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Abstract—The theory of belief function, also called Dempster-
Shafer evidence theory, has been proved to be a very useful
representation scheme for expert and other knowledge based
systems. However, the computational complexity of evidence
combination will become large with the increasing of the frame
of discernment’s cardinality. To reduce the computational cost of
evidence combination, the idea of basic belief assignment (bba)
approximation was proposed, which can reduce the complexity
of the given bba’s. To realize a good bba approximation, the
approximated bba should be similar (in some sense) to the
original bba. In this paper, we use the distance of evidence
together with the difference between the uncertainty degree of
approximated bba and that of the original one to construct
a comprehensive measure, which can represent the similarity
between the approximated bba and the original one. By using
such a comprehensive measure as the objective function and by
designing some constraints, the bba approximation is converted to
an optimization problem. Comparative experiments are provided
to show the rationality of the construction of comprehensive
similarity measure and that of the constraints designed.

Index Terms—Evidence theory, belief function, bba, bba ap-
proximation, optimization.

I. INTRODUCTION

The theory of belief function [1], which is also called

Dempster-Shafer evidence theory (DST), provides an inter-

esting and useful computational scheme for representing and

integrating (or fusing) uncertain information. DST has been

widely used in many applications, e.g., information fusion,

pattern recognition and decision making [2]. However, high

computational cost of evidence combination is a drawback

which is often raised against DST [2]. It is well known

that the computational cost of evidence combination increases

exponentially with respect to cardinality of the frame of

discernment (FOD) [3]- [5].

Many approaches have been proposed by the researchers

to reduce the computational cost caused by evidence com-

bination. Some researchers proposed efficient procedures for

performing exact computations. For example, Kennes [6]

proposed an optimal algorithm for Dempster’s rule of com-

bination. Barnett’s work [7] and other works [8] are also

the representatives. Moral and Salmeron [9] proposed the

approach based on Monte-Carlo techniques. Wickramarathne

also proposed bba approximation approaches based Monte-

Carlo and statistical sampling [10]. Another important idea to

reduce the computational cost caused by evidence combination

is to approximate (or simplify) a bba to a simpler one. The

papers of Voorbraak [4], Dubois and Prade [11] are seminal

works in this type of approaches. Tessem proposed the famous

k − l − x approximation approach [3]. Grabisch proposed

some approaches [12], which can build a bridge between

belief functions and other types of uncertainty measures or

functions, e.g., probabilities, possibilities and k-additive belief

function (those belief functions whose cardinality of the focal

elements are at most of k). Based on pignistic transformation

in transferable belief model (TBM) [13], Burger and Cuz-

zolin proposed two types of k-additive belief functions [14].

Denœux uses hierarchical clustering strategy to implement the

inner and outer approximation of belief functions [15]. In

our recent research, a hierarchical proportional redistribution

(HPR) approach is proposed to approximate bba [16].

In this paper, we focus on the bba approximation approach

to reduce the computational cost of evidence combination.

Although there have emerged many bba approximation ap-

proaches, we aim to design a new approach which can generate

the optimal approximated bba using a reasonable criterion. A

good approximated bba should have a structure (core) simpler

than the original one, and at the same time it should be

as similar as possible to the original bba. To obtain such

a good approximated bba, we preset the maximum size of

the focal element of the approximated bba and attempt to

approximate bba by minimizing the dissimilarity between the

original bba and the approximated one in this paper. Distance

of evidence [17] is used together with the difference between

the uncertainty degree of the approximated bba and that of the

original one to measure the dissimilarity, which is used as the

objective function of the optimization (minimization) problem.

Different constraints for the optimization are also analyzed in

this paper. Some examples are provided to show the rationality

of the objective function and constraints used and to compare

different bba approximation approaches. It can be experimen-

tally shown that our proposed bba approximation approach is

rational and efficient with respect to other approaches.

