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Abstract—Neighborhood based classifiers are commonly used
in the applications of pattern classification. However, in the
implementation of neighborhood based classifiers, there always
exist the problems of uncertainty. For example, when one use k-
NN classifier, the parameter k should be determined, which can
be big or small. Therefore, uncertainty problem occurs for the
classification caused by the k value. Furthermore, for the nearest
neighbor (NN) classifier, one can use the nearest neighbor or the
nearest centroid of all the classes, so different classification results
can be obtained. This is a type of uncertainty caused by the local
and global information used, respectively. In this paper, we use
theory of belief function to model and manage the two types
of uncertainty above. Evidential reasoning based neighborhood
classifiers are proposed. It can be experimentally verified that
our proposed approach can deal efficiently with the uncertainty
in neighborhood classifiers.

Keywords—neighborhood classifier; uncertainty; belief func-
tions; evidential reasoning; information fusion.

I. INTRODUCTION

Neighborhood classifiers, such as the most commonly used
nearest neighbor (NN) introduced by Fix and Hodges [1] and
k-nearest neighbor [2], etc. are widely discussed and applied
in pattern classification and machine learning. A wide variety
of neighborhood classifiers have been developed [3], [4], [5],
[6].

In practical use of the neighborhood classifiers, there al-
ways exist the problems of uncertainty. For example, the value
of the parameter k that controls the size of the neighborhood
has to be determined. The selection of k is always ad hoc and
depends on the user’s preference. Different k values (small,
moderate or big) correspond to different size of neighborhood,
which generally yields different results. Although one can use
the cross-validation approach [2] to determine an “optimal”
k value by minimizing the overall probability of error, the
optimal value of k at one point does not have to be, and in
general is not, the same as the optimal value of k at some
other point. It should be also noted that cross-validation will
require a large computational cost. Some researchers designed
adaptive k value selection approaches. For example, Wang et
al. [7] proposed a locally adaptive selection of the k by using
their defined statistical confidence. Ghoshet al. [8] presented
an adaptive nearest neighbor classification technique, where
the value of k is selected depending on the distribution of
competing classes in the vicinity of the observation to be

classified. Other researchers proposed some non-parametric k-
NN where the k is automatically determined by geometric
relationships. See [9] for details. Furthermore, in the nearest
neighbor (NN) classifier, one can use the nearest neighbor
(local information) to make the classification. One can also use
the nearest centroid [10] of all the classes (they can relatively
globally represent the classes) to make the classification. So,
different classification results can be obtained. It should be
better if we can jointly use the two types of “NN” to deal
with the information provided by the local (nearest neighbor)
and global information (nearest centroid). Such a joint use of
global and local information requires addressing the problem
of uncertainty.

As aforementioned, for the neighborhood classifiers there
are some types of uncertainty problems. The theory of belief
function [11] is widely used in uncertainty management and
uncertainty reasoning for decision-making. In this paper, we
attempt to use it to model and manage the uncertainty incor-
porated in neighborhood classifiers.

For the choice of k for k-NN, we set two values, i.e.,
a big one and a small one, to constitute an interval of k
value. The small one (corresponding to a small neighborhood
therefore representing relatively local information) and the big
one (corresponding to a big neighborhood therefore repre-
senting relatively global information) are used to execute the
k-NN classification, respectively. Two different classification
results (including the class label and each class’s frequency of
appearance within the neighborhood) always can be obtained.
By using the different classification results, we can construct
the matrix of expected possibility interval and generate bba’s
(basic belief assignments). Then based on Dempster’s rule of
combination, or other types of combination rules and some
probabilistic transformation [12], the final decision can be
made. The joint use of two values of parameter k of the k-
NN approach that we propose avoids the difficult search for
an optimal value of k. As it will be shown in the sequel,
the joint use of local and global information as proposed in
our new evidential reasoning based k-NN classifier (ER-k-NN)
still performs better.

