
Design of Dynamic Multiple Classifier Systems

Based on Belief Functions

Deqiang Han

Center for Information Engineering Science Research

Xi’an Jiaotong University

Xi’an, Shaanxi, China 710049

Email: deqhan@gmail.com

X. Rong Li

Department of Electrical Engineering

University of New Orleans

New Orleans, LA 70148 USA

Email: xli@uno.edu

Shaoyi Liang

Inst. of Integrated Automation

Xi’an Jiaotong University

Xi’an, Shaanxi, China 710049

Email: liangshaoyi1987@gmail.com

Abstract—The technique of Multiple Classifier Systems
(MCSs), which is a kind of decision-level information fusion,
has fast become popular among researchers to fuse multiple
classification outputs for better classification accuracy. In MCSs,
there exist various kinds of uncertainties such as the ambiguity of
the output of individual member classifier and the inconsistency
among outputs of member classifiers. In this paper, we model the
uncertainties in MCSs based on the theory of belief functions. The
outputs of member classifiers are modeled using belief functions.
A new measure of diversity in member classifiers is established
using the distance of evidence, and the fusion rule adopted for
MCSs is Demspter’s rule of combination. The construction of
MCSs based on the proposed diversity measure is a dynamic
procedure and can achieve better performance than using existing
diversity measures. Experimental results and related analyses
show that our proposed measure and approach are rational and
effective.

Keywords—multiple classifier system; uncertainty; belief func-
tion; diversity; pattern classification.

I. INTRODUCTION

Pattern classification [1] is one of the most important areas
in machine learning. When dealing with classification prob-
lems in a complicated environment, a single classifier is often
not competent. Multiple classifier systems (MCSs) [2], [3], [4],
[5] aim at building multiple classifiers and then integrating
their outputs for final decision-making. Over the past decade,
MCSs have been actively exploited for improving classification
accuracy and reliability over individual classifiers. MCSs have
been widely used in areas such as handwriting character
recognition [6], credit risk analysis [7], biometric identification
[8], remote sensing [9], and automatic target recognition [10].

Implementation of a multiple classifier system (MCS),
also called a classifiers ensemble, includes the generation of
member classifiers and the fusion of the outputs of different
member classifiers. There have emerged several approaches [2]
to generating various member classifiers, e.g., using different
samples, different feature spaces (or subspaces), different types
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of classifiers, and different parameter settings for classification.
They all devote to generating various types of “differences”
among member classifiers. Such “differences” are called “di-
versity” [11] in MCS, which are important for improving
classification accuracy using an MCS. It would be meaningless
to combine multiple redundant classifiers which have similar
or the same misclassification regions. Diversity measures now
have become a research focus in the field of MCSs. In 2005,
the journal “Information Fusion” published a special issue
on “Diversity Measure in Multiple Classifier Systems” [12],
paying special attention to the definition of diversity measures
and their prediction ability of the combining performance. It
should be noted that almost all the existing diversity measures
[11] are established based on classification results of the
training samples, which are in a statistical sense. Information
of a specific query (or test) sample is ignored.

The combination rules used in the MCS are also important.
In 1992, Xu et al. [6] provided a detailed research paper on the
selection of combination rules in the MCS. Kittler [3] summa-
rized the combination rules used in the MCS, especially those
under a Bayesian framework. Many researchers have proposed
various combination methods, such as the Bayes method,
Behavior Knowledge Space (BKS) [13], logistic regression
[14], voting [15], and Dempster-Shafer evidence theory [16]
(also called the theory of belief functions). In general, the
rule used for MCSs depends on the output type of member
classifiers.

The use of multiple classifiers brings more information, and
therefore better classification performance can be expected.
However, it also brings the problem of conflict or inconsis-
tency because the outputs of member classifiers are often not
accordant, especially for the member classifiers with outputs at
the measurement level. The theory of belief functions [16] is a
powerful tool for uncertainty modeling and reasoning. In this
paper, we attempt to model the outputs of member classifiers
using belief functions and use Dempster’s rule of combination
as the fusion rule. As referred above, available diversity
measures have limitations. We propose a new diversity measure
based on the distance of evidence [17]. Such a measure can
make full use of the information of the query sample. In the
generation of member classifiers, we adopt the strategy of
“overproduction and selection” — many member classifiers
are generated, and only those having high diversity and good
performance on training sets are selected to construct the MCS.
Experimental results and related analyses verify the rationality



and efficiency of our proposed new measure and approach.

