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Abstract – Data fusion algorithms must typically address 
not only kinematic issues—that is, target tracking—but 
also nonkinematics—for example, target identification, 
threat estimation, intent assessment, etc.  Whereas 
kinematics involves traditional measurements such as 
radar detections, nonkinematics typically involves non-
traditional measurements such as quantized data, 
attributes, features, natural-language statements, and 
inference rules.  The kinematic vs. nonkinematic chasm 
is often bridged by grafting  some expert-system 
approach (fuzzy logic, Dempster-Shafer, rule-based 
inference) into a single- or multi-hypothesis multitarget 
tracking algorithm, using ad hoc methods.  The purpose 
of this paper is to show that  conventional measurement-
to-track association theory can be directly extended to 
nontraditional measurements in a Bayesian manner.  
Concepts such as association likelihood, association 
distance, hypothesis probability, and global nearest-
neighbor distance are defined, and explicit formulas are 
derived for specific kinds of nontraditional evidence.  
 
Keywords:  Data association, measurement-to-track 
association, non-traditional measurements, random sets, 
generalized likelihood function.   

1 Introduction 
Recent years have seen the emergence of multitarget 
detection and tracking algorithms that avoid explicit 
measurement-to-track association (MTA).  These 
algorithms include a complete Bayesian formulation of 
the problem:  the general multitarget Bayes filter [3, 
Chapter 14], along with its approximations, the PHD, 
CPHD, and multi-Bernoulli filters [3, Chapters 16,17].  
Using the techniques of Chapters 3-6 of [3], these filters 
also provide a complete Bayesian formulation for 
processing nontraditional measurement types such as 
quantized data, attributes, features, natural-language 
statements, and even inference rules (see Section 14.4.2 of 
[3]).   
 This complete Bayesian formulation is not, however, 
the subject of this paper.  The dominant multitarget 
tracking methodology—for both legacy algorithms and for 
most ongoing data fusion algorithm R&D—is not the 
MTA-free paradigm just mentioned, but rather MTA 

itself.  Thus one might ask:  Is it possible to adapt the 
complete Bayesian formulation so that it, or at least its 
major aspects, can be incorporated into legacy MTA-
based algorithms?  I claim that this question can be 
answered in the affirmative, but to answer it one must 
address a major gap in MTA theory. 
 Although MTA has been applied to a range of 
information fusion problems, its theoretical foundations 
(see Section 3 and Chapter 10 of [3]) remain those of 
multitarget tracking and, specifically, those associated 
with a particular kind of input data:  kinematic  
measurements.  MTA arose as a way of extending the 
purview of the Kalman filter to the multitarget realm. 
 In MTA, a set of measurement-vectors—positions or 
bearing angles, for example—is collected.  Then the 
following question is posed:  Which target tracks 
generated which of these measurements, and which 
measurements cannot be attributed to any track?  Various 
techniques—gating, nearest-neighbor, global nearest-
neighbor, etc.—are used to determine the best possible 
association.  In this case MTA leads to what is known as a 
single-hypothesis tracker (SHT).   
 SHTs tend to exhibit non-robust performance.  Thus, 
more generally, one can propagate a table of suboptimal 
associations, along with their probabilities of being true.  
In this case MTA leads to the current workhorse of 
practical multitarget detection and tracking, the multi-
hypothesis tracker (MHT). 
 All of these approaches depend on the ability to 
define what it means for a measurement to be “near” a 
track—and thus to have been plausibly generated by that 
track.  That is, they all depend on the ability to define 
“distance” between measurements and tracks.   
 The theoretical foundations of MTA are based on the 
presumption that collected measurements, like tracks, are 
kinematic entities that can be easily represented in 
Gaussian terms—i.e., in terms of vectors and covariance 
matrices.  In this case, it is easy to define the concept of 
an “association distance.”  Most commonly, this takes the 
form of a Mahalanobis distance and its multitarget 
generalizations. 
 But what if the measurements are not kinematic—
they pertain, for example, to target identity?  Typical 
examples of such “nontraditional” measurements are 

14th International Conference on Information Fusion
Chicago, Illinois, USA, July 5-8, 2011

978-0-9824438-3-5 ©2011 ISIF 1454



 

 
 
