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Abstract—In this paper, we present a non-supervised method-
ology for edge detection in color images based on belief functions
and their combination. Our algorithm is based on the fusion of
local edge detectors results expressed into basic belief assignments
thanks to a flexible modeling, and the proportional conflict redis-
tribution rule developed in DSmT framework. The application
of this new belief-based edge detector is tested both on original
(noise-free) Lena’s picture and on a modified image including
artificial pixel noises to show the ability of our algorithm to
work on noisy images too.
Keywords: Edge detection, image processing, DSmT, DST,
fusion, belief functions.

I. INTRODUCTION

Edge detection is one of most important tasks in image
processing and its application to color images is still subject
to a very strong interest [8], [10]–[12], [14] for example in
teledetection, in remote sensing, target recognition, medical
diagnosis, computer vision and robotics, etc. Most of basic
image processing algorithms developed in the past for gray-
scale images have been extended to multichannel images. Edge
detection algorithms for color images have been classified into
three main families [15]: 1) fusion methods, 2) multidimen-
sional gradient methods and 3) vector methods depending on
the position of where the recombination step applies [7]. In
this paper, the method we propose uses a fusion method with
a multidimensional gradient method. Our new unsupervised
edge detector combines the results obtained by gray-scale
edge detectors for individual color channels [3] to define
bba’s from the gradient values which are combined using
Dezert-Smarandache Theory [17] (DSmT) of plausible and
paradoxical reasoning for information fusion. DSmT has been
proved to be a serious alternative to well-known Dempster-
Shafer Theory of mathematical evidence [16] specially for
dealing with highly conflicting sources of evidences. Some
supervised edge detectors based on belief functions computed
from gaussian pdf assumptions and Dempster-Shafer Theory
can be found in [1], [21]. In this work, we show through very
simple examples how edge detection can be performed based
on DSmT fusion techniques with belief functions without
learning (supervision). The interest for using belief functions
for edge detection comes from their ability to model more ade-
quately uncertainties with respect to the classical probabilistic
modeling approach, and to deal with conflicting information
due to spatial changes in the image or noises. This paper is
organized as follows: In section 2 we briefly recall the basics
of DSmT and the fusion rule we use. In section 3, we present

in details our new edge detector based on belief functions and
their fusion. Results of our new algorithm tested on the original
Lena’s picture and its noisy version are presented in section
4 with a comparison to the classical Canny’s edge detector.
Conclusions and perspectives are given in section 5.

II. BASICS OF DSMT

The purpose of DSmT [17] is to overcome the limitations
of DST [16] mainly by proposing new underlying models
for the frames of discernment in order to fit better with
the nature of real problems, and proposing new efficient
combination and conditioning rules. In DSmT framework, the
elements θi, i = 1, 2, . . . , n of a given frame Θ are not
necessarily exclusive, and there is no restriction on θi but their
exhaustivity. The hyper-power set DΘ in DSmT, the hyper-
power set is defined as the set of all composite propositions
built from elements of Θ with operators ∪ and ∩. For instance,
if Θ = {θ1, θ2}, then DΘ = {∅, θ1, θ2, θ1 ∩ θ2, θ1 ∪ θ2}. A
(generalized) basic belief assignment (bba for short) is defined
as the mapping m : DΘ → [0, 1]. The generalized belief and
plausibility functions are defined in almost the same manner
as in DST. More precisely, from a general frame Θ, we define
a map m(.) : DΘ → [0, 1] associated to a given body of
evidence B as

m(∅) = 0 and
∑
A∈DΘ

m(A) = 1 (1)

The quantity m(A) is called the generalized basic belief
assignment/mass (or just ”bba” for short) of A.

The generalized credibility and plausibility functions are de-
fined in almost the same manner as within DST, i.e.

