Two formulas of generalized Fermat numbers which seems to generate large primes

Marius Coman
Bucuresti, Romania
email: mariuscoman13@gmail.com

Abstract. There exist few distinct generalizations of Fermat numbers, like for instance numbers of the form $F(k) = a^{(2^k)} + 1$, where $a > 2$, or $F(k) = a^{(2^k)} + b^{(2^k)}$ or Smarandache generalized Fermat numbers, which are the numbers of the form $F(k) = a^{(b^k)} + c$, where a, b are integers greater than or equal to 2 and c is integer such that $(a, c) = 1$. In this paper I observe two formulas based on a new type of generalized Fermat numbers, which are the numbers of the form $F(k) = (a^{(b^k)} ± c)/d$, where a, b are integers greater than or equal to 2 and c, d are positive non-null integers such that $F(k)$ is integer.

Conjecture 1:

There exist an infinity of odd integers k such that the number $p = (2^{(2^k)} + 2)/6$ is a prime of the form $30*n + 13$, where n positive integer.

Examples:

First three such primes p, obtained for $k = 3, 5$ and 7:

- $p = 43 = 1*30 + 13$ for $k = 3$;
- $p = 715827883 = 23860929*30 + 13$ for $k = 5$;
- $p = 56713727820156410577229101238628035243 = 1890457594005213685907636707954267841*30 + 13$ for $k = 7$.

Note that for $k = 9$ is obtained a number p with 154 digits!

Conjecture 2:

There exist an infinity of odd integers k such that the number $p = (2^{(2^k)} - 2)/2$ is a prime of the form $30*n + 7$, where n positive integer.

Examples:

First three such primes p, obtained for $k = 3, 5$ and 7:
\[p = 127 = 4 \times 30 + 7 \text{ for } k = 3; \]
\[p = 2147483647 = 71582788 \times 30 + 7 \text{ for } k = 5; \]
\[p = 170141183460469231731687303715884105727 = 5671372782015641057722910123862803524 \times 30 + 7 \text{ for } k = 7. \]

Note that for \(k = 9 \) is obtained a number \(p \) with 154 digits!