For the joint use of nearest neighbor (NN) and nearest
class centroid (NC), we use the NN and NC, respectively to
obtain different classification results (including the class label
and their corresponding possibility generated by using the dis-



tance). We construct the matrix of expected possibility based
on the different classification results and generate bba’s. By
using some combination rule and probabilistic transformation,
we can obtain the final decision result. We name this new
classifier as evidential reasoning based nearest neighbor and
nearest centroid classifier (ER-NN-NC).

Experimental results based on some artificial datasets and
some datasets in UCI [13] show that our evidential reasoning
based neighborhood classifiers including ER-k-NN and ER-
NN-NC, are effective and they can well manage the uncertainty
incorporated in.

II. UNCERTAINTY IN NEAREST NEIGHBORS CLASSIFIERS

A. The uncertainty caused by the choice of k in k-NN

The k-Nearest Neighbor (k-NN) method classifies an ob-
servation x to the class, which is the most frequent in the
neighborhood of x. The size of this neighborhood is usually
determined by a predefined parameter k. k-NN can be used
to obtain good estimates of Bayes error because the k-NN
probability of error asymptotically approaches Bayes error as
proved in [2].

Fig. 1. Classification based on different k values in k-NN.

Let’s consider the three classes problem as illustrated in
Fig. 1. The three classes are labeled as Star (S), Triangle
(T) and Circle (C) for convenience. The query sample xq is
represented by the black square. When k=3, there are three
Star samples in the neighborhood of xq , therefore, xq will be
labeled as belonging to the class Star. When k = 9, there
are three Star samples, five Triangle samples, and one Circle
sample in the neighborhood of xq , therefore, xq will be labeled
as belonging to the class Triangle. As we can easily see in Fig.
1, different values of k bring different results. This is a well-
known serious drawback of the k-NN classifier which reflects
the impact of the uncertainty in the choice of k parameter.
What criterion should one choose to determine the optimal
value of k?

Cover and Hart [14] suggest that the value of k should
depend on the training sample size n, and it should vary with
n in such a way that k → ∞ and k/n → 0 as n→∞. However,
when the sample size is small or moderately large, there is
no theoretical guideline for choosing the value of k. The
optimum value of k depends on the specific dataset, and one
normally uses the usual cross-validation technique to estimate
it. However, the computational cost of cross-validation is large,
or prohibitive in some cases.

Another choice of k has been proposed by Wang et al. [7]
based on a local adaptive selection strategy using statistical

confidence.Ghosh [8] presented an adaptive nearest neighbor
classification technique, where the value of k is selected based
on the distribution of competing classes in the vicinity of the
observation to be classified. Several researchers proposed also
some non-parametric k-NN, such as relative graph neighbor
(RGN) and Gabriel neighbor (GN)[9], where the k is automat-
ically determined by geometric relationships. See the related
references for details.

B. The uncertainty caused by the joint use of Nearest Neighbor
(NN) and Nearest Class Centroid (NC)

The nearest neighbor (NN) classification is one of the sim-
plest and popular methods for statistical pattern recognition.
In fact NN is a non-parametric classifier [15]. In traditional
NN classifier, only the local information is used. A given
sample xq which is most similar to one sample in a class
c does not definitely represent that it is similar to the whole
class c, therefore, xq does not definitely belong to class c.
The centroid of each class is more appropriate to represent
the whole class when compared with a single sample. So,
some researchers proposed a nearest class centroid classifier,
where the distance between a given sample xqand each class’s
centroid is calculated. The shortest distance’s corresponding
class is assigned to xq . The difference of definition of the
“nearest neighbor” can cause the different classification results
as illustrated in Fig. 2.

Fig. 2. Classification based on NN and NC.

In Fig. 2, for the given query sample xq (square), it
will be labeled as class Triangle according to NN while it
will be labeled as class Star according to NC. Such a type
of uncertainty of classification is caused by the different
definitions of “nearest neighbor”.

It should be noted that for the cases pointed out in this
section, although the classification results could be the same
according to different k or different definitions of NN, they can
be different. More precisely, it can happen that k-NN classifiers
with different k values can bring the same results for some
samples and different results for other samples. This shows the
inconstancy of k-NN due to the underlying uncertainty of the
choice of k parameter. Then, how to deal with the uncertainty
in such neighborhood classifiers?