Bel(A) =
∑
B⊆A
B∈DΘ

m(B) and Pl(A) =
∑

B∩A6=∅
B∈DΘ

m(B) (2)

Two models1 (the free model and hybrid model) in DSmT
can be used to define the bba’s to combine. In the free
DSm model, the sources of evidence are combined without
taking into account integrity constraints. When the free DSm
model does not hold because the true nature of the fusion
problem under consideration, we can take into account some
known integrity constraints and define bba’s to combine using
the proper hybrid DSm model. All details of DSmT with

1Actually, Shafer’s model, considering all elements of the frame as truly
exclusive, can be viewed as a special case of hybrid model.
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many examples can be easily found in [17] available freely
on the web. In this paper, we will work only with Shafer’s
model of the frame where all elements θi of Θ are assumed
truly exhaustive and exclusive (disjoint) and therefore DΘ

reduces the the classical power set 2Θ and generalized belief
functions reduces to classical ones as within DST framework.
Aside offering the possibility to work with different underlying
models (not only Shafer’s model as within DST), DSmT offers
also new efficient combination rules based on proportional
conflict redistribution (PCR rules no 5 and no 6) for combining
highly conflicting sources of evidence. In DSmT framework,
the classical pignistic transformation BetP (.) is replaced by
the by the more effective DSmP (.) transformation to estimate
the subjective probabilities of hypotheses for decision-making
support once the combination of bba’s has been obtained.
Before presenting our new edge detector, we just recall briefly
what are the PCR5 fusion rule and the DSmP transformation.
All details, justifications with examples on PCR5 and DSmP
can be found freely from the web in [17], Vols. 2 & 3 and
will not be reported here.

A. PCR5 fusion rule

The Proportional Conflict Redistribution Rule no. 5 (PCR5)
is used generally to combine bba’s in DSmT framework. PCR5
transfers the conflicting mass only to the elements involved in
the conflict and proportionally to their individual masses, so
that the specificity of the information is entirely preserved in
this fusion process. Let m1(.) and m2(.) be two independent2

bba’s, then the PCR5 rule is defined as follows (see [17], Vol.
2 for full justification and examples): mPCR5(∅) = 0 and
∀X ∈ 2Θ \ {∅}

mPCR5(X) =
∑

X1,X2∈2Θ

X1∩X2=X

m1(X1)m2(X2)+

∑
X2∈2Θ

X2∩X=∅

[
m1(X)2m2(X2)

m1(X) +m2(X2)
+

m2(X)2m1(X2)

m2(X) +m1(X2)
] (3)

where all denominators in (3) are different from zero. If a
denominator is zero, that fraction is discarded. Additional
properties of PCR5 can be found in [5]. Extension of PCR5
for combining qualitative bba’s can be found in [17], Vol. 2 &
3. All propositions/sets are in a canonical form. A variant of
PCR5, called PCR6 has been proposed by Martin and Osswald
in [17], Vol. 2, for combining s > 2 sources. The general
formulas for PCR5 and PCR6 rules are given in [17], Vol.
2 also. PCR6 coincides with PCR5 when one combines two
sources. The difference between PCR5 and PCR6 lies in the
way the proportional conflict redistribution is done as soon as
three or more sources are involved in the fusion. For example,
let’s consider three sources with bba’s m1(.), m2(.) and m3(.),
A ∩B = ∅ for the model of the frame Θ, and m1(A) = 0.6,
m2(B) = 0.3, m3(B) = 0.1. With PCR5 the partial con-
flicting mass m1(A)m2(B)m3(B) = 0.6 · 0.3 · 0.1 = 0.018

2I.e. each source provides its bba independently of the other sources.

is redistributed back to A and B only with respect to the
following proportions respectively: xPCR5

A = 0.01714 and
xPCR5
B = 0.00086 because the proportionalization requires

xPCR5
A

m1(A)
=

xPCR5
B

m2(B)m3(B)
=

m1(A)m2(B)m3(B)

m1(A) +m2(B)m3(B)

that is
xPCR5
A

0.6
=
xPCR5
B

0.03
=

0.018

0.6 + 0.03
≈ 0.02857

thus

{
xPCR5
A = 0.60 · 0.02857 ≈ 0.01714

xPCR5
B = 0.03 · 0.02857 ≈ 0.00086

With the PCR6 fusion rule, the partial conflicting mass
m1(A)m2(B)m3(B) = 0.6 · 0.3 · 0.1 = 0.018 is redistributed
back to A and B only with respect to the following proportions
respectively: xPCR6

A = 0.0108 and xPCR6
B = 0.0072 because

the PCR6 proportionalization is done as follows:

xPCR6
A

m1(A)
=
xPCR6
B,2

m2(B)
=
xPCR6
B,3

m3(B)
=

m1(A)m2(B)m3(B)

m1(A) +m2(B) +m3(B)

that is

xPCR6
A

0.6
=
xPCR6
B,2

0.3
=
xPCR6
B,3

0.1
=

0.018

0.6 + 0.3 + 0.1
= 0.018

thus 
xPCR6
A = 0.6 · 0.018 = 0.0108

xPCR6
B,2 = 0.3 · 0.018 = 0.0054

xPCR6
B,3 = 0.1 · 0.018 = 0.0018

and therefore with PCR6, one gets finally the following
redistributions to A and B:{
xPCR6
A = 0.0108

xPCR6
B = xPCR6

B,2 + xPCR6
B,3 = 0.0054 + 0.0018 = 0.0072

From the implementation point of view, PCR6 is simpler to
implement than PCR5. Very basic Matlab codes for PCR5 and
PCR6 fusion rules can be found in [17], [18].

