International Journal of Algebra, Vol. 4, 2010, no. 25, 1219 - 1229

Smarandache Triple Tripotents in Z_n

and in Group Ring Z₂G

P. A. Hummadi and A. K. Muhammad

Department of mathematics, College of Education, Scientific Departments University of Salahaddin, Erbil, Iraq Pahummadi@gmail.com, Awaz2222@yahoo.com

Abstract

In this paper, we study tripotent elements and Smarandache triple tripotents (S-T. tripotents) in Z_n , the ring of integers modulo n, and in group ring Z_2G where G is a cyclic group of order 2n (n is an odd number).

Keywords: Tripotent, Smarandache triple tripotent

Introduction

The concept of m-idempotent was introduced by H. Chaoling and G. Yonghua at 2010,[2]. Smarandache concepts introduced by Florentin Smarandache [7]. Smarandache idempotent element in rings defined by Vasantha Kandasamy [8]. This paper has two sections. In section one we introduce the concept of Smarandache triple tripotent in rings (S-T. tripotent). We find the number of tripotents and S-T. tripotents and their forms in Z_n ,the ring of integers modulo n. In section two, we study tripotents and S-T. tripotents in the group ring Z_2G , where G is a cyclic group of order 2n (n is an odd number), in particular, when n is a Mersenne prime that is a prime of the form $2^k - 1$ for some prime k, and we obtain their numbers.

§1. Tripotents and S-T. tripotents in the ring Z_n.

In this section the concept of S-T. tripotent introduced. We study tripotents and S - T. tripotents in Z_n , for $n = 2^k$, pq, pqr, for distinct primes p, q and r, we find the number of tripotents and S-T. tripotents and their forms.

Definition1.1.[2]. An element α of a ring R is called tripotent (3-idempotent), if $\alpha^3 = \alpha$. A tripotent element is said to be anon trivial tripotent if $\alpha^2 \neq \alpha$. Now, we introduce the concept of S-T. tripotent.

Definition 1.2. Three distinct non trivial tripotents x, y, z in a commutative ring R called Smarandache triple tripotent (S-T. tripotent) if xy=z, xz=y and yz=x. The proof of the following result is easy.

Proposition 1.3. In $Z_{n, n} > 2$, the element [n-1] (equivalence class of n-1) is a non trivial tripotent (we write n-1 instead of [n-1]).

The following useful Lemma is needed.

Lemma 1.4. If x is a non trivial idempotent of Z_n and $x-1 \neq \frac{n}{2}$, then x-1 and 2x-1 are non trivial tripotents.

Proof: Let x be a non trivial idempotent of Z_n with $x-1 \neq \frac{n}{2}$. Then $x^2 \equiv x \pmod{n}$. Now, $(x-1)^3 \equiv x - 1 \pmod{n}$, hence x-1 is a tripotent. We have to show that (x-1) is not an idempotent. If $(x-1)^2 \equiv x-1 \pmod{n}$, then $1-x \equiv x-1 \pmod{n}$. Hence $2(x-1) \equiv 0 \pmod{n}$. This means that n|2(x-1). If n is an odd number, then $n \mid (x-1)$, hence $x \equiv 1 \pmod{n}$ which is a trivial idempotent. If n is an even number, then $x-1 \equiv 0 \pmod{\frac{n}{2}}$, so $x-1 \equiv \frac{n}{2} \pmod{n}$ which is a contradiction with the assumption. Therefore x-1 is a non trivial tripotent.

The converse of Lemma 1.4 is not true in general (if y and 2y+1 are non trivial tripotents, then it is not necessary that y+1 is an idempotent and $y \neq \frac{n}{2}$).

Example 1.5. In Z_{60} , the ring of integers modulo 60, take y=4, then 2y+1=9. Clearly y and 2y+1 are non trivial tripotents, but y+1=5 is not an idempotent.

In the following result, a condition under which the converse of Lemma1.4 is true is given.

Proposition 1.6. Let y and 2y+1 be non trivial tripotents in Z_n, such that (n, 12)=1. Then y+1 is a nontrivial idempotent and $y \neq \frac{n}{2} \pmod{n}$.

Proof: From the assumption we have $y^3 \equiv y \pmod{n}$ and $(2y+1)^3 \equiv 2y+1 \pmod{n}$. This implies that $n|12 (y^2+y)$. But (n,12)=1, so $y^2+y\equiv 0 \pmod{n}$. Consequently $(y+1)^2 \equiv y+1 \pmod{n}$. Hence (y+1) is a non trivial idempotent, and clearly $y \neq \frac{n}{2} \pmod{n}$.

Proposition 1.7. The ring Z_{2^n} , n > 2 has exactly three non trivial tripotents, furthermore they forms a S -T. tripotent.