 

attributes extracted by human operators, features extracted 
by digital signal processing (DSP) algorithms, natural-
language statements, and inference rules.  What does 
“distance between tracks and measurements” mean in this 
case? 
 The most typical approaches to this problem have  
consisted of bottom-up, ad hoc integrations of familiar 
expert systems methods—fuzzy logic, Dempster-Shafer 
theory, etc. into MTA-based algorithms such as MHT.  
(See [4] for summaries of some of these techniques.)  It 
remains the case, however, that such methods remain 
controversial, especially among Bayesians, who often 
describe them as inherently “heuristic” or worse.     
 The purpose of this paper is to extend standard 
kinematic MTA theory to nontraditional measurements in 
a systematic, top-down, theoretically disciplined, and as-
Bayesian-as-possible manner.  I am not aware of any 
previous work that has even attempted to do this—which 
consequentially means that I know of no meaningful 
precedents in the literature.  (If readers know of such 
prededents, I would be happy to learn of them.) 
 My approach is to review traditional kinematic MTA 
theory (Section 3), summarize my Bayesian theory of 
generalized measurements and generalized likelihood 
functions (Section 4), and then show how to integrate the 
two (Sections 5, 6).  Specifically, the systematic treatment 
of conventional MTA in Section 3 is, in Section 5, 
repeated essentially verbatim—except that generalized 
likelihoods (for nontraditional measurements) are 
substituted in place of conventional likelihoods (for 
conventional measurements).  What results is an 
conceptually parsimonious and straightforward 
generalization of conventional MTA theory to 
nontraditional measurements.   
 Thus I will define concepts such as association 
likelihood, association distance, hypothesis probability, 
and global nearest-neighbor distance for non-traditional 
measurements.  I will derive explicit formulas for specific 
kinds of nontraditional measurements.  Special attention 
will be devoted to the case when probability of detection 
is unity, since relatively simple closed-form formulas can 
be derived under this assumption.  The main results of the 
paper are the formulas for association likelihood and 
hypothesis probability, Eqs. (49,54), and the explicit 
closed-form formulas for generalized likelihoods for fuzzy 
and fuzzy Dempster-Shafer measurements in Section 6.1   
 But it is necessary to also point out what this paper 
does not do.  First, my viewpoint is unreservedly Bayesian.  
As such, this is not the proper venue for a survey or 
assessment of proposed applications of Dempster-Shafer, 
fuzzy logic, DSmT, etc., to multitarget tracking.  Second, 
I am not proposing a new formulation of MTA.  Rather, I 
am proposing an extension of existing MTA theory to 
nontraditional data.  Third, my purpose is to report a new 
theoretical advance, not to engage in tutorial expositions 
                                                
1 While the result of Eq. (87-89) might seem like the main result of the 
paper, in actuality it is a near-triviality.  It would have little value 
without the existence of the actual main results.             

of existing results.  The Bayesian theory of non-traditional 
measurements developed in [3] is summarized in Section 
4.  I present brief examples of the process of representing 
nontraditional measurements as random sets and then 
specifying their likelihood functions (e.g., Eqs. (30,31)).  
But for more concrete examples, the reader should consult 
Chapter 3 of [3].  Fourth, my purpose is to propose an 
inherently mathematically complex theoretical advance.  
While implementation and simulation are appropriate 
subjects for future research, the reader will discover that 
the entire page limit is required just to systematically 
elucidate the theoretical approach.2  Fifth and finally, the 
purpose of this paper is not to provide an overview.  The 
approach requires systematic adherence to a 
mathematically precise Bayesian methodology—with the 
aim of deriving explicit closed-form formulas that can be 
used in practice for different kinds of non-traditional data.  
As such, the exposition is no more and no less 
mathematical than it must be if valid results are to be 
reported in sufficient detail for the engaged (as opposed to 
cursory) reader.   
 The paper is organized as follows.  It expands upon 
concepts briefly introduced in Section 10.8, pp. 341-342, 
of [3].  Single- and multi-hypothesis trackers are briefly 
reviewed in Section 2.  The basic theory of measurement-
to-track association is reviewed in Section 3.  Generalized 
measurements and generalized likelihood functions are 
briefly reviewed in Section 4.  Section 5 describes the 
extension of the material in Section 3 to such 
measurements.  In Section 6, this theory is applied to 
arrive at closed-form formulas under certain assumptions.  
Section 7 describes how to extend it to joint kinematic and 
nonkinematic processing.  Conclusions are in Section 8.         