B. DSmP transformation

DSmP probabilistic transformation is a serious alternative to
the classical pignistic transformation which allows to increase
the probabilistic information content (PIC), i.e. to reduce
Shannon entropy, of the approximated subjective probability
measure drawn from any bba. Justification and comparisons
of DSmP (.) w.r.t. BetP (.) and to other transformations can
be found in details in [6], [17], Vol. 3, Chap. 3. DSmP trans-
formation is defined3 by DSmPε(∅) = 0 and ∀X ∈ 2Θ \ {∅}

DSmPε(X) =
∑
Y ∈2Θ

∑
Z⊆X∩Y
|Z|=1

m(Z) + ε · |X ∩ Y |

∑
Z⊆Y
|Z|=1

m(Z) + ε · |Y |
m(Y ) (4)

3Here we work on classical power-set, but DSmP can be defined also for
working with other fusion spaces, hyper-power sets or super-power sets if
necessary.
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where |X ∩Y | and |Y | denote the cardinals of the sets X ∩Y
and Y respectively; ε ≥ 0 is a small number which allows to
increase the PIC value of the approximation of m(.) into a
subjective probability measure. Usually ε = 0, but in some
particular degenerate cases, when the DSmPε=0(.) values
cannot be derived, the DSmPε>0 values can however always
be derived by choosing ε as a very small positive number,
say ε = 1/1000 for example in order to be as close as we
want to the highest value of the PIC. The smaller ε, the
better/bigger PIC value one gets. When ε = 1 and when
the masses of all elements Z having |Z| = 1 are zero,
DSmPε=1(.) = BetP (.), where the pignistic transformation
BetP (.) is defined by [19]:

BetP{X} =
∑
Y ∈2Θ

|Y ∩X|
|Y |

m(Y ) (5)

with convention |∅|/|∅| = 1.

C. DS combination rule

Dempster-Shafer (DS) rule of combination is the main
historical (and still widely used) rule proposed by Glenn
Shafer in his milestone book [16]. Very passionate debates
have emerged in the literature about the justification and the
behavior of this rule from the famous Zadeh’s criticism in
[22]. We don’t plan to reopen this endless debate and just
want to recall briefly here how it is mathematically defined.
Let’s consider a given discrete and finite frame of discernment
Θ = {θ1, θ2, . . . , θn} of exclusive and exhaustive hypotheses
(a.k.a satisfying Shafer’s model) and two independent bba’s
m1(.) and m2(.) defined on 2Θ, then DS rule of combination
is defined by mDS(∅) = 0 and ∀X 6= ∅ and X ∈ 2Θ:

mDS(X) =
1

1−K12

∑
X1,X2∈2Θ

X1∩X2=X

m1(X1)m2(X2) (6)

where K12 ,
∑
X1,X2∈2Θ

X1∩X2=∅
m1(X1)m2(X2) represents the

total conflict between sources. If K12 = 1, the sources of
evidence are in full conflict and DS rule cannot be applied.
DS rule is commutative and associative and can be extented for
the fusion of s > 2 sources as well. The main criticism about
such such concerns its unexpected/counter-intuitive behavior
as soon as the degree of conflict between sources becomes
high (see [17], Vol.1, Chapter 5 and references therein for
details and examples).

D. Decision-making support

Decisions are achieved by computing the expected utilities
of the acts using either the subjective/pignistic BetP{.} (usu-
ally adopted in DST framework) or DSmP (.) (as suggested
in DSmT framework) as the probability function needed to
compute expectations. Usually, one uses the maximum of the
pignistic probability as decision criterion. The maximum of
BetP{.} is often considered as a prudent betting decision
criterion between the two other decision strategies (max of

plausibility or max. of credibility which appears to be respec-
tively too optimistic or too pessimistic). It is easy to show that
BetP{.} is indeed a probability function (see [19], [20]) as
well as DSmP (.) (see [17], Vol.2). The max of DSmP (.)
is considered as more efficient for practical applications since
DSmP (.) is more informative (it has a higher PIC value) than
BetP (.) transformation.