The theory of belief functions is a powerful tool for mod-
eling and managing uncertainty and that is why we propose



to use it to improve classification performances. The basics of
this theory are introduced in the next section.

III. BASICS OF THE THEORY OF BELIEF FUNCTIONS

The theory of belief functions introduced by Shafer in [11]
is a theory of uncertain reasoning that is designed to deal
with the distinction between uncertainty and ignorance. In this
theory, elements in the frame of discernment (FOD) Θ are
mutually exclusive and exhaustive. The power-set (the set of
all subsets of Θ) is denoted by 2Θ. A basic belief assignment
(bba, or a mass function) is a mapping m(.) : 2Θ 7→ [0, 1]
which satisfies:

m(∅) = 0, and
∑

X∈2Θ

m(X) = 1 (1)

The belief function Bel(.) and the plausibility function Pl(.)
are defined for all X ∈ 2Θ, respectively by

Bel(X) =
∑

Y ∈2Θ∣Y⊆X

m(Y ) (2)

Pl(X) =
∑

Y ∈2Θ∣X∩Y ∕=∅
m(Y ) (3)

Dempster’s rule of combination (denoted DS for short) is
the emblematic (and controversial) rule of combination of
bba’s proposed in Dempster-Shafer Theory (DST) [11]. DS
rule is defined as follows. Let’s consider n ≥ 2 independent
mass functions m1(.), m2(.), . . . , mn(.), the new combined
evidence obtained with DS rule is given by (4)

mDS(X) =

⎧



⎨



⎩

0, if X = ∅
∑

∩Xi=X

∏

1≤i≤n

mi(Xi)

∑

∩Xi ∕=∅

∏

1≤i≤n

mi(Xi)
, if X ∕= ∅.

(4)

In the late 1970s, Zadeh [16] presented an example for
which Dempster’s rule of combination produces results usually
judged as unsatisfactory or counter-intuitive when the bodies of
evidence to be combined are highly conflicting. More recently,
Dezert et al. [17], [18] have presented new important examples
where Dempster’s rule also fails to provide satisfactory results
even in low conflicting cases as well. Since more than three
decades, many researchers dispute the validity of the theory
of belief functions, more precisely the validity of Dempster’s
rule of combination, and many rules for combining bba’s have
bloomed in the literature since a decade. The most appealing
one so far is the proportional conflict redistribution rule no.
5 (PCR5) proposed in [12] and defined for two1 bba’s by:
mPCR5(∅) = 0 and ∀X ∈ 2Θ ∖ {∅}

mPCR5(X) = m12(X)+
∑

Y ∈2Θ∖{X}
X∩Y=∅

[
m1(X)2m2(Y )

m1(X) +m2(Y )
+

m2(X)2m1(Y )

m2(X) +m1(Y )
] (5)

All sets involved in the formula are in canonical form. m12(X)
corresponds to the conjunctive consensus, i.e:

m12(X) =
∑

X1,X2∈2Θ

X1∩X2=X

m1(X1)m2(X2).

1for n > 2 see [12].

All denominators are different from zero. If a denominator is
zero, that fraction is discarded.

After combining the bba’s by a given fusion rule we obtain
a new bba. To make a decision on an element of the FOD
Θ, we use a transformation to approximate the new bba in
a probability mass function (pmf). The pignistic probability
transformation BetP (⋅) proposed by Smets [19] is often used,
which is illustrated in (6):

BetPm(Ci) =
∑

{Ci}∈A⊆Θ
m(A)/ ∣A∣ , ∀A ⊆ Θ (6)

As we will show, the joint use of local and global infor-
mation in neighborhood classifiers can be used as a multi-
criteria decision making (MCDM) problem. In some previous
works, we have designed evidential-reasoning based MCDM
approaches, such as COWA-ER and fuzzy COWA-ER related
approaches [20], [21]. In the sequel, we implement new
neighborhood classifiers based on evidential reasoning inspired
by the COWA-ER approach.