II. BASICS OF MULTIPLE CLASSIFIER SYSTEMS

MCSs [2], [3], [4], [5] have attracted much interest in the
machine learning and pattern classification community thanks
to their potential of increasing classification accuracy. As
mentioned above, there are several ways to generate member
classifiers, e.g., using different feature spaces (or subspaces)
and using different types of classifiers. The procedure of
implementing an MCS based on different feature spaces (or
subspaces) is shown in Fig. 1.

Fig. 1: An implementation of MCSs.

A. Output types of member classifiers

Given a query sample xq ∈ Rd, there are totally M classes
in the class space represented by {Ci, i = 1, . . . ,M}. In Fig.
1, ek (k = 1, 2, ..., n) denote the member classifiers based
on different feature spaces. Xk (k = 1, 2, ..., n) denote the
different feature vectors (corresponding to different feature
spaces or subspaces) extracted from xq . Based on the outputs
of member classifiers, a combination and decision center can
assign a class label to xq . The outputs of a member classifier
can be categorized into three types [6]:

1) Abstract Level: the classifier produces a unique class
label for xq . Classifier ek assigns a class label jk to sample
xq, i.e., ek(xq) = jk, k = 1, 2, ..., n.

2) Rank Level: the classifier ranks all possible labels in a
set in a sequence Lk ⊆ Λ with the label at top being the first
choice.

3) Measurement Level: the classifier attributes to each
label a measurement value such as a posterior probability or
membership function value. For xq , each member classifier
ek brings out an output vector [!k(C1), !k(C2), ..., !k(CM )],
where !k(Ci) ∈ [0, 1] can be considered as the membership
function for the given query sample belonging to class Ci.

B. Fusion rules for MCSs

The combination or fusion rules are crucial to the perfor-
mance of an MCS. Various combination rules [3], [13], [15],
[16] can be used in MCSs according to the member classifiers’
output types [6]. If the outputs are at the abstract level, we can
use the voting rules to fuse member classifiers; if the outputs
are at the rank level or measurement level, especially the
measurement level, we can use various rules including voting
rules, Behavior Knowledge Space (KBS), fuzzy logic and the
theory of evidence to fuse according to the outputs’ specific

representation (e.g., probability, membership function or belief
function) at the measurement level. This is because the outputs
at the measurement level have relatively rich information.

Combination rules are to combine or fuse different member
classifiers. Comparatively, diversity among different member
classifiers is a more crucial factor because great diversity is a
necessary condition for improving classification performance.
Diversity measures are discussed below.

C. Diversity measures for MCSs

Diversity measures quantify the diversity or complemen-
tarity among member classifiers. Available diversity measures
can be categorized into two major types [11]:

1) Pairwise measures: Pairwise measures are calculated
between two member classifiers. Table I shows the joint counts
Nab

ij of two classifiers ei and ej . For example N01
ij denotes that

ei obtains an incorrect result and ej obtains a correct result.
Here, subscript ij for N has been omitted for convenience.
Some representative pairwise diversity measures, including
the Q-statistic (Q), correlation coefficient (R), disagreement
measure (D) and double-fault measure (DF), are shown in
(1)–(4).

TABLE I: The joint counts for outputs of two classifiers

ej correct (1) ej incorrect (0)

ei correct (1) N11 N10

ei incorrect (0) N01 N00

Qi,j =
N11N00 −N01N10

N11N00 +N01N10
(1)

Ri,j =
N11N00 −N01N10

√

(N11 +N10)(N01 +N00)(N11 +N01)(N10 +N00)
(2)

Di,j =
N01 +N10

N11 +N00 +N01 +N10
(3)

DFi,j =
N00

N11 +N00 +N01 +N10
(4)

For an ensemble of L classifiers, the averaged diversity mea-
sure over all classifiers is

Diversityave =
2

L(L− 1)

L−1
∑

i=1

L
∑

j=i+1

Diversityi,j (5)

where Diversityi,j can be either Qi,j , Ri,j , Di,j or DFi,j .

2) Non-pairwise measures: Non-pairwise measures are cal-
culated directly over all member classifiers. They can be
calculated using the proportion of classifiers that misclassify
randomly selected samples. A non-pairwise measure is

E =
1

N

N
∑

j=1

1

(L− ⌈L/2⌉)
min{l(zj), L− l(zj)} (6)

where L is the number of classifiers, N is the number of
training samples, ⌈⋅⌉ is the ceiling function and l(zj) represents
the number of classifiers that correctly classify the sample zj .
If for all the samples, all the classifiers are accordant, then E
reaches its minimum value of 0. If for each sample zj , l(zj) is
close to L− l(zj), i.e., about half classifiers are not accordant
to their counterparts, then E is close to its maximum value.