III. EDGE DETECTION BASED ON DSMT AND FUSION

In this work, we use the most common RGB (Red-Green-
Blue) representation of the digital color image where each
layer (channel) R, G and B consists in a matrix of ni × nj
pixels. The discrete value of each pixel in a given color channel
is assumed in a given absolute interval of color intensity
[cmin, cmax]. The principle of our new Edge detector based
on DSmT is very simple and consists in the following steps:

A. Step 1: Construction of bba’s

Let’s consider a given channel (color layer) and denote it
as L which can represent either the Red (R) color layer, the
Green (G) color layer or the Blue (B) color layer, or any other
channel in a more general case for multispectral images. For
simplicity, we focus our work and presentation here on color
images only.

Apply an edge detector algorithm for each color channel L
to get for each pixel xLij , i = 1, 2, . . . , ni, j = 1, 2, . . . , nj
an associated bba mL

ij(.) expressing the local belief that this
pixel belongs or not to an edge. The frame of discernment Θ
used to define the bba’s is very simple and is defined as

Θ = {θ1 , Pixel ∈ Edge, θ2 , Pixel /∈ Edge} (7)

Θ is assumed to satisfy Shafer’s model (i.e. θ1 ∩ θ2 = ∅).
It is clear that many (binary) edge detection algorithms are
available in the image processing literature but here we want
a ”smooth” algorithm able to provide both the belief of each
pixel to belong or not to an edge and also the uncertainty one
has on the classification of this pixel. In the this subsection, we
present a very simple algorithm for accomplishing this task at
the color channel level. Obviously the quality of the algorithm
used in this first step will have a strong impact of the final
result and therefore it is important to focus research efforts on
the development of efficient algorithms for realizing this step
as best as possible.

As in Sobel method [9], two 3 × 3 kernels are convolved
with the original image AL for each layer L to calculate
approximations of the derivatives - one for horizontal changes,
and one for vertical. We then obtain two gradient images
GLx and GLy for each layer L represent the horizontal and
vertical derivative approximations for each pixel xLij . The x-
coordinate is defined as increasing in the right-direction, and
the y-coordinate is as increasing in the down-direction. At
each pixel xLij of the color layer L, the gradient magnitude
gLij can be estimated by the combination of the two gradient
approximations as:

gLij =
1√
2

(GLx (i, j)2 +GLy (i, j)2)1/2 (8)
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where

GLx =
1

8

 −1 0 1
−2 0 2
−1 0 1

 ∗AL;

GLy =
1

8

 −1 −2 −1
0 0 0
1 2 1

 ∗AL;

and where ∗ denotes the 2-dimensional convolution operation.

In Sobel’s detection method, the edge detection for a pixel
xij of a gray image is declared based on a hard thresholding
of gij value. Such Sobel detector is sensitive to noise and it
can generate false alarms. In this work, gLij values are used
only to define the mass function (bba) of each pixel in each
layer over the power-set of Θ defined in (7). If the value gLij
value of a pixel is big, it implies that this pixel is more likely
to belong to an edge. If gLij value of the pixel xLij is low then
our belief that it belongs to an edge must be low too. Such
very simple and intuitive modeling can be obtained directly
from the sigmoid functions commonly used as activation
function in neural networks, or as fuzzy membership in the
fuzzy subsets theory as explained below.

Let’s consider the sigmoid function defined as

fλ,t(g) ,
1

1 + e−λ(g−t) (9)

g is the gradient magnitude of the pixel under consideration.
t is the abscissa of the inflection point of the sigmoid which
can be selected by t = p · max(g) where p is a proportion
parameter and · is the scalar product operator. When working
with noisy images, p always increases with the level of noise.
λ is the slope of the tangent at the inflection point.