2 Single- and multi-hypothesis trackers 
Probably the two most common multitarget tracking 
algorithms in practical application are the single-
hypothesis tracker (SHT) and the multi-hypothesis tracker 
(MHT).  A MHT recursively propagates two items 

through time:  a track table  Tk|k  and a hypothesis table  

Hk|k, using a time-update followed by a measurement-

update:   

… → Tk|k,Hk|k → Tk+1|k,Hk+1|k  →  Tk+1|k+1,Hk+1|k+1  

→ … 
Each track  τ  is a model of a possible real-world target, 
based on accumulated evidence.  It has the form  τ = (x,P)  
where  x  is the estimated target state and  P  the 
associated error-covariance matrix.  Each hypothesis  θ  in  

                                                
2 I might add:  The founding IEEE PHD and CPHD filter papers [5,6] 
contained no implementations or simulations.  Despite these heresies, 
progress in information fusion does not appear to have suffered.             
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Hk|k  is an association—i.e., an assumption about how 

any given target generated any given measurement—if 
indeed a particular target generated any measurement, or 
if a particular measurement was generated by any target.  
It is assumed that   

∑ =
θ

θ 1)(|kkp .                               (1) 

 In terms of the most typical implementations seen in 
the literature, an MHT consists of a bank of extended 
Kalman filters (EKFs) or unscented Kalman filters 
(UKFs).  Given any particular association  θ, the 
measurements are used to data-update the predicted tracks 
with which they are associated.  Thus each association 
corresponds to a particular set of updated tracks—that is, 
to some subset of the track table.  In this sense, each  θ  is 
a model of what “ground truth” looks like, and  pk+1|k+1(θ)  
is the probability that this model accurately represents 
“ground truth.”  
 It is possible to avoid the multi-hypothesis structure 
by propagating only the highest-probability hypothesis 
rather than the entire hypothesis table.  This is 
accomplished by using a “global association distance” to 
determine the optimal measurement-to-track association at 
any given time-step.  Association distances are defined 
from the formulas for hypothesis probabilities.  The result, 
various kinds of SHTs, are computationally more tractable 
but also typically exhibit poorer tracking performance.       
 The basic theory is introduced in Section 10.3.1 of 
[3] and is reviewed in Section 3.  

3 Measurement-to-track association (review)  
This section draws heavily from Section 10.3.1 of [3].  
Suppose that, at time-step  k+1,   

X   =  {(x1,P1),…,(xn,Pn)}                    (2) 
is the set of tracks predicted from the previous time-step, 
where  x1,…,xn  are their states and  P1,…,Pn  are their 
error-covariance matrices.  The track density 
corresponding to  (xi,Pi)  is the Gaussian distribution   

)()|( iPi
Nif xxx −= .                            (3) 

Also, let the sensor likelihood function at time  k+1  be 
)()|( iRi HNf xzxz −=                           (4) 

and let the measurement-set collected at time-step  k+1  be 
 Z   =  {z1,…,zm}                          (5) 

with  |Z| = m.     

3.1 Definition of an association  
A measurement-to-track association is a function 

θ  :   {1,…,n}  →  {0,1,…,m}                   (6) 
which has the following property:   θ(i) = θ(iʹ′) > 0 implies 
that   i =  iʹ′.  This function has the following intuitive 
interpretation:   
(a) for every   i = 1,…,n,  if  θ(i) > 0  then the 

measurement   zθ(i)   is uniquely associated with the 
track  xi ;   

(b) if  θ(i) = 0  then no measurement is associated with  xi  
(i.e., the track was not detected); and  

(c) in either case, those measurements in Z  which are not 
equal to any  zθ(i)  with  θ(i) > 0  are false detections.     

At one extreme, if  θ(i) = 0   for all  i  then no target 
generated a measurement and so every measurement in  Z  
must be a false detection.  In this case, abbreviate  θ = 0  
and adopt the convention   dθ = 0.  At the other extreme, if   
θ(i) > 0   for all  i  then every track generated a 
measurement.  

3.2 Local association distance  
Suppose for the moment that a single kinematic 
measurement  z  has been collected.  We are to estimate 
which of the predicted tracks (x1,P1),…,(xn,Pn)  most 
likely generated it, assuming that it was not a false 
detection.  The total likelihood that  z  was generated by  
(xi,Pi)—i.e., the association likelihood—is   

∫ ⋅= xxxzz diffi )|()|()|(                               (7) 

∫ −⋅−= xxxxz dNHN iPR i
)()(                   (8) 

)( iHHPR HN T
i

xz −=
+

                                 (9) 

( )22
1 )|(exp

)(2det
1

iT
i

d
HHPR

xz−⋅
+

=
π

 (10) 

where  
d(z|xi)2  =  (z-Hxi)T(R+HPiHT)−

1(z-Hxi) .              (11) 