D. Limitations of available diversity measures

As we can see, the available diversity measures are de-
signed using the classification results on training samples, i.e.,
the consistency or inconsistency of the classification results are
used to establish the diversity measures. That is to say, such
measures are defined in a statistical sense. Thus, they can not
use information of specific query samples.

Furthermore, based on the available diversity measures, it
is difficult to quantify “difference in misclassification regions,”
as illustrated in Example 1.

Example 1: Suppose that there are six samples x1, ...,x6

and two MCSs: MCS1 and MCS2. Both MCSs have three
member classifiers. The classification results of each classifier
are as follows (correct-1/incorrect-0, MCSj

i denotes the jth
classifier in the ith MCS),

MCS1
1 : [1, 0, 0, 0, 0, 0] MCS1

2 : [1, 0, 0, 0, 0, 0]
MCS2

1 : [0, 1, 0, 0, 0, 0] MCS2
2 : [0, 0, 1, 0, 0, 0]

MCS3
1 : [0, 0, 1, 0, 0, 0] MCS3

2 : [0, 0, 0, 0, 1, 0]

Quantify the diversity among the two MCSs using the mea-
sures Q-statistic (Q), correlation coefficient (R), disagreement
measure (D), and double-fault measure (DF). When checking
any two classifiers in MCS1 or MCS2, we obtain

N11 = 0, N10 = 1, N01 = 1, N00 = 4.

Thus, the diversity measures are

QMCS1
= QMCS2

= −1, RMCS1
= RMCS2

= −0.2,
DMCS1

= DMCS2
= 0.33, DFMCS1

= DFMCS2
= 0.67.

Such results show that the two MCSs have the same diversity
according to any of the four measures. However, the member
classifiers in the two MCSs have different correct/incorrect
classified samples. The diversity in MCS1 and that in MCS2

are different in this sense. So, these traditional diversity
measures cannot distinguish the two different “diversities”. We
call this “diversity submergence”.

E. Uncertainty in implementation of MCSs

The use of multiple classifiers brings more information, and
therefore better classification performance can be expected.
However, uncertainty emerges at the same time. Here we are
concerned with two types of uncertainty in MCSs.

∙ Type I: The uncertainty in the output of an individual
member classifier.
There is no uncertainty if a member classifier’s output
is at the abstract level, i.e., only with a determinate
class label. Such an output is relatively arbitrary and
might cause a loss of useful information. For the
output at the measurement level, the possibility or
probability of different class labels is assigned to a
given query sample, i.e., information for decision is
relatively abundant. However, there exists ambiguity
for the class label assignment.

∙ Type II: The inconsistency among outputs of member
classifiers.
Each member classifier brings its own output. For
an MCS, the ensemble of outputs obtained might be
accordant or conflicting.

Since there exists uncertainty in implementation of MCSs,
a tool of uncertainty modeling and reasoning is needed. The
theory of belief function is a good choice, which is briefly
recalled below.

III. BASICS OF THEORY OF BELIEF FUNCTIONS

In the theory of belief functions [16], the elements in the
frame of discernment (FOD) denoted by Θ are mutually exclu-
sive and exhaustive. Suppose that 2Θ denotes the powerset of
FOD. Define the function m : 2Θ → [0, 1] as the basic belief
assignment (bba) if it satisfies:

∑

A⊆Θ
m(A) = 1, m(∅) = 0 (7)

A bba is also called a mass function. If m(A) > 0, A is called
a focal element of m(⋅).

Belief function (Bel) and plausibility function (Pl) are
defined by:

Bel(A) =
∑

B⊆A
m(B) (8)

P l(A) =
∑

A∩B ∕=∅
m(B) (9)

Consider two bba’s m1(⋅) and m2(⋅) defined over the FOD
Θ. Their corresponding focal elements are A1, ..., Ak and
B1, ..., Bl. If K =

∑

Ai∩Bj=∅
m1(Ai)m2(Bj) < 1, the

function m : 2Θ → [0, 1] given by

m(A) =

⎧



⎨



⎩

0, A = ∅
∑

Ai∩Bj=A

m1(Ai)m2(Bj)

1−
∑

Ai∩Bj=∅

m1(Ai)m2(Bj)
, A ∕= ∅

(10)

is also a bba. The rule defined by (10) is called Dempster’s
rule of combination for combining distinct bodies of evidence.