It can be easily verified that the bba mL
ij(.|gLij) satisfying

the expected behavior can be obtained by the fusion4 of the
two following simple bba’s defined by:

focal element m1(.) m2(.)
θ1 fλ,te(g) 0
θ2 0 f−λ,tn(g)

θ1 ∪ θ2 1− fλ,te(g) 1− f−λ,tn(g)

with 0 < tn < te < 255, λ > 0.

te is the lower threshold for the edge detection, and tn is
the upper threshold for the non edge detection. Thus, [tn, te]
corresponds to our uncertainty decision zone and the gLij values
lying in this interval correspond to the unknown decision state.
The bounds (thresholds) tn and te can be tuned based on the
average gradients values of the image, and the length te − tn
depends on the level of the noise. If the the image is very
noisy, it means the information is very uncertain, and the
length of the interval [tn, te] can become large. Otherwise,
it is small. Because of structure of these two simple bba’s,

4with DS, PCR5 or even with DSmH rule [17].

the fusion obtained with PCR5, DS of even with DSm hybrid
(DSmH) rules of combination provide globally similar results
and therefore the choice of the fusion rule here does not really
matter to build mL

ij(.|gLij) as shown on the figures 1-3. PCR5,
which is the most specific fusion rule (it reduces the level of
belief committed to the uncertainty), is used in this work to
generate mL

ij(.|gLij).

Figure 1. Computation of mL
ij(.|gLij) from m1(.) and m2(.) with [tn, te] =

[60, 100] and λ = 0.09.

Figure 2. Computation of mL
ij(.|gLij) from m1(.) and m2(.) with [tn, te] =

[50, 80] and and λ = 0.06.

Figure 3. Computation of mL
ij(.|gLij) from m1(.) and m2(.) with [tn, te] =

[30, 40] and λ = 0.04.
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In summary, mL
ij(.|gLij) can be easily constructed from the

choice of thresholding parameters te, tn defining the uncer-
tainty zone of the gradient values, the slope parameter λ of
sigmoids, and of course from the gradient magnitude gLij . This
approach is very easy to implement and very flexible since it
depends on the parameters which are totally under the control
of the user.

B. Step 2: Fusion of bba’s mL
ij(.)

Many combination rules like DS rule, Dubois & Prade rule
Yager’s rule, and so on can be used with our approach. In
this work, we just make investigations based on the two most
well-known rules (DS and PCR5 rule proposed in DST and
DSmT respectively). So we use either DS or PCR5 rule to
combine the three bba’s mR

ij(.), mG
ij(.) and mB

ij(.) for each
pixel xij in order to get the global bba mij(.) to estimate
the degree of belief of the belonging of xij to an edge in the
given image. Since PCR5 is not associative, we must apply the
general PCR5 formula for combining the 3 sources (channels)
altogether5 as explained in details in [17], Vol.2, Chap. 1 &
2. A suboptimal approach requiring less computations would
consist in applying a PCR5 sequential fusion of these bba’s in
such a way that the two least conflicting bba’s are combined at
first by PCR5 and then combine again with PCR5 the resulting
bba’s with the third one according to (3). The more simple
PCR6 rule could also be used instead of PCR5 as well - see
[17], Vol. 2.

C. Step 3: Decision-making

The output of step 2 is the set of Ni × Nj bba’s mij(.)
associated to each pixel xij of the image in the whole color
space (R,G,B). mij(.) commits some degree of belief to
θ1 , Pixel ∈ Edge, to θ2 , Pixel /∈ Edge and also to the
uncertainty θ1 ∪ θ2. The binary decision-making process
consists in declaring if the pixel xij under consideration
belongs or not to an edge from the bba mij(.), or in a
more complicated manner from mij(.) and the bba’s of its
neighbours. In this paper, we just recall the principal methods
based on the use of mij(.).

Based on mij(.) only, how to decide θ1 or θ2? Many
approaches have been proposed in the literature for answering
this question when working with a n-D frame Θ. The pes-
simistic approach consists in declaring the hypothesis θi ∈ Θ
which has the maximum of credibility, whereas the optimistic
approach consists in declaring the hypothesis which has the
maximum of plausibility. When the cardinality of the frame
Θ is greater than two, these two approaches can yield to a
different final decision. In our particular application and since
our frame Θ has only two elements, the final decision will
be the same if we use the max of credibility or the max of
plausibility criterion. Other decision-making methods suggest,
as a good balance between aforementioned pessimistic and
optimistic approaches, to approximate the bba at first into a

5i.e. a generalization of the PCR5 formula described in section II-A.