3.3 Global association distance  
Suppose that an entire measurement-set  Z = {z1,…,zm}  
with  |Z| = m  has been collected.  Assume that the false 
alarm process is Poisson with clutter rate  λ  and spatial 
distribution  c(z), where I am suppressing the time-index  
k  for notational clarity.       
 Case 1: pD = 1.  Begin by assuming that probability 
of detection is unity, in which case an association is a one-
to-one function  

χ  :  {1,…,n}  →  {1,…,m}.                   (12) 
Let  Wχ  ⊆  Z  be the subset of detections—that is, those  z  
that equal  zχ(i)  for some  i = 1,…,n.   
 Given this, the global association likelihood—that 
is, the likelihood that  χ   matches the measurements with 
the tracks, taking false alarms into account—is, from Eqs. 
(10.58) and (10.94) of [3],   

∏
=

⋅=
n

i
i icXZ

1
)( )|()()|( χχ χ z                (13)      

where 
)()( z

z
cec

WeZ
λχ

χ

λ ∏
−

−= .                    (14) 

The value of the global association likelihood tends to be 
larger for those  χ   which more plausibly associate 
measurements to predicted tracks.   
 Let   pχ,0   be the prior probability of the association  
χ.  Since there is no a priori reason to prefer one 
association over another,  pχ,0   is a uniform distribution.  
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Thus the posterior probability that the association  χ   is 
the correct one is 

)|(
)|(

)|(

' '

XZ
XZ

XZ
p χ

θ χ

χ
χ 




∝=

∑
.           (15)     

The optimal association is given by the MAP estimate 
)|(maxargmaxargˆ XZp χχχθχ == .         (16) 

The global association distance for an association  χ  is 
defined from Eq. (15) by   

)|(log22 XZd χχ −= .                    (17) 
Thus the optimal association is the one that minimizes this 
association distance. 
 From Eq. (10.91) of [3], we find that the specific 
formula for Eq. (15) is   

))|(exp()( 2
2
1 XZdcp χχ χ −⋅∝            (18) 

where  

∑
=

− −+−=
n

i
ii

T
i

T
ii HHHPRHXZd

1
)(

1
)(

2 )()()()|( xzxz χχχ
 (19)  

Assume that  c(z) = c  is uniform over some region of 
space.  Then the quantity  c(χ) = e−λ (λc)m

−
n  is no longer 

functionally dependent on  χ  and thus 
))|(exp( 2

2
1 XZdp χχ −∝ .                 (20) 

Thus the global association distance can be taken to be as 
in Eq. (19):    

)|( XZdd χχ = .                          (21) 
This is the definition most commonly employed in data 
association algorithms.        
 Case 2: pD < 1.  Now consider the more general case, 
in which the probability of detection is constant but not 
unity, and thus  θ  is an arbitrary association.  Then the 
global association likelihood is (see Eq. (G.238) of [3]) 

∏
=

− ⋅⋅−=
n

i
iD

nn
D ipcpXZ

1
)( )|()()1()|( χθ χθ z      (22) 

where  nθ  denotes the number of detections associated 
with  θ.   In this case the formula for the association 
probability  pθ  is (see Eqs. (10.115) and (10.116) of [3]):  

))|(exp()( 2
2
1 XZdFcKp n

θθθ θθ −⋅⋅⋅∝           (23) 
 where  

θθ nn
D

n
D ppK −−= )1(                                    (24) 

)()(1 z
z

cec
WeZ

k λθ
χ

λ ∏
−

−
+ =                                       (25) 

∏
> +

=
0)( )(2det

1
iiL

T
iHHPR

F
θ

θ
π

                  (26) 

∑
>

− −+−=
0)(:

)(
1

)(
2 )()()()|(

ii
iI

T
i

T
ii HHHPRHXZd

θ
χχθ xzxz     

(27) 
Even if the clutter spatial distribution is uniform, 
association distance is much more complex than was the 
case for unity probability of detection.  

4 Nontraditional measurements (review) 
In Chapter 5 of [3], I introduced the concept of  
“unambiguously generated ambiguous (UGA) 
measurements” and their “generalized likelihood 

functions.”  Nontraditional measurements—e.g., 
attributes, features, natural-language statements, and 
inference rules—are represented as random (closed) 
subsets  Θ  of a measurement space  Z0—that is as 
generalized measurements.  In turn, generalized 
measurements are mediated by generalized likelihood 
functions, which are defined as 