Proof: By Proposition 1.3, the element $(2^{n}-1)$ is a non trivial tripotent, and easily one show that $2^{n-1}-1, 2^{n-1}+1$ are non trivial tripotents, and that the triple $2^{n}-1, 2^{n-1}-1, 2^{n-1}+1$, forms a S-T. tripotent. Now, suppose that x is any other non trivial tripotent. Then $x (x^{2}-1) \equiv 0 \pmod{2^{n}}$, so $2^{n} | x(x^{2}-1)$. This means that, either $2^{n} | x$ or $2^{n} | x^{2}-1$. If $2^{n} | x$, then $x \equiv 0 \pmod{2^{n}}$ which is a contradiction with $x \neq 0 \pmod{2^{n}}$. Thus $2^{n} | x^{2}-1$, hence $x^{2} \equiv 1 \pmod{2^{n}}$. This congruence has four solutions they are $1, 2^{n-1}-1, 2^{n-1}+1$ and $2^{n}-1, [6]$. The solution 1 is trivial and the others are the same as above. Hence $Z_{2^{n}}$ has exactly three non trivial tripotents, and it is easy to show that the triple $(2^{n-1}-1), (2^{n-1}+1), (2^{n}-1)$ is a S-T. tripotent.

Proposition 1.8. Let p be an odd prime. Then Z_{p^n} , for $n \ge 1$ has only one non trivial tripotent.

Proof: By Proposition 1.3, the element p^{n} -1 is a non trivial tripotent. Suppose x is any other non trivial tripotent in Z_{p^n} . Then x (x²-1) ≡0 (mod pⁿ), this means that $p^n | x(x^2-1)$. If n=1, p | x(x^2-1), then p|x or p|x^2-1, but pł x because otherwise x≡0 (mod p), hence p|x²-1, so x²≡1(mod p). The solutions of the congruence x²≡1 (mod p) are 1, p-1 [1], but 1 is a trivial idempotent and p-1 is the same idempotent obtained by Proposition 1.3. Therefore there is exactly one nontrivial tripotent. Now, suppose n>1 and that x≠pⁿ-1 is any non trivial tripotent. Then x(x²-1)≡0(mod pⁿ). Since p is a prime, either pⁿ|x or pⁿ|x²-1. If pⁿ|x, then x≡0 (mod pⁿ) contradiction with x≢0 (mod pⁿ), therefore pⁿ|x²-1, that means x²≡1 (mod pⁿ), but this congruence has exactly two incongruent solutions [6], either x≡1 (mod pⁿ) which is a trivial idempotent or x ≡pⁿ-1(mod pⁿ) which his the tripotent. ■

Recall that if a, b are positive integers with (a, b) = d, then the Diophantine equation xa+yb=c has infinite solutions if d|c and has no solution if $d \nmid c$, we give the following result.

Theorem 1.9. Let n=pq, where p and q are distinct odd primes. Then Z_n has exactly five non trivial tripotents, and one S-T. tripotent.

Proof: By Proposition 1.3, the element pq-1 is a non trivial tripotent of Z_n . By Diophantine equation, there exist t, $s \in Z$, t > 0 such that tq-sp=1 and there exist t₁, $s_1 \in Z$, t > 0 such that t_1p -s₁q=1. It is shown in [4], that tq and t_1p are non trivial idempotents (In fact t_1p =n+1 – tq (mod pq)) of Z_{pq} . Then by Lemma 1.4 the elements tq-1, 2tq-1, n-tq and 1-2tq are non trivial tripotents. So we get five non trivial tripotents. Suppose that x be any other non trivial tripotent, thus

 $x^3 \equiv x \pmod{pq}$, so $x (x^2-1) \equiv 0 \pmod{pq}$, which means $pq \mid x(x^2-1)$. There are three cases: (1) p|x and q|x^2-1.

(1) p|x and q|x = 1. (2) $p|x^2-1$ and q|x, and

(3) pq $|x^2-1|$.

In case(1), $x \equiv 0 \pmod{p}$, hence $x \equiv kp \pmod{pq}$, for some k, $0 \le k \le q-1$, and $q|x^2-1$, then $x^2 \equiv 1 \pmod{p}$, by [1], $x \equiv 1 \pmod{q}$ or $x \equiv q-1 \pmod{q}$. If $x \equiv 1 \pmod{q}$, hence $x \equiv 1+rq \pmod{pq}$ for some r, $0 \le r \le p-1$, then kp-rq=1 which means x=kp is an idempotent (it is a trivial tripotent). When $x \equiv q-1 \pmod{q}$, we get $x \equiv s_3q-1 \pmod{pq}$ for some s_3 , $0 \le s_3 \le p-1$. Therefore $s_3q-kp=1$, this means x=kp is a non trivial tripotent which is obtained before. Case (2) is similar.