After combining the bba’s by a given fusion rule we obtain
a new bba. To make a decision on an element of the FOD
Θ, we use a transformation to approximate the new bba as
a probability mass function (pmf). The pignistic probability
transformation BetP (⋅) proposed by Smets [18] is often used,
which is illustrated in (11):

BetPm(Ci) =
∑

{Ci}∈A⊆Θ
m(A)/ ∣A∣ , ∀A ⊆ Θ (11)

where ∣A∣ denotes the cardinality of the focal element A.

Other transformations are also possible, such as DSmP (⋅)
which is more complex to implement. Here, we use BetP (⋅)
because of its simplicity. Details of DSmP (⋅) and other
transformations are given in [19].

IV. MODELING CLASSIFIERS’ OUTPUTS USING BELIEF

FUNCTIONS

To use the theory of belief functions to deal with the
uncertainty in MCSs, we should first model member classi-
fiers’ outputs using belief functions, which is in fact the bba
generation. In our work, we use two approaches to generate
the bba’s.



1) Generation of Bayesian bba’s: The Bayesian bba refers
to a bba with only focal elements of singletons. Here, we use
k-nearest neighbor (k-NN) classifier [1] to generate Bayesian
bba’s. L different feature subspaces of samples are used to
generate L classifiers. That is, in each feature subspace i
(i = 1, ..., L), a k-NN classifier ei is implemented. For a given
query sample xq , using ei we find its k nearest neighbors:

{x1, ..., xk} and the class distributions of the k samples, i.e.,
to count the number of samples (denoted by nC) belonging
to each class. Suppose FOD is Θ = {C1, C2, ..., CM}. ei’s
output in terms of Bayesian bba for the query sample xq is

mi(Cj) =
nj

∑M

l=1
nl

(12)

An illustrative example of bba generation is shown in Fig. 2
with k = 13, n1 = 7, n2 = 3, n3 = 3. The corresponding
Bayesian bba is

m(C1) = 7/13,m(C2) = 3/13,m(C3) = 3/13.

Fig. 2: Bayesian bba generation.

2) Generation of Non-Bayesian bba’s: In [20], an evi-
dential clustering approach was proposed. Although it was
designed for unsupervised learning, e.g., clustering, we use
it here as a reference to generate bba’s in supervised learning,
e.g., classification.

Suppose that there are M classes. Thus, the FOD is set
as {C1, C2, ..., CM}. There could be 2M − 1 focal elements.
Suppose there are L feature subspaces. Then we can generate
L member classifiers. For a member classifier ei, we calculate
the centroid rj =

∑nj

i=1
x
j
i/nj over all the training samples

belonging to class Cj to represent class Cj . We can also define
a compound class. For example, for class Cs and Ct, where
s, t ∈ {1, ...,M}, we calculate the centroid rs∪t = (rs + rt)/2
of all the training samples belonging to Cs or Ct to represent
the compound class of Cs ∪ Ct. Then calculate the distance
d(xq, rl) between xq and each centroid rl, respectively. Here l
is the index of all the “extended” classes, which include single
classes and compound classes. For example, if there are three
single classes, then there will be 23 − 1 = 7 extended classes.
Thus, l = 1, ..., 7. The output of ei in terms of bba for query
sample xq is generated as

m
xq
i (Aj) =

∣Aj ∣
−�/(�−1) ⋅ (d(xq, rj))

−2/(�−1)

∑

Al ∕=∅ ∣Al∣−�/(�−1) ⋅ d(xq , rl)
−2/(�−1) + �−2/(�−1)

(13)

where Aj is a focal element, and � and � are parameters of
weighting component. See [20] for details. Their default values
are � = 2, � = 2. In our work, we are concerned with only the
close-world assumption, i.e., no unknown class, and therefore
the parameter � (distance to empty set) is set to 0.

The non-Bayesian bba generation is also illustrated in Fig.
3 (FOD = {C1, C2, C3}). For example, for classifier ei, when
d(xq, r1) = 1.8, d(xq, r2) = 3.5, d(xq, r3) = 1.7, d(xq, r4) =

Fig. 3: Non-Bayesian bba generation.

1.7, d(xq, r5) = 0.5, d(xq, r6) = 2.0 and d(xq, r7) = 1.5,
according to (13), ei’s non-Bayesian bba for xq is

m
xq

i (C1) = 0.1595,m
xq

i (C2) = 0.0422,m
xq

i (C3) = 0.1789,
m

xq

i (C1 ∪ C2) = 0.0447,m
xq

i (C1 ∪C3) = 0.5169,
m

xq

i (C1 ∪ C3) = 0.0323,m
xq

i (C1 ∪C2 ∪C3) = 0.0255.