IV. NEW NEIGHBORHOOD CLASSIFIERS BASED ON

EVIDENTIAL REASONING

A. Evidential Reasoning based on k-NN (ER-k-NN)

As already mentioned, the choice of k in k-NN is a
serious problem and that is why many attempts have been
proposed to select k based on different strategies including
cross-validation, graph neighborhood, adaptive choice, etc.
In fact there is so far no consensus on the best theoretical
guideline for choosing the value of k because the ”best” value
of k depends on the specific dataset. It cannot be selected
by a strategy chosen a priori. To circumvent this problem of
uncertainty in the choice of k we propose to use a bounded
interval [ks, kb] of k because it is much easier, and we expect
to get a more robust result than with selecting only a single
value for k. From such interval, it is relatively simple to
model and use belief functions to make the classification
exploiting both local and global information in order to get
better performances. The new ER-k-NN method consists in
the following steps:

∙ Step 1: Execute k-NN by using the bounds of [ks, kb].

For the k-NN classifier, set two values for k, i.e., ks(smaller)
and kb (bigger). Execute the k-NN algorithms twice according
to ksand kb, respectively.

Let’s consider a FOD Θ = {C1, C2, ..., CM} with M > 1
classes. For each query sample xq , one finds its ks neighbors
and its kb neighbors, respectively. Then, one calculates the ratio
(considered as a type of possibility) of the samples number
belonging to each class Ci, i = 1, 2, . . . ,M as follows:

ps(Ci) =
kis
ks

and pb(Ci) =
kib
kb

(7)

where kis is the number of samples belonging to class Ci in
ks neighbors and kib is the number of samples belonging to
class Ci in kb neighbors. Obviously, one has

ks =

M
∑

i=1

kis and kb =

M
∑

i=1

kib (8)



∙ Step 2: Construct the expected possibility matrix (EPM).

For the query sample xq for each class, we calculate
{

emin(Ci) = min{ps(Ci), pb(Ci)}
emax(Ci) = max{ps(Ci), pb(Ci)}

(9)

Then we can construct the expected possibility interval as
[emin(Ci), emax(Ci)] and the expected possibility matrix as

E(C) =

⎡

⎢

⎢

⎣

[emin(C1), emax(C1)]
[emin(C2), emax(C2)]

...
[emin(CM ), emax(CM )]

⎤

⎥

⎥

⎦

(10)

We divide each bound of intervals by the max of the bounds
to get a new normalized expected possibility matrix as

Enorm(C) =

⎡

⎢

⎢

⎣

[enormmin (C1), e
norm
max (C1)]

[enormmin (C2), e
norm
max (C2)]

...
[enormmin (CM ), enormmax (CM )]

⎤

⎥

⎥

⎦

(11)

where
{

enormmin (Ci) = emin(Ci)/max(E[C])
enormmax (Ci) = emax(Ci)/max(E[C])

(12)

∙ Step 3: Generate bba’s using EPM.

Generate M bba’s using Enorm(C) as follows:
⎧

⎨

⎩

mi(Ci) = enormmin (Ci)
mi(Ci) = 1− enormmax (Ci)
mi(Ci ∪ Ci) = enormmax (Ci)− enormmin (Ci)

(13)

In this generation of bba’s, the uncertainty is represented by
length of the interval [enormmin (Ci), e

norm
max (Ci)] and corresponds

to the imprecision of the variable (here the expected
possibility) on which the belief function for Ci is defined.

∙ Step 4: Combination of bba’s obtained in Step 3.

This operation is represented by

m(.) = [m1 ⊕m2 ⊕ ⋅ ⋅ ⋅ ⊕mM ](.) (14)

where ⊕ denotes symbolically the fusion operator. The choice
of the combination rule ⊕ is left to the user, but in the
sequel we have used and tested the DS rule given in (4) and
PCR5 rule given in (5) and compared their performances with
respect to the classical approaches.

∙ Step 5: Assign the object xq to a single class based on m(.).

For this, we need to use some decision-making procedure.
The most common one is to approximate the combined bba
m(.) defined on 2Θ into a subjective probability measure
P (.) defined on Θ. Then, one takes as assignment solution
the class corresponding to the max of P (.). Unfortunately,

there exist many solutions based on different justifications
to make such approximation which yield different decision-
making results. In the following we will use the two
common ones: the pignistic probability BetP (.) [19], and
DSmP (.) proposed by Dezert and Smarandache in [12]. The
mathematical formulas of BetP (.) and DSmP (.) are given
in the corresponding references and are not reported here due
to space limitation restriction.

