toolbox. Now, in order to build a new rule, it is only necessary
to define and encode a referee function. The forthcoming
section explains this notion.

C. Referee component

The referee component constitutes the part of our system,
which implements the definition of the combination rules. The
definition of the combination rules is made by means of referee
functions. Referee functions have been defined in [13] and
allow a simple, general and computational interpretation of
the combination rules. This interpretation was inspired first
by works on probabilistic restrictions of evidence combina-
tions [13]. This work led to a conditional interpretation of the
combination, in terms of Referee Function.

1) Referee function:
a) Definition: A referee function over G for s sources

of information and with context γ is a mapping X,Y1:s 7→
F (X|Y1:s; γ) defined on propositions X,Y1:s ∈ G , which
satisfies for any X,Y1:s ∈ G :

F (X|Y1:s; γ) ≥ 0 and
∑
X∈G

F (X|Y1:s; γ) = 1 ,

The context γ is a parameter used for an adaptive control of
the arbitrament. It may be a function of Y1:s and subsequently,
it is considered γ = m1:s.

A referee function for s sources of information is also called
a s-ary referee function. The quantity F (X|Y1:s; γ) is called a
conditional arbitrament between Y1:s in favour of X . Notice
that X is not necessary one of the propositions Y1:s ; typically,
it could be a combination of them. The case X = ∅ is called
the rejection case.

b) Fusion rule: Let be given s basic belief assignments
(bba) m1:s and a s-ary referee function F with context m1:s .
Then, the fused bba m1⊕· · ·⊕ms[F ]

∆
= ⊕[m1:s|F ] based on

the referee F is constructed as follows:

⊕[m1:s|F ](X) =
I[X 6= ∅]

1− z
×
∑

Y1:s∈G
F (X|Y1:s;m1:s)

∏
i=1:s

mi(Yi) ,

where z =
∑

Y1:s∈G
F (∅|Y1:s;m1:s)

∏
i=1:s

mi(Yi) .

(6)

The value z is called the rejection rate.
c) Property: The function ⊕[m1:s|F ] defined on G is

actually a basic belief assignment.
2) Examples of referee functions:

988



a) Dempster-shafer: The definition of a referee function
for Dempster-Shafer combination is immediate:

mDS = ⊕[m1:s|FDS] ,

where FDS(X|Y1:s;m1:s) = I

[
X =

⋂
k=1:s

Yk

]
.

b) Disjunctive: The definition of a referee function for
the disjunctive combination is:

md = ⊕[m1:s|Fd] ,

where Fd(X|Y1:s;m1:s) = I

[
X =

⋃
k=1:s

Yk

]
.

c) Dubois&Prade: The definition of a referee function
for Dubois&Prade combination on two sources is:

mDP = m1 ⊕m2[|FDP] ,

where FDP(X|Y1:2;m1:2) = I [X = Y1 ∩ Y2 6= ∅]

+ I [Y1 ∩ Y2 = ∅] I [X = Y1 ∪ Y2] .

d) PCR6: The proportional conflict redistribution rules
(PCRn) have been introduced By Smarandache and Dezert
[10]. The rule PCR6 has been proposed by Martin and
Osswald in [8] . The original definition of the rule could be
found there. A formulation of PCR6 by means of a referee
function is derived in [13]:

mPCR6 = ⊕[m1:s|FPCR6] ,

where the referee function FPCR6 is defined by:

FPCR6(X|Y1:s;m1:s) = I

[
X =

⋂
k=1:s

Yk 6= ∅

]

+ I

[ ⋂
k=1:s

Yk = ∅

] ∑
j=1:s

I[X = Yj ] mj(Yj)∑
j=1:s

mj(Yj)
.

(7)

This referee function implies an interpretation of PCR6 as a
two-cases process (PCR6 only considers full consensus or no-
consensus cases):
• The inputs are compatible; then, the conjunctive consen-

sus is decided,
• The inputs are not compatible; then, a mean decision is

decided, weighted by the relative beliefs of the entries.
Then, it is noticed that a referee function could be interpreted
as a stochastic process. Typically, the referee function FPCR6

consists in the following process:
1) If

⋂
i∈γ Yi 6= ∅ , then set return

⋂
i=1:s Yi and stop,

2) Otherwise, compute:

pi =
mi(Yi)∑

i=1:smi(Yi)mi(Yi)
,

3) Generate the integer io randomly according to the dis-
tribution (p1:s),

4) Return Yio and stop,

In fact, the Referee Toolbox requests this stochastic process to
be implemented in the alternate deterministic form:

{(Xk, ωk)}k=1:K = refereeFunction (Y1:s,m1:s) .