Case (3) $pq|x^2-1$, then $x^2\equiv 1 \pmod{pq}$. This congruence has four solutions 1, 1-2tq, 2tq-1 and pq-1, [6]. The solution 1 is trivial, the others was obtained before. Therefore Z_{pq} has exactly five non trivial tripotents, and a simple calculation shows that the triple (n-1), (1-2tq), (2tq-1) is a S-T. tripotent.

Proposition 1.10. Let p be an odd prime. Then Z_{2p} has exactly two non trivial tripotents.

Proof: It is shown in [4], that Z_{2p} has only two non trivial idempotents namely p and p+1. Then by Lemma1.4 the elements p-1 and 2p-1 are non trivial tripotents in Z_{2p} . But 2p-1 is the same tripotent obtained by Proposision1.3. Hence Z_{2p} has two non trivial tripotents. Suppose that x is any other non trivial tripotent, then $x(x^2-1) \equiv 0 \pmod{2p}$, there are two cases: (1) 2|x and p|x^2-1.

(1) 2|x and p|x (1) (2) $2|x^2-1$ and p|x.

In case (1), $x\equiv 0 \pmod{2}$, hence $x\equiv 2t_1 \pmod{2p}$, for some $0 \le t_1 \le p-1$, and $p|x^2-1$, then $x^2\equiv 1 \pmod{p}$. The congruent $x^2\equiv 1 \pmod{p}$ has exactly two solutions 1, p-1, [1]. If $x\equiv 1 \pmod{p}$, then $x\equiv 1+kp \pmod{2p}$ for some $0 \le k \le 2p-1$, hence $2t_1-kp=1$ which means $x=2t_1$ is an idempotent. When $x\equiv p-1 \pmod{p}$, hence $x\equiv s_1p-1 \pmod{2p}$ for some $0 \le s_1 \le 2p-1$. Therefore $s_1p-2t_1=1$ this means $x=2t_1$ is a non trivial tripotent which is obtained before. Case (2), is similar.

Hence Z_{2n} has exactly two non trivial tripotents.

Theorem 1.11. Let $n=p^nq$, where p, q are distinct odd primes. Then Z_n has exactly five non trivial tripotents, and one S-T. tripotent.

Proof: By Diophantine equation, there exist t, $s \in Z$, t > 0 such that $tq \cdot sp^n = 1$. By similar method used in the proof of Theorem 1.9 one can show that p^nq-1 , tq-1, 2tq-1, n-tq and 1-2tq are non trivial tripotents in Z_{p^nq} , and it is easy to show that the triple n-1, 1-2tq and 2tq-1, is a S-T. tripotent. **Theorem 1.12.** Let n=2pq where p and q are distinct odd primes. Then Z_n has exactly ten non trivial tripotents and two S-T. tripotents.

Proof: By Proposition 1.3, the element 2pq-1 is a non trivial tripotent. Suppose that p < q. Then by Diophantine equation, there exist t, $s \in Z$, t > 0 such that tq-sp=1 as (p, q)=1. As it is shown in [4], Z_n has exactly 6 non trivial idempotents they are pq, pq+1, tq, 2pq+1-tq, pq+tq and 1-tq+pq. By Lemma 1.4 the elements pq-1, 2pq-1, tq-1, 2tq-1, 2pq-tq, 1-2tq and pq+tq-1 are non trivial tripotents. The element 2pq-1 is the same non trivial tripotent obtained by Proposition 1.3, so we obtain seven non trivial tripotents and it is not difficult to show that 1-2tq+pq, 2tq-1+pq and 2pq-tq+pq are also non trivial tripotents. Hence Z_{2pq} has ten non trivial tripotents. Suppose that x is any other non trivial tripotent for Z_{2pq} . Then x (x²-1) $\equiv 0 \pmod{2pq}$, this means that pq| x(x²-1). There are three cases:

(1) $pq|x \text{ or } pq|x^2-1$

(2) q| x and p| x^2-1

(3) $q | x^2-1$ and p | x.

In case(1), $x \equiv pq \pmod{2pq}$, but pq is an idempotent, so it is a trivial tripotent. If $pq|x^2-1$, then $x^2 \equiv 1 \pmod{pq}$, this congruence has the following four solutions, 1 which is trivial, 2pq-1, 1-2tq and 2tq-1 are obtained before.