Example 1: Let’s take the query sample xq in Fig. 1 and
the frame of the three classes Θ = {C1 = Star, C2 =
Triangle, C3 = Circle}. We choose as parameter interval
[ks, kb] = [3, 9]. The step 1 of ER-k-NN gives us

ps(C1) = 1, ps(C2) = 0, ps(C3) = 0,

pb(C1) = 1/3, pb(C2) = 5/9, pb(C3) = 1/9.

The EPM obtained in step 2 of ER-k-NN is

E(C) =

[

[emin(C1), emax(C1)]
[emin(C2), emax(C2)]
[emin(C3), emax(C3)]

]

=

⎡

⎣

[ 13 , 1]
[0, 5

9 ]
[0 1

9 ]

⎤

⎦

Since in this example, the maximum value of E(C) is 1,
the normalized EPM Enorm(C) equals to E(C). Based on
Enorm(C), we generate bba’s as in step 3 of ER-k-NN:
⎧

⎨

⎩

m1(C1) = enormmin (C1) = 1/3
m1(C1) = m(C2 ∪ C3) = 1− enormmax (C1) = 0
m1(C1 ∪ C1) = m1(Θ) = enormmax (C1)− enormmin (C1) = 2/3

⎧

⎨

⎩

m2(C2) = enormmin (C2) = 0
m2(C2) = m2(C1 ∪ C3) = 1− enormmax (C2) = 4/9
m2(C2 ∪ C2) = m2(Θ) = enormmax (C2)− enormmin (C2) = 5/9

⎧

⎨

⎩

m3(C3) = enormmin (C3) = 0
m3(C3) = m3(C1 ∪ C2) = 1− enormmax (C3) = 8/9
m3(C3 ∪ C3) = m3(Θ) = enormmax (C3)− enormmin (C3) = 1/9

By choosing Dempster’s rule of combination followed by
BetP (.) transformation (steps 4 and 5 of ER-k-NN), we obtain
mDS(.) with

mDS(C1) = 0.5967,mDS(C1 ∪ C3) = 0.0329
mDS(C1 ∪ C2) = 0.3292,mDS(C1 ∪ C2 ∪ C3) = 0.0412

and

BetP (C1) = 0.7915, BetP (C2) = 0.1783, BetP (C3) = 0.0302

Based on this result, the final assignment of xq will be C1,
i.e., the class Star.

By choosing PCR5 rule of combination followed by DSmP (.)
transformation (steps 4 and 5 of ER-k-NN), we obtain
mPCR5(.) with

mPCR5(C1) = 0.5967,mPCR5(C1 ∪ C3) = 0.0329
mPCR5(C1 ∪ C2) = 0.3292,
mPCR5(C1 ∪ C2 ∪C3) = 0.0412

and

DSmP (C1) = 0.9993, DSmP (C2) = 0.0006,
DSmP (C3) = 0.0001

Based on this result, the final assignment of xq will be C1,
i.e., the class Star.



B. Evidential Reasoning with NN and NC (ER-NN-NC)

Nearest neighbor (NN) classification is one of the simplest
and popular methods for statistical pattern recognition.
Nearest class centroid (NC) is also a kind of special “nearest
neighbor” classifier. As aforementioned, if we use different
definitions of nearest “neighbor” (nearest sample or nearest
class centroid), the classification can be different. Here we
also design evidential reasoning NN to jointly use the two
different types of NN and to deal with such uncertainty. The
new ER-NN-NC method consists in the following steps:

∙ Step 1: Execute NN and NC separately.

Let’s consider a FOD Θ = {C1, C2, ..., CM} with M > 1
classes. For each query sample xq , one find its nearest neighbor
in each class and calculate its distance with respect to xq

denoted dCi
as shown in Fig. 3.

Fig. 3. Nearest neighbor in each class.