V. NEW DIVERSITY MEASURE BASED ON THEORY OF

BELIEF FUNCTIONS

Diversity is a crucial factor in designing MCSs. As men-
tioned above, existing diversity measures have limitations.
Since we have modeled the outputs of member classifiers
using belief functions, we can use some indices measuring
the difference or diversity among belief functions to describe
the diversity among member classifiers. Distance of evidence
is such a good choice.

A. Distance of evidence

Several distances of evidence have been proposed in the
literature [21]. Among all the proposed distances of evidence,
we have chosen Jousselme’s distance based on the form of
Euclidean metric because it is a strict [22] distance metric and
takes into account the specificity of focal elements of the bba.
Jousselme’s distance is defined as

dJ (m1,m2) =

√

(m1 −m2)
T
Jac (m1 −m2) (14)

Jac is Jaccard’s weight matrix whose elements are given by

Jac(A,B) =
∣A ∩B∣

∣A ∪B∣
(15)

where A and B represent the focal elements of m1(⋅) and
m2(⋅), respectively.

B. Diversity measure based on distance of evidence

Then, we define a diversity measure using the distance of
evidence as follows. Given an MCS with L member classifiers.
Suppose that there are M possible classes. Given a query
sample xq , the classifier ei’s output is modeled using a bba

m
xq
i (⋅), where i = 1, ..., L.

Step 1: Calculate the center of all bba’s.



The center of all bba’s is calculated according to

mxq
c (Aj) =

∑L

i=1
m

xq
i (Aj)

L
(16)

where m
xq
c (⋅) is the center or mean bba and Aj is a focal

element (j = 1, ..., 2M − 1).

Step 2: Calculate the average distance between all bba’s and
the center bba.

For an ensemble of classifiers, if their output bba’s are
similar to each other, their diversity will be small. Thus, we
define the diversity as the average distance between all bba’s
and the center bba.

Div
xq
bba(MSC) =

∑L

i=1
dJ(m

xq
c (⋅),m

xq
i (⋅))

L
(17)

It can be seen that our proposed diversity measure is query-
sample-dependent. That is, it is a dynamic index dependent on
query samples, while traditional diversity measures are estab-
lished in a statistical sense, as referred above. Our proposed
diversity measure can alleviate some limitations of available
diversity measures. See Example 2 below.

Example 2: Suppose the FOD is {C1, C2, C3}. Given a
sample x belonging to C1. By using the member classifiers
in two MCSs (MCS1,MCS2), the classification results are
shown in Table II. It should be noted that each bba in Table
II is a vector of [m(C1),m(C2),m(C3)].

TABLE II: Classification results for a query sample

Classifiers Output bba Classification result correct(1) /incorrect(0)

MCS1 − e1 [0.8, 0.1, 0.1] C1 1

MCS1 − e2 [0.1, 0.8, 0.1] C2 0

MCS2 − e1 [0.5, 0.4, 0.1] C1 1

MCS2 − e2 [0.4, 0.5, 0.1] C2 0

For the sample x, the member classifiers in MCS1 disagree
with each other and so does MCS2. If we want to calculate
the traditional diversity of MCS1 and MCS2, using of the
sample x only increases the number of disagreed classification
(N10) by one for both MCSs considered. This is because for
both MCSs, e1(x) is correct and e2(x) is incorrect. However,
based on the outputs in terms of bba’s, we can obviously
find that the inconsistency in MCS1 is more significant than
in MCS2. With the traditional diversity measures, such a
difference cannot be revealed.

By using our proposed diversity measure (17), we obtain
Div

xq
bba(MCS1) = 0.7 and Div

xq
bba(MCS2) = 0.1. Such

results can well describe the real situations for the two MCSs.

Diversity measures can be used to evaluate the diversity
among member classifiers. However, the more important issue
is to use the diversity measure to design MCSs, i.e., generate
member classifiers. In this paper, we propose a dynamic MCS
design using the proposed diversity above.

VI. DYNAMIC DESIGN OF MCSS BASED ON THEORY OF

BELIEF FUNCTIONS

For MCSs, more classifiers do not always bring better
classification accuracy. In our work, we adopt the strategy

of “overproduction-selection” to implement MCSs. That is,
we over produce individual classifiers at first and then select
some of them according to a criterion. The whole procedure
is illustrated in Fig. 4.

Fig. 4: Procedure of MCSs implementation.

In Fig. 4, eOi
(⋅)(i = 1, ..., V ) represent the overproduced

individual classifiers and ej(⋅) (j = 1, ..., L) represent the
member classifiers selected out of the overproduced ensemble.