fk+1(Θ|x)  =  Pr(ηk+1(x) ∈ Θ)                    (28) 
where   z = ηk+1(x)   is a deterministic measurement 
model.  I showed how various expert-system formalisms 
for representing nontraditional measurements—fuzzy 
logic, Dempster-Shafer theory, rule-based inference—can 
be used to construct random set models.   
 For example, consider an imprecise measurement, 
which is just a (closed) subset  S  of the measurement 
space.   (A quantized measurement is a typical example of 
an imprecise measurement.  This type of measurement is 
explicitly considered in a companion paper [2].) If the 
imprecise measurement is understood as being 
deterministic, then  Θ = S  and the corresponding 
generalized likelihood function is  

fk+1(S|x)  =  Pr(ηk+1(x)∈S)  =  1S(ηk+1(x))         (29) 
where  1S(z)  is the set indicator function of  S.   
 As another example, consider a “fuzzy 
measurement”—i.e., a fuzzy membership function   g(z)  
on  Z0.  Such a measurement can be understood as an 
“imprecisely specified imprecise measurement”—
meaning that the measurement is imprecise, but that the 
specific form of the imprecision is unclear, having many 
possible forms  Sa = {z| a≤g(z)}  for  0 ≤ a ≤ 1.  Using the 
random set representation 

Σg  =  {z|  A ≤ g(z)}                        (30) 
of   g(z), where  A  is a uniformly distributed random 
number on the unit interval  [0,1],  I showed that its 
corresponding generalized likelihood is ([3], Eq. 5.29): 

fk+1(g|x)  =   g(ηk+1(x)) .                   (31) 
 As a third example, consider a “fuzzy Dempster-
Shafer (FDS) measurement”—i.e., a basic mass 
assignment  µ(g)  on the fuzzy subsets  g  of  Z0, defined 
by the properties:  
•  µ(g) ≥ 0  for all  g; 
•  µ(g) = 0  if  g = 0;  
• µ(g) = 0  for all but a finite number of  g (the “focal 

fuzzy sets” of  µ); and 
•  Σg µ(g) = 1.   
(When the focal fuzzy sets of  µ  are all crisp, then  µ  is a 
conventional Dempster-Shafer basic mass assignment.)  A 
FDS measurement is a further generalization of the 
concept of an imprecise measurement, in which multiple 
hypotheses are required to represent the uncertainty in the 
choice of imprecise measurement.  Employing a random 
set representation  Σµ  of  µ,  I showed that its 
corresponding generalized likelihood is ([3], Eq. (5.73)):  

∑ ++ ⋅=
g kk ggf ))(()()|( 11 xx ηµµ .                (32)  
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 I derived generalized likelihood functions for other 
nontraditional measurements, such as fuzzy inference 
rules  g⇒gʹ′  ([3], Eq. (5.80)):   

( )))(('1
2
1))()('()|'( 11|1 xxx +++ −+∧=⇒ kkk gggggf ηη    (33) 

using a random set representation   Σg⇒gʹ′   for  g⇒gʹ′.   
 Now, all of the above generalized likelihood 
function formulas are based on a common assumption:  
that the generalized measurement is deterministic.  Even 
though random sets  Σg,  Σµ, and   Σg⇒gʹ′,  are used to 
represent the nontraditional measurements  g,  µ,  and  
g⇒gʹ′,  these measurements are themselves not random.  
That is, they do not arise as specific instantiations of some 
random variable. (For a more complete discussion see, for 
example, Eq. (4.23) of [3].) 
 In the companion paper [2], I showed how to extend 
this formulation to include nontraditional measurements 
that are instantiations of a random variable.  In this case, 
the generalized measurement has the form  

 Θ  − Vk+1.                              (34)  
where  Θ  is the random set model of the deterministic 
nontraditional measurement, and  Vk+1  is an additive 
random noise vector.  In this case the generalized 
likelihood of the nontraditional measurement, taking 
randomness into account, is 

fk+1(Θ|x)  =   Pr(η(x) ∈ Θ−Vk+1).                   (35) 

∫ +Θ ⋅= zxzz dfk )|()( 1µ                      (36)   

where  
µΘ(z)  =  Pr(z ∈ Θ)                            (37)   

is Goodman’s one-point covering function of  Θ  (see [3], 
Eq. (4.20)).    
 As a special case, let   Θ = Θg   model a fuzzy 
measurement  g(z).  Then Eq. (35) reduces to  

∫ ++ ⋅= zxzzx dfggf kk )|()()|( 11
.                (38) 

As  a simple closed-form example of Eq. (38), let 
)()|(1 xzxz HNf Rk −=+
                                   (39)  

)(2det)( czz −⋅= CNCg π .                     (40) 
Then Eq. (38) becomes  

)(2det)|(1 xcx HNCgf RCk −⋅= ++ π .               (41) 

5 Measurement-to-track association 
(nontraditional measurements)  

Suppose that, at time-step  k+1,   
X   =  {(x1,P1),…,(xn,Pn)}                (42) 

is the set of tracks predicted from the previous time-step, 
where  x1,…,xn  are their states and  P1,…,Pn  are their 
error-covariance matrices.  The track densities 
corresponding to the  (xi,Pi)  are not necessarily linear-
Gaussian distributions (though the  (xn,Pn)  are computed 
from them):   

)|( if x .                                   (43) 
These track densities arise though standard MTA track 
propagation.  In general, the propagation is accomplished 
via the single-target Bayes filter rather than, say, an EKF 
or UKF (see Section 5.3).  