Based on these distances, one computes the probabilities
to assign xq with Ci by

PNN (Ci) =
e−dCi

M
∑

j=1

e−dCj

(15)

Similarly, one calculates the distance dcenCi
between xq and

each class centroid as illustrated in Fig. 4.

Fig. 4. Distance between query sample and each class centroid.

Based on these distances, one computes other probabilities
to assign xq with Ci by

PNC(Ci) =
e−dcen

Ci

M
∑

j=1

e
−dcen

Cj

(16)

∙ Step 2: Construction of the EPM.

For the query sample xq and for each class, we calculate
{

emin(Ci) = min{PNN (Ci), PNC(Ci)}
emax(Ci) = max{PNN(Ci), PNC(Ci)}

(17)

Then we can construct the expected possibility interval as
[emin(Ci), emax(Ci)] and the EPM by (10). The normalized
EPM Enorm(C) is obtained by (11).

∙ Steps 3–5: bba’s modeling, fusion and decision.

The steps 3–5 of ER-NN-NC method are the same as for
ER-k-NN described in the previous subsection.

Example 2: Let’s consider the frame of the three classes Θ =
{C1, C2, C3}. For the query sample xq , let’s suppose that the
distances to the nearest neighbors in each class are

dC1
= 1, dC2

= 1.5, dC3
= 1.8

and the distances to each class centroid are

dcenC1
= 2, dcenC2

= 3.0, dcenC3
= 2.8

According to Step 1 of ER-NN-NC, one gets

pNN(C1) = 0.3185, pNN(C2) = 0.1172, pNN(C3) = 0.0643

pNC(C1) = 0.3440, pNC(C2) = 0.0466, pNC(C3) = 0.0695

The step 2 of ER-NN-NC provides the following EPM

E(C) =

⎡

⎣

[emin(C1), emax(C1)]
[emin(C2), emax(C2)]
[emin(C3), emax(C3)]

⎤

⎦ =

⎡

⎣

[0.3185, 0.3440]
[0.0466, 0.1172]
[0.0643 0.0695]

⎤

⎦

having the maximum value 0.3440. The normalized EPM
given by (11) is

Enorm(C) =

[

[0.9259, 1.0000]
[0.1353, 0.3406]
[0.1869 0.2019]

]

.

Based on Enorm(C), we generate bba’s by (13) and one gets
⎧

⎨

⎩

m1(C1) = enorm

min (C1) = 0.9259
m1(C1) = m(C2 ∪ C3) = 1− enorm

max (C1) = 0
m1(C1 ∪ C1) = m1(Θ) = enorm

max (C1)− enorm

min (C1) = 0.0741
⎧

⎨

⎩

m2(C2) = enorm

min (C2) = 0.1353
m2(C2) = m2(C1 ∪ C3) = 1− enorm

max (C2) = 0.6594
m2(C2 ∪ C2) = m2(Θ) = enorm

max (C2)− enorm

min (C2) = 0.2053
⎧

⎨

⎩

m3(C3) = enorm

min (C3) = 0.1869
m3(C3) = m3(C1 ∪ C2) = 1− enorm

max (C3) = 0.7981
m3(C3 ∪ C3) = m3(Θ) = enorm

max (C3)− enorm

min (C3) = 0.0150

By choosing Dempster’s rule of combination followed by
BetP (.) transformation (steps 4 and 5 of ER-NN-NC), we
obtain

mDS(C1) = 0.9541,mDS(C2) = 0.0113,
mDS(C3) = 0.0166,mDS(C1 ∪ C3) = 0.0010,
mDS(C1 ∪ C2) = 0.0167,mDS(C1 ∪C2 ∪ C3) = 0.0003.



and

BetP (C1) = 0.9631, BetP (C2) = 0.0198, BetP (C3) = 0.0172

Based on this result, the final assignment of xq is the class C1.