A. Overproduction

In our work, the member classifiers are generated using
different feature subspaces of the given training samples. Other
methods such as using different samples and using different
types of classifiers can also be used.

B. Selection

Now we discuss how to select member classifiers. Note that
although diversity is crucial, it is only necessary for MCSs’
improvement of classification performance. That is, only diver-
sity can not assure better performance. If the classifiers with a
large diversity and simultaneously having high classification
accuracy on training samples are used to construct MCSs,
better classification accuracy can be expected. Therefore, we
convert the implementation of MCSs into an optimization
problem whose objective function is based on the joint use
of the newly proposed diversity measure and the average
classification accuracy:

fitnessxq (MCS) = wD⋅Div
xq
bba(MCS)+wA⋅Accave(MCS)

(18)
where Accave(MCS) is the average classification accuracy of
the given MCS. wD, wA represent the weights of diversity and
accuracy, respectively. It should be noted that the ranges of the
distance-based diversity and of the accuracy are both [0, 1]. The
weighting parameters selection is necessary. It depends on the



users’ preference. We suggest to use wD = wA = 1, which
indicates an equal-treat attitude.

We use the Genetic Algorithm (GA) [23] to find the best
MCS, where the fitness function is (18), which is maximized
as

MCS
xq
selected = argmax

MCS

{fitnessxq (MCS)} (19)

that is, to find an MCS with high diversity and simultaneously
with good accuracy on training samples. We can see that
for different query samples, different member classifiers are
generated and selected. Therefore, in our work, the design
of MCSs is query-sample-dependent. Suppose that V classi-
fiers eOi

(⋅)(i = 1, ..., V ) are overproduced. We define a V -
dimensional vector S = [s(1), ..., s(V )] to represent the MCS,
i.e., the unknown variable of the optimization problem. The
value of s(i) can be 0 or 1. s(i) = 1 indicates that the classifier
eOi

(⋅) is selected and s(i) = 0 otherwise. For example if
S = [1, 0, 0, 1], it means that four classifers are overproduced
and two classifiers eO1

(⋅) and eO4
(⋅) are selected for the MCS.

Here we give a simple illustrative example for our dynamic
design of MCSs.

Example 3: Suppose that FOD ={C1, C2, C3}. That is,
there are three classes. Suppose that three classifiers (e1, e2, e3)
are generated along with their corresponding outputs for query
sample xq and their classification accuracies on training sam-
ples are illustrated in Table III. (Here, each bba in Table III is a
vector of [m(C1),m(C2),m(C3)].) Set wA = wD = 1. Then

TABLE III: Output bba’s and Classification accuracies

Classifiers Output Accu.

e1 [0.40, 0.50, 0.10] 90%

e2 [0.60, 0.30, 0.10] 80%

e3 [0.35, 0.30, 0.35] 85%

we calculate the fitness function values for different groups of
classifiers as

fitnessxq ({e 1, e 2, e 3}) = 0.9807;
fitnessxq ({e 1, e 2}) = 1.0500;
fitnessxq ({e 1, e 3}) = 1.1041;
fitnessxq ({e 2, e 3}) = 1.0750.

According to the maximization criterion, the member
classifiers selected for MCS are e1 and e3. Then by using
Dempster’s rule of combination, we can obtain the combined
bba mcomb(⋅) = m1(⋅)⊕m3(⋅). Since in this example, mcomb

is a Bayesian bba, BetP (Ci) = mcomb(Ci). We can obtain

BetP (C1) = 0.4308, BetP (C2) = 0.4615, BetP (C3) = 0.1077

As we can see, BetP (C2) has the maximum value. Thus, the
query sample xq is labeled as class C2.

C. Simplifications of the selection procedure

Since the vector to represent an MCS is V -dimensional,
there are 2V − 1 possible MCSs for selection. If the number
of overproduced classifiers is large, the search space becomes
large, which is harmful for rapid finding of the best MCS.
When V = 20, the number of solutions is C1

20 +C2
20 +C3

20 +
...+C20

20 = 1048575, where Cn
V is the combination number for

selecting n classifiers out of V . If we can know in advance the
number of member classifiers (L) in the MCS, the size of the
search space significantly decreases from C1

20+C2
20+ ...+C20

20

to only CL
20. Then, how do we know a priori the number of

member classifiers (L)?