 The source likelihood function at time  k+1  is 
defined on generalized measurements.  It is therefore a 
generalized likelihood function, and in particular it will 
not necessarily be linear-Gaussian: 

)|( xΘif .                                 (44) 
Assume that the measurement-set collected at time-step  
k+1  consists of nontraditional measurements,  

 Z   =  {Θ1,…,Θm}                        (45) 
with  |Z| = m.     

5.1 Local association distance 
(nontraditional measurements) 

I proceed as in Section 3.2.  Suppose that a single 
nontraditional measurement  Θ  has been collected.  We 
are to estimate which of the predicted tracks 
(x1,P1),…,(xn,Pn)  most likely generated it, assuming that 
it was not a false detection.   The association likelihood 
for  Θ  is then  

∫ ⋅Θ=Θ xxx diffi )|()|()|( .                   (46)   

5.2 Global association distance 
(nontraditional measurements) 

Suppose that an entire set  Z = {Θ1,…,Θm}  of 
nontraditional measurements with  |Z| = m  has been 
collected.  Because the measurements are generalized, 
they must be mediated by a generalized likelihood 
function  f(Θ|x).  Consequently, the clutter process must 
be defined on generalized measurements, and its spatial 
function  c(Θ)  must have the form of a generalized 
likelihood function—that is, it must be unitless.  For 
example, if  Θ = Θg  represents a fuzzy measurement  
g(z), one might choose 

∫ ⋅=Θ= zzz dcgcgc g )()()()( .                (47)   

For current purposes and in what follows, however, I will 
assume that   c(Θ) = c  is constant.    
 Case 1: pD = 1.  Given this, as in Section 3.3 begin 
by assuming that probability of detection is unity, in 
which case an association is a one-to-one function  

χ  :  {1,…,n}  →  {1,…,m}.                   (48) 
Let  Wχ  denote the set of   Θ  in  Z   that equal  Θχ(i)  for 
some   i = 1,…,n.   
 Then the global association likelihood, which is a 
generalized likelihood function, is   

∏
=

Θ⋅=
n

i
i icXZ

1
)( )|()()|( χχ χ                 (49)      

where 
nm

WeZ
ccc −

−

=Θ= ∏ )()()( λλχ
χz

                   (50) 

which does not functionally depend on  χ.  In this case the 
probability of the association  χ  is  

∑
=

' ' )|(

)|(

θ χ

χ
χ

XZ

XZ
p



                                (51)  
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∏
=

Θ∝
n

i
i i

1
)( )|( χ                                 (52) 

and so   

∑
=

Θ−=
n

i
Ii id

1
)2

12 )|(log χχ                       (53) 

can be taken to be a global association distance.   
 Case 2: pD < 1.  If probability of detection is not 
unity, then we have no choice but to employ the more 
complex formula of Eq. (23):    

))|(exp()( 2
2
1 XZdFcKp n

θθθ θθ −⋅⋅⋅∝ .          (54)     

5.3 Track propagation 
The formulas described in Sections 5.1 and 5.2 permit 
measurement-to-track association to be accomplished 
when measurements are nontraditional.  Given this, how 
are individual tracks propagated?  Under certain 
simplifying assumptions—e.g., when the source 
likelihood has a linear-Gaussian form as in Eq. (41)—the 
track densities  f(x|i)  in (43) will be linear-Gaussian.  In 
this case EKF/UKF propagation can be retained.   
 In general, however, the  f(x|i)  will be non-
Gaussian.   As is well known, MTA algorithms such as 
MHT can employ any single-target filter, not just EKFs or 
UKFs.  In particular, they can employ the general single-
target Bayes filter (or, more precisely, some 
approximating implementation of it).   
 In this case, tracks in the track table are first time-
updated using the Bayes filter prediction integral 
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k
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. 

Once MTA is applied, particular measurements have been 
associated with particular tracks.  Given this, the Bayes 
filter measurement-update equation (i.e., Bayes’ rule) is 
used to update each track using its associated 
measurement:  
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Then the process is repeated.    