II. BASICS OF BELIEF FUNCTION THEORY

Let Θ = {�1, ..., �n} be the frame of discernment (FOD),

which is a set of exhaustive and mutually exclusive hypothe-
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ses. ∅ denotes the empty set. If m : 2Θ → [0, 1] satisfies the

requirements of m(∅) = 0 and
∑

A⊆Θm(A) = 1, m is called

the basic belief assignment (bba, or mass function) over the

FOD Θ [1]. The belief function (Bel) and the plausibility

function (Pl) are defined below [1], respectively:

Bel(A) =
∑

B⊆A
m(B) (1)

Pl(A) =
∑

A∩B ∕=∅
m(B) (2)

In DST framework, Dempster’s rule of combination was

proposed for combining two distinct bodies of evidence

(BOEs) characterized by bba’s m1(.) and m2(.). Mathemati-

cally this rule is defined by:

m(A) =

⎧

⎨

⎩

0, A = ∅∑

Ai∩Bj=A

m1(Ai)m2(Bj)

1−K
, A ∕= ∅

(3)

where coefficient K =
∑

Ai∩Bj=∅ m1(Ai)m2(Bj) represents

the conflict between the BOEs.

Dempster’s rule of combination is both associative and

commutative and can be extended for combining n > 2
distinct sources of evidence as well. Aside debates on its

validity, Dempster’s rule of combination requires significantly

large computational cost with the increasing of the FOD’s

cardinality. Given a FOD with cardinaltiy of n, bba m(.)
can have up to 2n − 1 focal elements (empty-set ∅ here is

excluded), Furthermore, the combination of two bba’s requires

the computation of up to 2n+1 − 2 intersections.

To work with large FOD and make DST tractable, several

approaches have been proposed either by proposing efficient

algorithms [6]- [8] for evidence combination, by using Monte-

Carlo techniques, or by approximating bba[9], [10]. We prefer

to use the bba approximation approach [11] - [14] to reduce the

computational cost needed in the combination operation be-

cause the approximation approach reduces the computational

cost and also allow to deal with smaller-size focal elements,

which is more intuitive for human to catch the meaning [18].

III. RECENT BBA APPROXIMATION APPROACHES

For the purpose of comparisons, some recent bba approxi-

mation approaches are recalled in this section.

1) k-additive belief function approximation: Given a bba

m : 2Θ → [0, 1], the k-additive belief function [12] induced

by the mass assignment is defined in Eq.(5). Suppose that

B ⊆ Θ,
⎧



⎨



⎩

mk(B) = m(B) +
∑

A⊃B
A⊆Θ
∣A∣>k

m(A)⋅∣B∣
N (∣A∣,k) , ∀ ∣B∣ ≤ k

mk(B) = 0, ∀ ∣B∣ > k

(4)

where

N (∣A∣ , k) =
k

∑

j=1

(

∣A∣
j

)

⋅ j =
k

∑

j=1

∣A∣!

(j − 1)!(∣A∣ − j)!
(5)

is average cardinality of the subsets of A of size at most k.

It can be seen that for k-additive belief approximation, the

maximum cardinality of available focal elements is no greater

than k.
2) Hierarchical Proportional Redistribution approximation:

In our previous research work [16], we have proposed a new

bba approximation approach called hierarchical proportional

redistribution (HPR), which provides a new way to reduce

step-by-step the mass committed to uncertainties. Ultimately

an approximate measure of subjective probability can be

obtained if needed, i.e. a so-called Bayesian bba. The HPR

procedure can be stopped at any step in the process and thus

it allows to reduce the number of focal elements of a given

bba in a simple manner to diminish the size of the core of

a bba. Thus we can reduce the complexity (if needed) when

applying also some complex rules of combinations. By using

HPR, we can obtain approximate bba’s at any different non-

specificity level that we want. Let’s first introduce two new

notations for convenience and for concision:

1) Any element of cardinality 1 ≤ k ≤ n of the power

set 2Θ will be denoted, by convention, by the generic

notation X(k). For example, if Θ = {A,B,C}, then

X(2) can denote the following partial uncertainties

A ∪ B, A ∪ C or B ∪ C, and X(3) denotes the total

uncertainty A ∪B ∪ C.