1) Simplification I: We attempt to estimate L using clus-
tering analysis to estimate the number of selected member
classifiers. When V classifiers are produced, there are V bba’s.
We can use clustering analysis on the obtained bba’s, i.e.,
we treat a bba as a piece of “sample data” in the “classifier
space”. By using the clustering method without a preset cluster
number such as ISODATA [1] and by the criterion based on the
distance of evidence, the bba’s (representing classifiers) can be
automatically grouped. Actually, clustering bba’s is clustering
classifiers overproduced. After the value of L is obtained, the
size of the search space can be reduced to CL

V . For example,
when we set V = 20, if the obtained L is 6, the size of
the search space is reduced to C6

20 = 38760, which is only
38760/

∑

i=1,...,20(C
i
20) = 3.7% of the size of the original

search space.

2) Simplification II: We also estimate the value of L using
clustering analysis. However, we use a simple rank instead
of optimization such as GA. We select the classifier with
the highest average classification accuracy on training samples
from each bba’s cluster (i.e., the classifier clusters) obtained.
For example, set V = 20. If 20 bba’s are clustered into four
clusters with 5, 6, 4, and 5 bba’s inside, respectively, what
we should do is to select one member classifier out of 5, 1
out of 6, 1 out of 4 and 1 out of 5 according to the member
classifier’s average classification accuracy on training samples.
Here four different bba’s are selected from four different
clusters. Thus, the diversity among them can be assured to
some extent. Furthermore, the selection in each cluster is based
on the classification accuracy. Thus, both the diversity and
performance are indicated. The number of solutions will be
significantly reduced to 5 + 6 + 4 + 5 = 20. Our GA-based
approach in (19) can be seen as a joint optimization problem
(the objective function is a weighted sum of two goals), while
simplification II can be considered as achieving the two goal
one by one. Thus, simplification II might lose performance,
although it significantly reduce the computational costs.

It should be noted that the performance of both simplifi-
cation I and simplification II depend on the clustering results
using ISODATA, which is affected by ISODATA’s parameter
selection.

D. Combination of member classifiers

For the L member classifiers selected for an MCS, we com-
bine their corresponding L bba’s using Dempster’s rule (10)
to obtain the combined bba m

xq
c (⋅) = m

xq
1
(⋅)⊕m

xq
2
(⋅)⊕ ...⊕

m
xq
L (⋅). Then by using the pignistic probability transformation

(11), we can obtain the probability for different classes. Based
on it the final classification decision for xq can be made. Other
combination rules [19] and probability transformations [19]
can also be used here.

VII. EXPERIMENTS

In the experiments, we use eight datasets from the UCI
[24] for pattern classification, as listed in Table IV. Our
experimental settings are as follows.



TABLE IV: UCI datasets used in the experiments

Dataset Number of classes Feature dimension Number of samples

Pima 2 8 768
Wine 3 13 178

Ionosphere 2 34 351
Haberman 2 3 306

Glass 6 9 214
Iris 3 4 150

Bupa 2 6 345
WDBC 2 30 569

TABLE V: Comparison of different approaches in classification accuracy

Datasets Fusion rule New NBa New Bb DF Q R D

Pima
Majority voting 72.14 % 69.27 % 71.02 % 70.03 % 71.30 % 69.71 %
Dempster’s rule 74.45 % 72.97 % 73.83 % 72.71 % 73.33 % 73.65 %

Wine
Majority voting 97.14 % 95.96 % 95.33 % 96.24 % 96.30 % 95.61 %
Dempster’s rule 97.18 % 96.12 % 96.95 % 96.46 % 96.73 % 95.97 %

Ionosphere
Majority voting 83.64 % 83.59 % 83.23 % 83.43 % 83.07 % 83.30 %
Dempster’s rule 84.31 % 83.64 % 83.44 % 83.85 % 83.11 % 83.72 %

haberman
Majority voting 74.18 % 74.25 % 73.66 % 73.79 % 74.05 % 73.86 %
Dempster’s rule 74.18 % 74.25 % 73.73 % 73.79 % 74.05 % 73.86 %

glass
Majority Voting 64.26 % 65.50 % 64.59 % 65.39 % 60.81 % 64.51 %
Dempster’s rule 64.77 % 66.37 % 65.88 % 65.17 % 64.42 % 64.67 %

iris
Majority voting 95.33 % 95.56 % 96.44 % 92.22 % 95.78 % 95.33 %
Dempster’s rule 96.67 % 96.22 % 96.67 % 96.67 % 96.67 % 96.67 %

bupa
Majority voting 64.64 % 63.56 % 61.06 % 62.03 % 61.55 % 61.93 %
Dempster’s rule 71.88 % 68.12 % 71.21 % 70.92 % 69.86 % 71.88 %

WDBC
Majority voting 94.63 % 90.53 % 94.34 % 91.56 % 94.34 % 94.83 %
Dempster’s rule 96.39 % 95.36 % 96.49 % 95.90 % 96.19 % 96.39 %

a using the new diversity measure and the non-Bayesian bba’s b using the new diversity measure and Bayesian bba’s

1) Generation of training and testing samples: Each
dataset’s classification procedure is executed for 30 times. At
each time, samples for training and testing are re-selected
randomly. (In each experiment, each dataset is randomly
grouped into two approximately equal parts, one for training
and the other for testing.)