The actual implementation of the referee function FPCR6 in
the toolbox is thus:

{(Xk, ωk)}k=1:K = refereeFunction (Y1:s,m1:s) :
1) If

⋂
i∈γ Yi 6= ∅ , then set return {(

⋂
i=1:s Yi, 1)} and

stop,
2) Otherwise, compute:

pi =
mi(Yi)∑

i=1:smi(Yi)mi(Yi)
,

3) Return {(Yi, pi)}i=1:s and stop,
It is not difficult to jump from a form to another. In this
paper, we will choose the most convenient form for the paper
presentation.

e) Conclusion: The last example has illustrated that a
referee function has a direct interpretation as a stochastic
process. This stochastic process just implements the way we
make the arbitrament between the logical entries Y1:s. Then,
we have an intuitive way to build a combination rule by
defining this arbitrament process (or referee function). We
propose now to build such a referee function for the VBIED.

V. DEFINITION OF A REFEREE FUNCTION FOR THE VBIED

f) Proposal of a Referee function: Subsequently, we
propose a combination rule for fusing the bba m0 (the prior),
m1,m2,m3 (sources 1, 2 and 3) defined in section III, in order
to answer to the VBIED. This computation rule will be defined
by means of a referee function, FV BIED, and the obtained
fused bba is denoted mV BIED . Subsequently, FV BIED is
defined as a stochastic process.

In the VBIED, we have first to take into account the reliability
of the different sources (including the prior). Typically, the
way we handle the input information depends on how they
are reliable. Then our arbitrament process works in two steps.
A first step will simulate which entries are reliable. The second
step will arbitrate between the reliable entries.

The first step is implemented by the process J =
getReliable() which produce a random set J ⊂ [[0, 3]]
accordingly to the reliability parameters p0:3:

J = getReliable() :
1) Set J = ∅ ,
2) For i = 0 : 3 do:

a) With probability pi, set J = J ∪ {i} ,
b) Otherwise, do nothing,

3) Return J and stop.
When the first step is done, we have to run a subprocess
X = subReferee(Y1:s,m1:s, J) which arbitrates for the best
consensus with the prior (if the prior is actually reliable).
In this example, we consider that the best consensus is the
consensus which involves the greater number of entries. As a
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consequence, it may exists several best consensus. In such
a case, the best consensus are chosen randomly according
to their respective weights. The subprocess is sketched as
follows:

X = subReferee(Y1:s,m1:s, J) :
1) If 0 ∈ J , set Z = Y0,
2) Otherwise, set Z = Ω,

// The two previous steps decide to use entry Y0 or not,
depending on J ,

3) Find H ⊂ J \ {0} with maximal size such that Z ∩⋂
i∈H Yi 6= ∅ ,

4) Define M the set of subset K ⊂ J \ {0} such that
Z ∩

⋂
i∈K Yi 6= ∅ and size(K) = size(H) ,

// The two previous steps build the set M of maximal
consensus with the prior Z = Y0 (if the prior is actually
reliable),

5) If M = ∅, return Z and stop,
// If there is no consensus between the sources of
information, the prior is considered as prevalent,

6) For any K ∈M , build the weight:

ωK =
∏
i∈K

mi(Yi) ,

7) Generate Ko ∈M randomly, according to probability:
ωKo∑
L∈M ωL

,

8) Return Z ∩
⋂
i∈K Yi and stop,

// The two previous steps result in generating a best
consensus randomly according to their respective belief.

We may notice the specific role of the prior Y0. As soon as
the prior is considered reliable, its is always involved in the
decision. This is a choice in our problem modelling. What
is important here, is the fact that we are able to tune our
combination rule according to our modelling choices. This is
a significant contribution of the referee functions.

Now at last, we are able to define the full arbitrament process
for FV BIED which is a combination of the two previous
process:

{(Xk, ωk)}k=1:K = refereeFunction (Y1:s,m1:s) :
1) Set J = getReliable(),
2) Return X = subReferee(Y1:s,m1:s, J) and stop,

The next section gives some numerical results of our approach.