2) The proportional redistribution factor (ratio) of width n
involving elements X and Y of the powerset is defined

as (for X ∕= ∅ and Y ∕= ∅)

Rs(Y,X) ≜
m(Y ) + � ⋅ ∣X ∣

∑

Y⊂X
∣X∣−∣Y ∣=s

m(Y ) + � ⋅ ∣X ∣
(6)

where � is a small positive number introduced here to

deal with particular cases where
∑

Y ⊂X
∣X∣−∣Y ∣=s

m(Y ) = 0.

By convention, we will denote R(Y,X) ≜ R1(Y,X)
when we use the proportional redistribution factors of

width s = 1.

The HPR is obtained by a step by step (recursive) proportional

redistribution of the mass m(X(k)) of a given uncertainty

X(k) (partial or total) of cardinality 2 ≤ k ≤ n to all the least

specific elements of cardinality k−1, i.e., to all possible X(k−
1), until k = 2 is reached. The proportional redistribution is

done from the masses of belief committed to X(k−1) as done

classically in DSmP transformation. The ”hierarchical” masses

mℎ(.) are recursively (backward) computed as follows. Here

mℎ(k) represents the approximate bba obtained at the step n−k
of HPR, i.e., it has the maximum focal element cardinality of

k.

mℎ(n−1)(X(n− 1)) = m(X(n− 1))+
∑

X(n)⊃X(n−1)

X(n),X(n−1)∈2Θ

[m(X(n)) ⋅ R(X(n− 1), X(n))];

mℎ(n−1)(A) = m(A), ∀∣A∣ < n− 1

(7)
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mℎ(n−1)(⋅) is the bba obtained at the first step of HPR

(n − (n − 1) = 1), the maximum focal element cardinality

of mℎ(n−1) is n− 1.

mℎ(n−2)(X(n− 2)) = m(X(n− 2))+
∑

X(n−1)⊃X(n−2)

X(n−2),X(n−1)∈2Θ

[mℎ(n−1)(X(n−1))⋅R(X(n−2), X(n−1))]

mℎ(n−2)(A) = mℎ(n−1)(A), ∀∣A∣ < n− 2

(8)

mℎ(n−2)(⋅) is the bba obtained at the second step of HPR

(n− (n− 2) = 2), the maximum focal element cardinality of

mℎ(n−2) is n− 2.

This hierarchical proportional redistribution process can

be applied similarly (if one wants) to compute mℎ(n−3)(.),
mℎ(n−4)(.), ..., mℎ(2)(⋅), mℎ(1)(⋅) with

mℎ(2)(X(2)) = m(X(2))+
∑

X(3)⊃X(2)

X(3),X(2)∈2Θ

[mℎ(3)(X(3)) ⋅ R(X(2), X(3))]

mℎ(2)(A) = mℎ(3)(A), ∀∣A∣ < n− 2

(9)

mℎ(2)(⋅) is the bba obtained at the first step of HPR (n− 2),

the maximum focal element cardinality of mℎ(2) is 2.

Mathematically, for any X(1) ∈ Θ, i.e. any �i ∈ Θ a

Bayesian belief function can be obtained by HPR approach

in deriving all possible steps of proportional redistributions of

partial ignorances in order to obtain

mℎ(1)(X(1)) = m(X(1))+
∑

X(2)⊃X(1)

X(1),X(2)∈2Θ

[mℎ(2)(X(2)) ⋅ R(X(1), X(2))] (10)

In fact, mℎ(1)(⋅) is a probability transformation, called here

the Hierarchical DSmP (HDSmP). Since X(n) is unique and

corresponds only to the full ignorance �1 ∪ �2 ∪ . . . ∪ �n, the

expression of mℎ(X(n− 1)) in Eq.(7) just simplifies as

mℎ(n−1)(X(n− 1)) = mℎ(X(n− 1))+

m(X(n)) ⋅R(X(n− 1), X(n)) (11)

For the full proportional redistribution of the masses of un-

certainties to the elements least specific involved in these un-

certainties, no mass is lost during the step-by-step hierarchical

process and thus at any step of HPR, the sum of masses is kept

to one. Illustrative examples of HPR can be found in [16].