By choosing PCR5 rule of combination followed by
DSmP (.) transformation (steps 4 and 5 of ER-k-NN), we
obtain mPCR5(.)

mPCR5(C1) = 0.8433,mPCR5(C2) = 0.0188,
mPCR5(C3) = 0.0334,mPCR5(C1 ∪ C3) = 0.0432
mPCR5(C1 ∪ C2) = 0.0551,mPCR5(C2 ∪C3) = 0,
mPCR5(C1 ∪ C2 ∪ C3) = 0.0061

and

DSmP (C1) = 0.9444, DSmP (C2) = 0.0202,
DSmP (C3) = 0.0354.

Based on this result, the final assignment of xq will be C1,
i.e., the class Star.

V. SIMULATION AND EXPERIMENTAL RESULTS

In this section we present a comparative analysis of the
performances of different classifiers based on an artificial
dataset and on a real dataset.

A. Classification results based on artificial datasets

In this experiment, we generate 2D samples (x, y) be-
longing to a class C1 according to the distribution (18)), and
samples belonging to a class C2 according to the distribution
(19).

p1(x, y) =

{

1
b−a

× 1√
2��

exp[− 1
2 (

x
�
)2], if y ∈ [a, b]

0, otherwise.

(18)

p2(x, y) =

{

1
b−a

× 1√
2��

exp[− 1
2 (

x−�
�

)2], if y ∈ [a, b]

0, otherwise.

(19)

The abscissa x follows a Gaussian distribution whereas
the ordinate y follows a uniform distribution on [a, b]. In
(19), � denotes the average distance between the two centers
of Gaussian pdf. Five hundred samples have been randomly
generated (250 samples in class C1 and 250 samples in
class C2). Randomly, we select 125 training samples from
each class, the remaining samples are used for testing the
performances of the classifiers. In this simulation, we have
chosen � = 1.5, � = 1 and [a, b] = [−3, 3]. The examples
generated are shown in Fig. 5.

The evaluation of the performances of the different meth-
ods tested is based on a 100 runs Monte-Carlo simulation.

In each run, the samples selected for the training and the
test datasets are drawn randomly. We have evaluated the perfor-
mances (defined as the percentage of correct classification) of
the nearest neighbor (NN) classifier, the nearest class centroid
(NC) classifier, two classical k-NN classifiers (one is with a
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Fig. 5. Samples with a compound distribution.

TABLE I. CLASSIFICATION PERFORMANCE ON GAUSSIAN

DISTRIBUTED DATASETS

Classification approaches Averaged Classification Accuracy (%)

NN 73.51

NC 78.72

ER-NN-NC (DS+BetP) 79.39

ER-NN-NC (PCR5+DSmP) 79.39

k-NN (Big, k=120) 78.89

k-NN (Small, k=5) 76.08

k-NN (Optimal, k = 115) 79.61

ER-k-NN (DS+BetP) 77.81

ER-k-NN (PCR5+DSmP) 77.81

big k value and the other with a small k value), the ER-k-NN
classifier, and the ER-NN-NC classifier. The results obtained
are listed in TABLE I. To make comparisons, we also have done
the cross-validation to find the optimal k for this experiment.

As we can see in TABLE I, the classification performances
of ER-NN-NC (DS+BetP) and ER-NN-NC (PCR5+DSmP) are
higher than those of NN and NC. That is to say, using both
the local and global information, one improves significantly
the classification results. The performances of ER-NN-NC
(DS+BetP) and those of ER-NN-NC (PCR5+DSmP) are the
same in this experiment because there is no special case where
Dempter’s rule performs counter-intuitively as those reported
in [17], [18]. The classification performance of ER-k-NN is
better than with the k-NN (k=5). Although it is not the best
in this experiment, it is also not the worst one. The optimal
choice of k for k-NN brings the best performance, however it
requires a large computational cost of cross-validation which
can become not acceptable for some applications manipulating
a huge amount of data.

B. Classification results based on real UCI datasets

We have also tested the different classifiers on real datasets
given in the machine learning repository of the University of
California Irvine (UCI) [13] and listed in TABLE II,

In our tests, we do not deal with the missing data problem,
all the samples with missing values have been eliminated.
Features of the samples are normalized by their means and
standard deviations before their classification.