VI. RESULTS.

For simplicity, it is denoted:
• a = A ∩ V ∩B,
• b = A ∩ V ,
• c = A ∩ V ∩B,
• d = A ∩ V ,
• e = A ∩B

The fused bba mV BIED computed by means of the referee
function FV BIED is as follows:

mV BIED(a) = 0.025 , mV BIED(b) = 0.010 ,
mV BIED(c) = 0.691 , mV BIED(d) = 0.274 .

It is then derived:
• Pessimistic: bel(c ∪ a ∪ (A ∩ V ∩B)) = 0.716 > 0.5 ,
• Temperate: bel(c ∪ (A ∩ V ∩B)) = 0.691 > 0.5 ,
• Optimistic: bel(c) = 0.691 > 0.5 .

means clearly an alert and an evacuation of B even in case of
an optimistic attitude.

It may be interesting to see how this result evolves when
changing the reliability parameters pi and to compare this
combination rule with reference rules like Dempster-Shafer
and PCR6. The following tests are done with p2 = 1 and
different values of p0, p1 and p2. In order to take into account
the reliability in the Dempster-Shafer and PCR6 combination,
the basic belief assignments are weakened as follows:

mw
i (X) = pimi(X) + I[X = Ω](1− pi) .

Then, the rule of Dempster-Shafer and PCR6 are applied to
mw
i , while the rule VBIED is applied to mi directly.
α) p0 = 0, p1 = 0.9, p2 = 1, p3 = 0.5:

X a b c d e Ω Z
mV BIED(X) .501 .199 .215 .085
mPCR6(X) .501 .199 .215 .085
mDS(X) .501 .199 .215 .085 0

β) p0 = 0, p1 = 0.5, p2 = 1, p3 = 0.9:

X a b c d e Ω Z
mV BIED(X) .361 .339 .155 .145
mPCR6(X) .361 .339 .155 .145
mDS(X) .361 .339 .155 .145 0

In the case α) and β), the prior is considered as unreliable. By
removing this prior, the possible conflict vanishes, and their is
a possible full consensus between the sources of information.
As a consequence, the results are identical for the three rules.

γ) p0 = 0.5, p1 = 0.9, p2 = 1, p3 = 0.5:

X a b c d e Ω Z
mV BIED(X) .25 .1 .465 .185
mPCR6(X) .25 .198 .215 .155 .064 .118
mDS(X) .386 .153 .330 .131 .35

δ) p0 = 0.5, p1 = 0.5, p2 = 1, p3 = 0.9:

X a b c d e Ω Z
mV BIED(X) .18 .17 .335 .314
mPCR6(X) .18 .274 .155 .22 .031 .14
mDS(X) .278 .261 .238 .223 .35

ε) p0 = 0.95, p1 = 0.9, p2 = 1, p3 = 0.5:

X a b c d e Ω Z
mV BIED(X) .025 .01 .691 .274
mPCR6(X) .025 .167 .215 .299 .103 .191
mDS(X) .075 .03 .641 .254 .665

ζ) p0 = 0.95, p1 = 0.5, p2 = 1, p3 = 0.9:

X a b c d e Ω Z
mV BIED(X) .018 .017 .498 .467
mPCR6(X) .018 .183 .155 .37 .049 .225
mDS(X) .054 .051 .462 .434 .665
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η) p0 = 1, p1 = 0.9, p2 = 1, p3 = 0.5:

X a b c d e Ω Z
mV BIED(X) .716 .284
mPCR6(X) .163 .215 .318 .106 .198
mDS(X) .716 .284 .7

θ) p0 = 1, p1 = 0.5, p2 = 1, p3 = 0.9:

X a b c d e Ω Z
mV BIED(X) .516 .484
mPCR6(X) .172 .155 .39 .051 .233
mDS(X) .516 .484 .7

Dempster-Shafer and VBIED rules produce the same results
in cases η) and θ) . This result is probably a fortuitous
consequence of the VBIED problem setting. Dempster-Shafer
and VBIED are inherently different rules.

PCR6 seems to be the most undecided rule. We have seen that
PCR6 does not handle partial consensus, and produces a mean
of its inputs when a full consensus is not possible. Such result
is perhaps a consequence of that.