IV. BBA APPROXIMATIONS BASED ON OPTIMIZATION

A “good” approximated bba should be simpler1 than the

original one and at the same time should be as similar

as possible to the original bba. To obtain such a “good”

approximated bba, in this paper we predefine the maximum

focal element size of the approximated bba as k to ensure

the “simplicity” and we attempt to approximate bba by min-

imizing the dissimilarity between the original one and the

approximated one to ensure the “similarity”. That is to say, the

problem of bba approximation is converted to an optimization

problem. For the optimization problem, we need to define the

objective function and some constraints which will be detailed

in the next subsections.

A. Design of objective function

Our purpose is to minimize the dissimilarity between the

original bba and the approximated one. But how to measure the

dissimilarity between bba’s? The distance of evidence seems

to be a good primary choice and several types of distance of

evidence have been proposed in the literature (see Jousselme et

al’s latest survey in [19] for details). Among all the proposals

for distances of evidence, we have chosen Jousselme’s distance

based on the form of Euclidean metric because it is a strict

distance metric [19] and takes into account the specificity of

focal2 elements of the bba. This distance is defined by

dJ (m1,m2) =

√

(m1 −m2)
T
Jac (m1 −m2) (12)

Jac is the Jaccard’s weighting matrix whose elements are

given by

Jac(A,B) =
∣A ∩B∣

∣A ∪B∣
(13)

where A and B represent the focal elements of m1(.) and

m2(.), respectively.

Aside Jousselme’s distance, we propose to use also the

difference between the uncertainty degree of two different

bba’s to describe their dissimilarity. Several measures of

uncertainty have been proposed in the literature and we just

recall the most important ones below:

1) Aggregated Uncertainty (AU): Let m(.) be a bba on the

FOD Θ. The AU associated with m(.) is defined by [20]:

AU(m) = max
Pm

[−
∑

�∈Θ

p� log2 p�] (14)

where the maximum is taken over all probability distributions

that are consistent with the given bba. Pm consists of all

probability distributions ⟨p�∣� ∈ Θ⟩ satisfying the constraints:
⎧

⎨

⎩

p� ∈ [0, 1], ∀� ∈ Θ
∑

�∈Θ p� = 1
Bel(A) ≤

∑

�∈A p� ≤ 1−Bel(Ā), ∀A ⊆ Θ
(15)

1The core of approximated bba must be smaller than the core of the original
bba.

2X is a focal element of a bba m(.) if m(X) > 0.
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As illustrated in Eq. (14) and Eq. (15), in the definition of AU,

the calculation of AU is an optimization problem and bba’s

(or belief functions) are used to establish the constraints of the

optimization problem. It is also called the “upper entropy”. AU

is a strict uncertainty measure satisfying the five requirements

for uncertainty measure [20]. However, AU has a high

computing complexity and a high insensitivity to the changes

of evidence [21] which makes this measure not very attractive.

2) Ambiguity measure (AM): Let Θ = {�1, �2, ..., �n} be

a FOD with n elements. Let m be a bba defined on Θ. The

Ambiguity Measure (AM) [21] is defined by

AM(m) = −
∑

�∈Θ
BetPm(�) log2(BetPm(�)) (16)

where BetPm({�}) =
∑

�∈B,B⊆Θm(B)/ ∣B∣ is the pignistic

probability distribution [13] computed from the bba m(.).
In fact AM does not satisfy the subadditivity as pointed out

by Klir in [22]. Also AM is logically non-monotonic under

some circumstances as proved by Abellan [20]. AU and AM

are both established based on Shannon entropy over some

probability transformation resulting from a given bba.

3) Non-specificity: This measure introduced in [23] and

denoted U(m) is defined directly from m(.) by

U(m) =
∑

A⊆Θ

m(A) log2 ∣A∣ (17)

It is worth noting that this measure describes the non-

specificity aspect (when two or more alternatives left unspeci-

fied) of the uncertain degree incorporated in a body of evidence

but cannot well discriminate two distinct bba’s in some cases.