subjective probability measure from a suitable probabilistic
transformation, and then to choose the element of Θ which
has the highest probability. In practice, one suggests to take
as final decision the argument of the max of BetP (.) or of
the max of DSmP (.). In our binary frame case however these
two approaches also provide the same final decision as with
the max of credibility approach. This can be easily proved
from BetP (.) or DSmP (.) formulas. Indeed, let’s consider
m(θ1) > m(θ2) > 0 with m(θ1) + m(θ2) + m(θ1 ∪ θ2) = 1
(which means that θ1 is taken as final decision because it has
a higher credibility than θ2), then one gets as approximate
subjective probabilities:

BetP (θ1) = m(θ1) +m(θ1 ∪ θ2)/2 ≡ m(θ1) +K

BetP (θ2) = m(θ2) +m(θ1 ∪ θ2)/2 ≡ m(θ2) +K

DSmP (θ1) = m(θ1)[1 +
m(θ1 ∪ θ2)

m(θ1) +m(θ2)
] ≡ m(θ1)[1 +K ′]

DSmP (θ2) = m(θ2)[1 +
m(θ1 ∪ θ2)

m(θ1) +m(θ2)
] ≡ m(θ2)[1 +K ′]

where K and K ′ are two positive constants. From these
expressions, one sees that if m(θ1) > m(θ2) > 0, then also
BetP (θ1) > BetP (θ2) and DSmP (θ1) > DSmP (θ2) and
thus the final decision based on max of BetP (.) or max of
DSmP (.) is finally the same. Note that when m(θ1) = m(θ2),
no rational decision can be drawn from m(.) and only a
random decision procedure or ad-hoc method can be used in
such particular case.

In summary, one sees that when working with a binary
frame Θ, all common decision-making strategies provide the
same final decision and therefore there is no interest to use
a complex decision-making procedure in that case and that’s
why we can adopt here the max of belief as final decision-
making criterion in our simulations. Note that aside the final
decision and because we have m(θ1 ∪ θ2), we are able (if we
want) also to plot the level of uncertainty related with such
decision (not presented in this paper).

IV. SIMULATIONS RESULTS

In this section we present the results of our new edge
detection algorithm tested on two color images for different
parameter settings.

A. Test on original Lena’s picture

Lena Soderberg picture is one of the most used image for
testing image processing algorithms in the literature [4] and
therefore we propose to test our algorithm on this reference
image. This image can be found as part of the USC SIPI
Image Database in their ”miscellaneous” collection available
at http://sipi.usc.edu/database/index.php. The original Lena’s
picture scan is shown on Fig. 4-(a). The figure 5-(a)–(c) shows
the edge detection on each channel (layer) based on the bba’s
mL
ij(.|gLij) in section III-A. One sees that the edges in different

channels are different, and the task of our proposed algorithm
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Figure 4. Lena’s picture before and after noise

Figure 5. Edge detections in each channel.

Figure 6. Canny’s edge detector on Lena’s gray image.

Figure 7. Sobel’s edge detector on Lena’s gray image.

Figure 8. DS-based edge detector on Lena’s color image.

Figure 9. PCR5 edge detector on Lena’s color image.

is to combine efficiently the underlying bba’s mL
ij(.|gLij) gen-

erating the subfigures 5-(a)–(c).

Sobel [9] and Canny [2] edge detectors are commonly used
in image processing community and that’s why we make
comparison of our new edge detector w.r.t. Canny’s and So-
bel’s approaches. Canny and Sobel edge detectors are applied
directly to the gray image converted from the original Lena
color image Fig. 4-(a). The figures 6–9 show the results of the
different edge detectors on Lena’s picture. In our simulations,
we took λ = 0.06, and tg defined as t = p ·max(g) in each
layer, was taken with pn = 0.17 and pe = 0.19, corresponding
to gradient thresholds [tRn , t

R
e ] = [15, 17], [tGn , t

G
e ] = [13, 14]

and [tBn , t
B
e ] = [11, 13]. The max of credibility, plausibility,

DSmP or BetP for decision-making to generate final result
provide the same decision as explained in the section III-C
which is normal in this binary frame case.

One sees that finally on the clean (noise-free) Lena’s picture,
our edge detector provides close performances to Sobel’s
detector applied on Lena’s grey image. Canny’s detector seems
to provide a better ability to detect some edges in Lena’s
picture than our method, but it also generates much more false
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alarms too. It is worth noting that the results provided by DS-
based or PCR5-based edge detectors show a coarse location
of the edges. So it is quite difficult to drawn a clear and
fair conclusion between these edge detectors since it highly
depends on what we want, i.e. the reduction of false alarms
or the reduction of miss-detections.