It is noticed for both Dempster-Shafer and VBIED, that
bel(c ∪ a ∪ (A ∩ V ∩ B)) > 0.5 in all cases, which means
an evacuation according to the cautious attitude. It is not the
case however, when considering the temperate or optimistic
attitudes. In these cases, the results depends increasingly on
the reliability of the prior and on the high reliability of source
1 in regards to source 3. An evacuation is clear in the following
cases, by considering the score of c (bel(c) > 0.5):

VBIED ε), η), θ),
DS ε), η), θ).

An evacuation is possible in the following cases, by consider-
ing the score of both c and d (pl(c) > 0.5):

VBIED γ), δ), ζ),
DS ζ).

It appears generally that the rule VBIED provides a more
accentuated answer than DS and PCR6. The reason is that
it takes into account any intermediate consensus, in case the
full consensus fails.

VII. CONCLUSION

This paper has proposed a belief function approach for solv-
ing the Vehicle-Born Improvised Explosive Device problem.
This approach made use of a previously produced library, the
java toolbox Referee Toolbox which allows generic implemen-
tations of combination rules for belief function. The definition
the combination rule is implemented by means of referee
functions, which are arbitrament processes conditionally to
the contributions of the sources of information. This allowed
us to construct a combination rule adapted to the VBIED,
by especially taking into account the modelled reliability of
the sources and the particular role of the prior. Moreover, by
always considering the best consensus between the entries,
the obtained fusion process closely processes the input infor-
mation. While this draft paper only handles the first part of
the VBIED challenge, the final paper should consider the full
problem.
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APPENDIX

A. Complete distributive lattice
This section provides a theoretical description of the logical

structures which are implemented in the toolbox Referee
Toolbox.

991



a) Distributive lattice: An algebraic structure G with
operators ∩ and ∪ is a distributive lattice if it verifies the
properties:
• X ∪ (Y ∪ Z) = (X ∪ Y ) ∪ Z
X ∩ (Y ∩ Z) = (X ∩ Y ) ∩ Z (associativity)

• X ∪ Y = Y ∪X
X ∩ Y = Y ∩X (commutativity)

• X ∪ (X ∩ Y ) = X
X ∩ (X ∪ Y ) = X (absorption)

• X ∩ (Y ∪ Z) = (X ∩ Y ) ∪ (X ∩ Z) (distributivity)
for any X,Y, Z ∈ G .
Implied order: The relation ⊆ defined by:

X ⊆ Y ∆⇐⇒ X ∩ Y = X ⇐⇒ X ∪ Y = Y ,

is a partial order on G.
b) Complete distributive lattice: A distributive lattice G

is complete if any subset Ξ ⊂ G has a greatest lower bound
and a least upper bounds:
• There is

⋂
X∈ΞX ∈ G such that:

–
⋂
X∈ΞX ⊆ Y for any Y ∈ Ξ ,

– If Z ∈ G is such that Z ⊆ Y for any Y ∈ Ξ , then
Z ⊆

⋂
X∈ΞX .

• There is
⋃
X∈ΞX ∈ G such that:

– Y ⊆
⋃
X∈ΞX for any Y ∈ Ξ ,

– If Z ∈ G is such that Y ⊆ Z for any Y ∈ Ξ , then⋃
X∈ΞX ⊆ Z .

In particular are defined the lower bound ∅ =
⋂
X∈GX and

upper bound Ω =
⋃
X∈GX of G .

Examples:
• A finite distributive lattice is necessary complete.
• An hyperpower set, DΘ, generated by a finite Θ is a

complete distributive lattice,
c) Complement and co-complement: The referee toolbox

implements a complement notion for the complete distributive
lattices, the complement and co-complement operators. These
operators are of course identical for Boolean algebras.
The complement, X , of X ∈ G is defined by:

X =
⋃

Y :Y ∩X=∅

Y ;

The co-complement, X , of X ∈ G is defined by:

X =
⋂

Y :Y ∪X=Ω

Y .

Examples:
• For a closed hyperpower set (i.e. with property⋃

Y ∈Θ Y = Ω), the complement and co-complement are
defined by:

– X = ∅ for X 6= ∅, and ∅ = Ω ,
– X =

⋃
Y ∈Θ:Y 6⊂X Y .
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