For example, let’s consider the two bba’s m1(.) and m2(.)
given by
{

m1(�1 ∪ �2) = 0.1,m1(�2 ∪ �3) = 0.8,m1(�1 ∪ �3) = 0.1

m2(�1 ∪ �2) = 1/3,m2(�2 ∪ �3) = 1/3,m2(�1 ∪ �3) = 1/3

It is clear that their corresponding non-specificity values

are the same: U(m1) = U(m2) = 1, although m1(.) and

m2(.) are obviously different.

As already mentioned, AU and AM have their drawbacks.

Because AU and AM are established based on some bba

approximations (in fact, probability transformations), so

there exist the loss of information and that is why we don’t

recommend them as efficient measures of uncertainty degree

of a body of evidence. Although the non-specificity measure

U(.) represents only one aspect of the uncertainty, it is

defined directly based on bba and it is easy to calculate. For

these reasons, we prefer to use the non-specificity jointly

with Jousselme’s distance to construct the objective function

in our optimization problem.

The construction of our objective function to minimize

is based both on Jousselme’s distance dJ(., .) and the non-

specificity measure U(.) as follows:

1) we use distance of evidence in Eq. (12) to construct the

objective function

obj1(m) = dJ (m,morg)

2) we use the non-specificity to construct the objective

function

obj2(m) =
U(morg)− U(m)

U(morg)

where morg(.) denotes the original bba to be approximated

by the bba m(.).

In this paper, we propose to use these measures of distance

of evidence and non-specificity to construct the global ob-

jective function to minimize. How to combine them into one

comprehensive global objective function? Since one does not

have a priori clear answer to this problem, we have examined

the simplest two methods for doing this.

1) Additive global objective: It is defined by

obj(m) = � ⋅ obj1(m) + � ⋅ obj2(m)

More precisely, by

obj(m) = � ⋅ dJ (morg,m) + � ⋅
U(morg)− U(m)

U(morg)
(18)

where �, � ∈ [0, 1] represent the importance or degree

of preference of obj1 and obj2, respectively.

2) Multiplicative global objective: It is defined by

obj(m) = (obj1(m))� ⋅ (obj2(m))�

More precisely, by

obj(m) = (dJ(morg)
� ⋅ (

U(morg)− U(m)

U(morg)
)� (19)

B. Design of constraints

1) Weak constraints: The approximated bba m(.) should

at first satisfy the definition of bba. Suppose the maximum

cardinality of the approximated bba m(.) is k, then we must

have ⎧

⎨

⎩

0 ≤ m(A) ≤ 1, ∀A ⊆ Θ
∑

B⊆Θ
∣B∣≤k

m(B) = 1 (20)

Because the purpose of the bba approximation is to reduce

the complexity of a given bba, the uncertainty degree of the

approximated bba should not be higher than the original one.

This principle introduces naturally the constraint U(m) ≤
U(morg). Therefore the constraints that the approximated bba

m(.) must satisfy are
⎧





⎨





⎩

0 ≤ m(A) ≤ 1, ∀A ⊆ Θ
∑

B⊆Θ
∣B∣≤k

m(B) = 1

U(m) < U(morg)

(21)

These constraints above are in fact too weak as shown in

Example 1.
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Example 1: Suppose that the FOD is Θ = {�1, �2, �3, �4} and

the given bba is

morg(�1) = 0.8, morg(�2) = 0.04, morg(�3) = 0.04;

morg(�4) = 0.04, morg(�2 ∪ �3) = 0.04,

morg({�2 ∪ �3 ∪ �4}) = 0.04

If we use the constraints in Eq. (21) and the minimization

of the global multiplicative objective, we obtain the following

approximated bba

m(�1) = 0.7850, m(�2) = 0.0272, m(�3) = 0.0272;

m(�4) = 0.0573, m(�2 ∪ �3) = 0.1034;

One sees that we have also diluted (diminished) the precise

information focused on �1 only (0.8), focused on �2 only

(0.04), focused on �3 only (0.04) and focused on �4 only

(0.04) to other partial uncertainty.