As with the artificial datasets, we have evaluated the
nearest neighbor (NN) classifier, the nearest class centroid
(NC) classifier, two k-NN classifiers (one is with big k and
the other with a small k), the ER-k-NN, and the ER-NN-NC

classifier (both with DS+BetP option, and with PRC5+DSmP
option). To make comparisons, we also have done the cross-
validation to find the optimal k on each dataset used in this
experiment. The results are listed in TABLE III.

TABLE II. UCI DATASETS USED IN THE EXPERIMENTS

Datasets Class Num. Feature dimension Sample Num.

Iris 3 4 150

Wine 3 13 178

Pima 2 8 768

Bupa 2 6 345

Ionosphere 2 34 351

TABLE III. CLASSIFICATION ACCURACIES ON UCI DATASETS

Classifiers Iris(%) Wine(%) Pima(%) Bupa(%) Iono(%)

NN 93.84 94.76 69.04 60.46 84.41

NN(Center) 92.09 95.68 72.70 56.54 79.25

ER-NN-NC (DS+BetP) 95.15 96.42 73.38 60.96 87.76

ER-NN-NC (PCR5+DSmP) 95.16 96.44 73.38 60.96 87.76

k-NN (k=40) 89.43 95.28 71.60 61.99 67.63

k-NN (k=5) 95.65 95.88 72.10 59.57 82.41

k-NN (Optimal k) 96.04 (k = 11) 96.78 (k = 9) 74.37 (k = 33) 62.81 (k = 23) 84.22 (k = 1)

ER k-NN(DS+BetP) 95.85 96.30 72.90 62.35 78.76

ER-k-NN (PCR5+DSmP) 95.85 96.30 72.90 62.35 78.76

As we can see in TABLE III, the ER-NN-NC (DS+BetP)
method always performs better. ER-k-NN also performs well
and provides a classification performance close to the best one
obtained with optimal k value. This is due to the joint use of
local and global information.

It should be noted that the classification performance of
ER-k-NN or ER-NN-NC are not always the best for all kinds
of datasets, but they perform well and their implementation
is quite simple. The choice of interval [ks, kb] in ER-k-NN
is much easier than the search of the optimal value of k of
k-NN. By using these ER based classifiers, the uncertainty is
well modeled and managed.

Our previous research works [12] in information fusion
have shown that PCR5 rule outperforms Dempster’s rule
specially when sources are highly conflicting, and in some
emblematic examples with low conflicting sources as well [17],
[18]. We have also shown that DSmP outperforms BetP in term
of probabilistic information content [12]. These theoretical
advantages of ”PCR5 + DSmP” approach over ”DS+BetP”
approach have not been observed in our tests because our
proposed ER-based neighborhood classifiers are some types
of the multiple classifier ensemble, where the diversity among
different member classifiers is the most crucial to improve
ensemble classification performance as proved by Kuncheva
and Whitaker in [22]. The choice of the fusion rule has a
relative minor impact in fact. The chance to fall in a very
specific ”pathological” case for Dempster’s rule is very small
in our pattern classification experiments here, and this explains
why ”PCR5+DSmP” brings not much difference in term of
performance with respect to ”DS+BetP” in this work.

VI. CONCLUSIONS

In this paper, two kinds of ER-based neighborhood clas-
sifiers have been proposed to manage uncertainties by using

belief function theory and the COWA-ER approach. Our sim-
ulation results show clearly that these new ER-based neigh-
borhood classifiers perform well and their implementation are
relatively simple since the selection of parameters is simplified.
It should be noted that when the number of values for k
is greater than 2, COWA-ER or Fuzzy COWA-ER can also
be used to deal with the uncertainty to construct ER-based
neighborhood classifiers.

In the implementation of these ER-based neighborhood
classifiers, different types of combination rules and probabilis-
tic transformations can be used which give some flexibility to
the users. In this paper, only two combination rules (Demp-
ster’s rule and PCR5) and two probabilistic transformations
(BetP and DSmP) have been tested. Of course many more
could be implemented and tested as well and this is left for
future investigations. The selection of the interval used in ER-
k-NN classifier is an open question and we plan to make
investigations on this question, and evaluate the robustness of
ER-k-NN in future research works.
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