6 Closed-form examples 
In this section I briefly use the results in Section 5 to 
derive closed-form formulas in two special cases:  fuzzy 
measurements (Section 6.1) and fuzzy Dempster-Shafer 
(FDS) measurements (Section 6.2).   

6.1 Fuzzy measurements 
I consider three cases in turn:  (1) single nonrandom fuzzy 
measurements, (2) multiple nonrandom fuzzy 
measurements, and (3) single or multiple random fuzzy 
measurements. 
 Case 1:  Single Nonrandom Fuzzy Measurements.  
Let  g(z)  be a fuzzy measurement.  Then because of Eq. 
(31) the local association likelihood, Eq. (46), becomes   

∫ ⋅= xxx difgfig )|()|()|(                   (55) 
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 Case 2:  Multiple Nonrandom Fuzzy Measurements.  
Now assume that  ηk+1 = H  is linear and that the tracks 
and the fuzzy measurement are linear-Gaussian in form:  

 )()|( iPi
Nif xxx −=                                (57)  

)(2det)( czz −⋅= CNCg π .                 (58) 
Then Eq. (56) becomes    

∫ −⋅−= xxxcx dNHNCig iPC i
)())(2det)|( π       (59) 

)(2det iHHPC HNC T
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 Now assume that we have a set  Z = {g1,…,gm}  of 
fuzzy measurements with  m = |Z|, and that these 
measurements have the form   
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in which case 
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+
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 For the sake of conceptual clarity, further assume 
that probability of detection is unity and that the clutter 
spatial function is constant:  c(g) = c.   Then because of 
Eq. (62), Eq. (52) reduces to  
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This leads to a simpler expression if, finally, we assume 
that  Cj = C  for all  j = 1,…,m.  (In other words, the fuzzy 
measurements all have the same shape.3)  Note that, by 
Eq. (47),  c(g)  in this case will automatically be constant 
if the clutter spatial distribution  c(z)   is constant.)  In this 
case 
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where association distance is defined by 
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If the assumption  Cj = C  is not made then we end up with 
a more complex formula for association distance,  
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 Case 3:  Single or Multiple Random Fuzzy 
Measurements.  We can generalize this analysis further by 
assuming that fuzzy measurements have a random 
component.  In this case, by Eq. (38) the local association 
likelihood, Eq. (46), becomes    
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3 Note that, by Eq. (47),  c(g)  in this case will automatically be constant 
if the clutter spatial distribution  c(z)   is constant. 
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Thus using Eqs. (9) and (58), we get a closed-form 
example:  
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Note that this differs from Eq. (60) only in the presence of  
R  in the covariance matrix.  Thus Eqs. (65-67) also can be 
generalized in the obvious manner.  

6.2 FDS measurements 
I consider three cases in turn:  (1) single nonrandom FDS 
measurements, (2) multiple nonrandom FDS 
measurements, and (3) single or multiple random FDS 
measurements. 
 Case 1:  Single Nonrandom FDS Measurements.  Let   
µ   be an FDS measurement.  Then because of Eq. (32) the 
local association likelihood, Eq. (46), becomes   
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Let the focal fuzzy subsets of   µ   be  g1,…,gm  with 
associated weights  wj = µ(gj); and assume that they have 
the form    

)(2det)( jCjj j
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Then Eq. (69) becomes    
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 Case 2:  Multiple Nonrandom FDS Measurements.  
Now assume that we have a set  Z = {µ1,…,µm}  of FDS 
measurements with  m = |Z|, and that these measurements 
have focal fuzzy subsets     
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with respective weights      
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for all  j = 1,…,m  and  l = 1,…,mj.  Then the generalized 
likelihoods for these FDS measurements are  
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Thus the global association probability, Eqs. (50-51), 
becomes 
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If we assume that the covariance matrices of all fuzzy 
focal sets are equal to  C,  then this simplifies to 
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 Case 3:  Single or Multiple Random FDS 
Measurements.  The reasoning is similar to that for Case 3 
in Section 6.1.   

7 Joint kinematic/nonkinematic association 
Practical applications will most typically involve states of 
the form  (c,x)  where  x  is the kinematic state and  c  is a 
discrete nonkinematic state variable, such as target class.  
In this case measurements will typically have the form  
(φ,z)  where  z  is a kinematic measurement and  φ  is a 
nonkinematic feature pertaining to  c.  This section shows 
how to apply the results in the previous sections to this 
more general case.  