If we use the constraints in Eq. (21) and according to the

minimization of the global additive objective (� = � = 1),

we obtain the approximated bba as

m(�1) = 0.8000, m(�2) = 0.0216, m(�3) = 0.0216;

m(�4) = 0.0533, m(�2 ∪ �3) = 0.1034;

Based on the minimization of the global additive objective

under constraints, one has also diluted the precise information

focused on �2 only (0.04) and focused on �3 only (0.04)

to other partial uncertainty. In both cases (with additive or

multiplicative global objectives), we don’t see any serious and

legitimate reasons for justifying such behavior in practice.

There exists another extreme case as shown in Example 2.

Example 2: Suppose that the FOD is Θ = {�1, �2, �3} and

the given bba is

morg(�1) = 0.1, morg(�2) = 0.1, morg(�3) = 0.0;

morg(�1 ∪ �2) = 0.3, morg(�2 ∪ �3) = 0.1

morg(�1 ∪ �2 ∪ �3) = 0.4

If we minimize the global additive (or multiplicative) ob-

jective under the constraints in Eq. (21) with � = � = 1, we

obtain the following approximated bba

m(�1) = 0.0, m(�2) = 0.0, m(�3) = 0.0;

m(�1 ∪ �2) = 0.6375, m(�2 ∪ �3) = 0.3625

and one sees that the mass assignments for singletons are

completely diluted. There is no legitimate reason for doing

that. This phenomenon is due to the weakness of the con-

straints used. Therefore to circumvent the problem, we need

to consider stronger constraints.
2) Strong constraints: To be assured that there is no dilu-

tion phenomenon as illustrated in Examples 1 or 2, we add

the following additional constraint

m(A) ≥ morg(A), ∀ ∣A∣ ≤ k (22)

where k is the maximum allowed focal element size of the

approximated bba. We thus prevent the dilution by doing this.

Then the enforced set of constraints is
⎧

⎨

⎩

m(A) ≥ morg(A), ∀ ∣A∣ ≤ k
0 ≤ m(A) ≤ 1, ∀A ⊆ Θ
∑

A⊆Θm(A) = 1, ∀ ∣A∣ ≤ k
(23)

If we use the strong constraints (23) in Example 1 for bba

approximation, we obtain the following bba3

m(�1) = 0.8,m(�2) = 0.04,m(�3) = 0.04;

m(�3) = 0.04,m(�4) = 0.04,m(�2 ∪ �3) = 0.08.

If we use the strong constraints (23) in Example 2 for bba

approximation, we obtain the following bba4

m(�1) = 0.1,m(�2) = 0.1,m(�3) = 0.0;

m(�1 ∪ �2) = 0.5,m(�2 ∪ �3) = 0.3

As we can see, there is no phenomena of dilution. The

strong constraints are more rational than the weak constraints.

C. In summary

Based on the strong constraints and by using either the

global additive or the global multiplicative objectives, we can

establish two optimization problems for bba approximations

which can be summarized as follows:

Optimization additive

min
m

(

obj(m) = � ⋅ dJ(morg,m) + � ⋅
U(morg)−U(m)

U(morg)

)

s.t.

⎧



⎨



⎩

m(A) ≥ morg(A),∀ ∣A∣ < k
0 ≤ m(A) ≤ 1,∀A ⊆ Θ
∑

B⊆Θ
∣B∣≤k

m(B) = 1

(24)

and

Optimization multiplicative

min
m

(

obj(m) = (dJ (morg,m))� ⋅ (
U(morg)−U(m)

U(morg)
)
�
)

s.t.

⎧



⎨



⎩

m(A) ≥ morg(A),∀ ∣A∣ ≤ k
0 ≤ m(A) ≤ 1, ∀A ⊆ Θ
∑

B⊆Θ
∣B∣≤k

m(B) = 1

(25)

V. EXPERIMENTS

In this section, we randomly generate bba’s and compare

different bba approximation approaches including the new

proposed bba approximation approaches, k-additive and HPR

approaches. The bba’s are generated according to Algorithm

1 below [24]:

Algorithm 1. Random generation of bba

Input: Θ : Frame of discernment;

Nmax: Maximum number of focal elements

Output: Bel: Belief function (in the form of a bba, m)

Generate P(Θ), which is the power set of Θ;