B. Test on Lena’s picture with noise

In this simulation, we show how our edge detector works
on a noisy image. Sampling of independent Gaussian noise
N (0, σ2) is added to each pixels of each layer of the original
Lena’s picture as seen on Fig. 4-(b). In the presented sim-
ulation, σ2 = 1100 which correspond approximatively to the
value of the variance of the blue channel and half the variance
of the others. Local edge detection for each layer based on
mL
ij(.|gLij) is shown on Fig. 10-(a)–(c), where the red points

represent the ignorant pixel which commits the most belief to
the ignorance θ1∪θ2. As shown in Fig 10, the edge detection in
each channel is very noisy. Our method allows to commit auto-
matically highest belief value to uncertainty for most of pixels
associated to an edge which actually correspond to noises.6

The edge detection based on fusion result are interesting as
shown by Fig.11 and Fig. 12 because it shows the ability of our
edge detector to suppress the noise effects. For comparison,
we give on Fig. 13 and Fig.14, the performance of Canny and
Sobel edge detectors applied classically on the noisy gray-
level Lena’s picture. In this simulation, we took λ = 0.06,
and t using pn = 0.22 · max(g) and pe = 0.39 · max(g) in
each layer with [tRn , t

R
e ] = [36, 20], [tGn , t

G
e ] = [35, 19] and

[tBn , t
B
e ] = [31, 18]. The decision-making is still based on max

of credibility.
The visual comparison and analysis of results shown of

figures 11–12 clearly indicates that our edge detector based
on the fusion of belief constructed on each layer works much
better than the edge detection applied separately on each
layer. There is no ignorant pixel corresponding to red color
according to the fusion results, since the fusion process of DS
or PCR5 rule effectively decrease the uncertainty. Our results
show also clearly that Canny and Sobel edge detectors applied
to noisy gray-level Lena’s picture are very sensitive to the
noise perturbations. Our proposed method (based on DS rule
or on PCR5 rule) is more robust to the noise perturbations
and provides better results than Sobel or Canny edge detector
for such noisy image. For this tested image, it appears that
the results using DS and PCR5 rules are very close, because
there is not too much conflict actually between bba’s of layers
and one know that in such case PCR5 rule behavior is close
to DS rule behavior. DS rule is usually good enough in the
low conflict case, whereas PCR5 rule is preferred for the
combination of high conflicting sources of evidence. So the
preference of PCR5 with respect to DS rule for edge detection
must be guided by the level of conflict which appears in the
layers of the color image that we need to process.

6So we are also able at layer level to filter these pixels (false alarms) before
applying the fusion. This has not yet be done in this work.

Figure 10. Edge detections in each channel on noisy image.

Figure 11. DS edge detector on noisy Lena’s color image.

V. CONCLUSIONS AND PERSPECTIVES

A new unsupervised edge detector for color image based
on belief functions has been proposed in this work. The basic
belief assignment (bba) associated with the edge of a pixel
in each channel of the image is defined according to its
gradient magnitude, and one can easily model the uncertainty
about our belief it belong or not to an edge. PCR5 and
DS rules have been applied in this work to combine these
bba’s to get the global bba for final decision-making. Other
rules of combination of bba’s could also have been used
instead but they are known to be less efficient than PCR5
or DS rules in high and low conflict cases respectively. The

Figure 12. PCR5 edge detector on noisy Lena’s color image.
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Figure 13. Sobel’s edge detector on noisy Lena’s gray image.

Figure 14. Canny’s edge detector on noisy Lena’s gray image.

fusion process is able to reduce noise perturbations because
the noises are assumed to be independent between channels.
The final decision making on the edge can be made either
on the maximum of credibility, plausibility, DSmP or BetP
values as well. The first simulation done on original Lena’s
picture shows that our edge detector works as well as the
classical Sobel’s edge detector and it provides less false alarms
than with Canny’s detector, but seems to generate more miss-
detections. In our second simulation based on noisy Lena
image, the results show that our new edge detector is more
robust to the noise perturbations than Sobel or Canny classical
edge detectors. As possible improvement of this algorithm and
for further research, we would like to include some morpho-
logical or connexity constraints at a higher level of processing
and develop automatic technique for threshold selection. The
application of this new approach of edge detection to satellite
multispectral images is under investigations.
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