7.1 Local association likelihood 
Under these assumptions, Eq. (46) will have the form   
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where  Θφ  is the random set representation of the feature  
φ.   Assume that kinematic and nonkinematic information 
is approximately statistically independent.  Then this can 
be simplified to  
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This means that the kinematic and nonkinematic 
association likelihoods can be computed separately, and 
then used in more general association-related quantities 
such as association distance and hypothesis probability.  
This result requires only the independence assumption.   

7.2 Global association likelihood 
Under the same assumptions, the global association 
likelihood similarly separates into kinematic and 
nonkinematic parts.  From Eqs. (51-52) we get  
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                           kinematicicnonkinemat pp χχ ⋅∝                           (92) 
This means that the kinematic and nonkinematic 
hypothesis probabilities can be computed separately and 
then multiplied to get the joint hypothesis probability.    

7.3 Jointly processing kinematic and 
nonkinematic measurements 

The formulas described in Sections 7.1 and 7.2 permit 
measurement-to-track association to be accomplished 
when both kinematic and nonkinematic measurements are 
available.  Given this, how are individual tracks 
propagated?    
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 Time-Update (Prediction).  Both the kinematic and 
nonkinematic parts of each track in the track table must be 
time-updated.  The prediction step for the kinematic part 
of a track is, for typical MHT implementations, 
accomplished using the EKF or UKF prediction equations.   
 The nonkinematic part of the ith track at time-step  k, 
however, consists not of a state-vector and covariance 
matrix but, instead, a probability distribution  pk|k(c) = 
f(c|i)   on target type  c.4  In this case the prediction step 
for   c  is the Bayes filter prediction equation:  

∑ ⋅= ++
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c

kkkkkk cpccpcp .               (93) 

Here the quantity  pk+1|k(c|c′)  is a Markov transition 
matrix, which describes the probability that a target will 
have identity  c  at time-step  k+1  if it had identity  c′  at 
time-step  k. 
 Remark:  Ordinarily, a target does not change 
identity over time, in which case  pk+1|k(c|c′)  = δc,c′.  
However, this is not always the case.  Diesel-electric 
submarines, for example, have quite different sensor 
phenomenologies depending on whether they are 
snorkeling or submerged.  Thus both  pk+1|k(snork|submg)  
and  pk+1|k(submg|snork)  will typically be nonzero.  If 
these transitions are not taken into account, substantially 
reduced filter performance can be the result. 
 Measurement-update (Correction). Both the 
kinematic and nonkinematic parts of each track in the 
track table must be measurement-updated.  The correction 
step for the kinematic part of a track is, for typical MHT 
implementations, accomplished using the EKF or UKF 
correction equations.   
 Once again, the nonkinematic part of a track at time-
step  k  consists not of a state-vector and covariance 
matrix but, instead, a time-updated probability distribution  
pk+1|k(c)  on target type  c.   In this case the measurement-
update for the nonkinematic state is just Bayes’ rule:  
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where, as usual,  pk+1(φ|c)  denotes the likelihood function 
of the nonkinematic measurement  φ.     

8 Conclusion 
Measurement-to-track association (MTA) remains the 
dominant conceptual paradigm for multisource-multitarget 
detection, tracking, and identification—and for most 
legacy algorithms in particular.  The theoretical 
foundations of MTA are based on the presumption that 
collected measurements, like tracks, are kinematic entities 
that can be easily represented in terms of vectors and 
covariance matrices.   
 It is not obvious how these same foundations might 
be applied when the measurements are not kinematic—
when, for example, they pertain to target identity.   In such 
cases, the measurements can take the form of attributes or 

                                                
4 More generally, the target types can be organized into a multi-level 
taxonomy or ontology,  in which case one must employ probability 
distributions on the different levels. 

features, or even natural-language statements and 
inference rules.   
  
 To address this fact, this paper has shown how to 
extend conventional MTA theory to nontraditional 
measurements in a systematic and theoretically 
disciplined, Bayesian, manner.  The fundamental unifying 
conceptual bridge is the “generalized likelihood function,” 
which allows conventional MTA reasoning to be extended 
to nontraditional measurement-types. 
 Concepts such as association likelihood, association 
distance, hypothesis probability, and global nearest-
neighbor distance were defined.  Closed-form formulas 
were derived for specific kinds of nontraditional evidence.  
Special attention was paid to the case when probability of 
detection is unity, since relatively simple closed-form 
formulas can be derived in this case. 
 As with any theoretical development, the practical 
efficacy of the approach in this paper is yet to be 
determined.  Implementation and simulation-based testing 
of it is a natural subject of future research.   
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