Generate a random permutation of P(Θ) → ℛ(Θ);
Generate an integer between 1 and Nmax → l;
FOReach First l elements of ℛ(Θ) do

Generate a value within [0, 1] → mi, i = 1, ..., l;
m(Ai) = mi;

END

Normalize the vector m = [m1, ...,ml] → m′;

3 The same result is obtained with multiplicative or with additive global
objective with � = � = 1.

4idem as footnote 3.
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In our tests, we have set the cardinality of the FOD to

5 and fixed the number of focal elements to l = Nmax =
25 − 1 = 31. We randomly generate bba’s for L = 30
times. At each time, different bba approximations are executed

with remaining maximum focal element’s size of 4, 3, and 2,

respectively. Non-specificity and distance of evidence are used

to evaluate their corresponding approximated bba’s, which are

shown in Fig. 1 and Fig. 2. The parameter of optimization

problem (additive way and multiplicative way) are � = � = 1
As we can see in Fig. 1 and Fig. 2, the optimization

approach based on the global additive objective and the

optimization approach based on the global multiplicative ob-

jective always have lowest distance values and have the non-

specificity values being closest to the those of the original

bba’s. This means that our proposed optimization approach for

bba approximation is rational and it is better than k-additive

and HPR. However, according to the non-specificity criterion,

HPR performs as good as our bba approximation approaches

based on optimization of our objective functions.

It should be noted that the experimental results of the

optimization approach based on global additive objective and

based on global multiplicative objective are very close, so we

plot two figures to respectively illustrate their comparisons

with other approaches.

Furthermore, we have used also the normalized mean

squared error (NMSE) criterion to evaluate their performances.

NMSE is defined by

NMSE(error) =
1

L

L
∑

i=1

(e⃗(i))
2

variance(e⃗)
(26)

where L is the number of tests, and the error vectors are

defined for i = 1, 2, . . . , L by

⃗e(i) = obj(morg)− obj(m(i))

with obj(⋅) given by Eq. (18).

Our simulations results of NMSE obtained by the different

approaches are list in Table I below.

Table I NMSE COMPARISONS AMONG DIFFERENT APPROACHES

Approaches k = 4 k = 3 k = 2
Opt add 13.5052 17.9532 43.2814

Opt multi 13.5123 17.9533 43.2816
HPR 13.5715 18.1212 43.3821

k-additive 14.1915 20.4053 54.9697

As we can see in Table I, the optimization approach based

on global additive objective always provides the lowest NMSE

values, which indicates that the optimization approach based

on global additive objective performs the best.
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Fig. 1. Comparisons of Opt additive with HPR and k-additive.

291



0 10 20 30
1

1.1

1.2

1.3

1.4

N
o
n
−

s
p
e
c
if
ic

it
y

 

 

0 10 20 30
0.9

1

1.1

1.2

1.3

1.4

bba’s
0 10 20 30

0.8

1

1.2

1.4

 

 

0 10 20 30
0

0.01

0.02

D
is

ta
n
c
e
 o

f 
E

v
id

e
n
c
e

0 10 20 30

0.02

0.04

0.06

0.08

bba’s
0 10 20 30

0.1

0.15

0.2

m
origin

m
k−additive

m
HPR

m
Opt

Multi

Max Focal element size =2Max Focal element size =4

Max Focal element size =4 Max Focal element size =2

Max Focal element size =3

Max Focal element size =3
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VI. CONCLUSION

In this paper, new bba approximation approaches have been

proposed based on optimization. The construction of objective

functions and the constraints were also discussed and analyzed.

Experimental results show the rationality of our proposed

approaches. It should be noted that although our new ap-

proaches performs well, they are based on optimization, which

will cause more computational complexity. That is to say the

good performance is at the price of computational complexity.

Our previously proposed HPR has comparable performances

with respect to the performances of our new optimization

approaches, but HPR does not has so high computational

complexity as bba approximations based on optimization. So

in some time-sensitive applications, HPR is a better choice.

Furthermore, in our objective function construction, there still

exists the problem of selection of the weighting parameters �
and �. Their effects on the results of the bba approximations

will be analyzed in details in future research works.
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