2) Overproduction of classifiers: We use the feature sub-
spaces to overproduce classifiers. Each generated classifier
corresponds to a 2-dimensional feature subspace. Suppose
that the original feature space is F -dimensional. Then, C2

F

classifiers are overproduced. For example, suppose F = 8.
Then, C2

8 = 28 classifiers are overproduced, out of which
member classifiers are selected to construct the MCS. It should
be noted that both Bayesian and non-Bayesian bba’s are used
in the experiments. In generating Bayesian bba’s, the parameter
k in k-NN is empirically set to 1/10 of the number of training
samples,

3) Different diversity measures: We use some existing
diversity measures and our proposed measures to design the
MCSs. In designing MCSs, we use the same form of the
objective function in (18) using different diversity measures
including Q-statistic (Q), correlation coefficient (R), disagree-
ment (D), and double fault (DF ). In our MCS design based
on the existing diversity measures, the classifier types used is
k-NN (with k empirically set to 1/10 of the number of training
samples).

4) Selection of classifiers: Among the original GA and
the two simplifications, simplification I provides a tradeoff
between performance and cost, and so it is used here.

5) Fusion rules: In this work, we have compared two
fusion rules including the majority voting and Dempster’s
rule of combination. If we want to use the majority voting
to fuse the member classifiers, each classifier should have
its classification decision. Since the output of classifiers are
bba’s, we should transform each output bba’s into the pignistic
probability according to (11) and then make the classification
decisions. (The class with the maximum pignistic probability
value, which is no less than 0.5, is the decision result.)

The average classification accuracy of different approaches
are shown in Table V. New NB and New B denote the
approach based on the new diversity measure with the non-
Bayesian bba’s and Bayesian bba’s, respectively.

In Table V, for each dataset and each fusion rule, with
respect to classification accuracy, the first place is in red and
the 2nd place is in blue. As we can see, for many datasets, our
newly proposed approaches take the 1st or 2nd place of all the
approaches compared. Using non-Bayesian bba’s more often
achieves better performance than using Bayesian bba’s. This
is caused by the rich information remained in non-Bayesian
bba’s. We can also see that using Dempster’s rule is better
than using the majority voting. This is because the majority
voting uses only the information of class labels, while using
bba’s for fusion uses more useful information.



We compare the original GA-based approach, simplifica-
tion I, and simplification II on the Iris dataset. The results are
in Table VI.

TABLE VI: Comparison of original and simplification methods
on iris dataset

Approaches Average accuarcy Time cost per sample (sec)

Original GA 96.67 % 1.4943

Simplification I 96.47 % 0.9194

Simplification II 92.67 % 0.0042

As we can see, simplification I provides a good trade off
between the performance and the cost.

VIII. CONCLUSION

In this paper, a dynamic belief-functions based approach
to designing multiple classifier systems is proposed, and a
diversity measure is proposed using the distance of evidence.
Our proposed MCS approach and diversity measure are query-
sample dependent, which can better use of the information of
each query sample. The designing of MCS is converted to an
optimization problem in our work. Experimental results verify
that our proposed measure, approach, and related simplifica-
tions are rational and effective compared with existing ones.

The theory of belief functions is good for uncertainty
modeling and uncertainty reasoning. However, one of its main
limitations is its computational complexity when the cardinal-
ity of FOD is large. It should be noted that since our proposed
measure and approach are based on the theory of belief
functions, when the number of possible classes gets large,
the computational complexity also increases. For Bayesian
bba’s, the problem is not so significant. For non-Bayesian
bba’s, however, computational costs do increase significantly.
Therefore, our future work will attempt to design some new
fast algorithms for Dempster’s rule of combination and propose
bba approximations to reduce computational costs. Dempster’s
rule produces results that maybe judged as unsatisfactory
or counter-intuitive [25] when the bodies of evidence to be
combined are highly conflicting. Therefore, in our future work,
other evidence combination rules [19] will also be used and
compared.

Furthermore, in our proposed simplifications, the results
depend on the clustering results, which is affected by parameter
selection in clustering. More stable and robust clustering
algorithms are required for improving our approach, which
are important research topics in our future work.
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