In case (2), $x\equiv 0 \pmod{q}$, hence $x\equiv t_1q \pmod{2pq}$ for some $t_1, 0 \le t_1 \le 2p-1$, and $p|x^2-1$, then $x^2\equiv 1 \pmod{p}$, by [1] $x\equiv 1 \pmod{p}$, or $x\equiv p-1 \pmod{p}$, are solutions of the congruence $x^2\equiv 1 \pmod{p}$. If $x\equiv 1 \pmod{p}$, hence $x\equiv 1+r$ p (mod 2pq), for some $1 \le r \le 2q-1$, then t_1q - rp=1, this means $x=t_1q$ is an idempotent. When $x\equiv p-1 \pmod{p}$, hence $x\equiv s_1p-1(\mod{2pq})$ for some $1 \le s_1 \le 2q-1$. Therefore $s_1p-t_1q=1$, which means $x=t_1q$ is a non trivial tripotent which is obtained before. Case (3) is similar.

Hence Z_{2pq} has exactly ten non trivial tripotents.

Now, we show that the triple (2pq-1), (2tq-1), (1-2tq) is a S-T. tripotent.

 $(2pq-1)(2tq-1) \equiv 4tqpq - 2pq - 2tq+1 \pmod{2pq}$

 \equiv 1-2tq (mod 2pq),

 $(2pq-1) (1-2tq) \equiv 2tq-1 \pmod{2pq}$, and

 $(2tq-1)(1-2tq) \equiv 2pq-1 \pmod{2pq}$

Therefore (2pq-1), (2tq-1) and (1-2tq) is a S-T. tripotent. Similarly (pq-1),

(1-2tq +pq), (2tq-1+pq) forms a S-T. tripotent. Hence Z_{2pq} has two S-T. tripotents.

The following example illustrates the above results.

Example 1.13.

- *I*) The non trivial tripotents of Z_8 are 3, 5 and 7. The triple 3, 5, 7 is a S-T. tripotent, (proposition 1.7).
- **2**) Z_{243} has only one non trivial tripotent, namely 242, (proposition 1.8).
- **3**) Consider Z_n, n=3.7=21. Now, 1(7) -2(3) =1 by Theorem 1.10, the tripotents are 6, 14, 20, 8, 13, and the triple 20, 8, 13 is a S-T. tripotent,(Theorem 1.9).

- 4) Z_{10} has exactly two non trivial tripotents they are 4 and 9, (proposition 1.10)
- 5) In Z_{135} , 11(5)-2(27) =1. By Theorem 1.11, Z_{135} has five non trivial tripotents 54, 80, 26, 109, 134, and the triple 26, 109, 134 is a S-T. tripotent.
- 6) In Z₁₅₄, 2(11)-3(7)=1. By Theorem 1.12 the elements 76, 21, 132, 98, 153, 43, 55, 120, 111 and 34 are non trivial tripotents, the triples 153, 43, 111 and 76, 120, 34 are S-T. tripotents.

Theorem 1.14. Let n=pqr for distinct odd primes p, q, r. Then Z_n has exactly 19 non trivial tripotents, and at least three S-T. tripotents.

Proof: By Proposition1.3, the element pqr-1 is a non trivial tripotent. Since (pq, r)=1 there are t, $s \in Z$ with t > 0 such that spq-tr=1, also there exist $s_1, t_1 \in Z$ such that $s_1qr-t_1r=1$, and there are s_2 , t_2 such that $s_2pr-t_2q=1$. It is shown in [4], Z_{pqr} has 6 non trivial idempotents, they are spq, s_1qr , s_2pr , pqr+1-spq, $pqr+1-s_1qr$ and $pqr+1-s_2pr$. By Lemma 1.4 the elements spq-1, 2spq-1, s_1qr-1 , $2s_1qr-1$, s_2pr-1 , $2s_2pr-1$, 1-2spq, $1-2s_1qr$, $1-2s_2pr$, pqr-spq, $pqr-s_1qr$ and $pqr-s_2pr$ are non trivial tripotents. We can also show that the following six elements $spq-s_1qr$, $s_1qr-spq$, $spq-s_2pr$, $s_2pr-spq$, s_1qr-s_2pr and s_2pr-s_1qr are also non trivial tripotents in Z_n . Suppose that x is any other non trivial tripotent of Z_n , then $x(x^2-1)\equiv 0 \pmod{pqr}$. This means that $pqr | x(x^2-1)$. If pqr | x then $x\equiv 0 \pmod{pqr}$, contradiction with $x \neq 0 \pmod{pqr}$. So we have the cases:

(1) $pqr|x^2-1$. (2) p|x and $qr|x^2-1$. (3) $p|x^2-1$ and qr|x(4) $pq|x^2-1$. (5) $pq|x^2-1$ and qr|x. (6) pr|x and $qr|x^2-1$.

(4) pq|x and $r|x^2-1$. (5) $pq|x^2-1$ and r|x. (6) pr|x and $q|x^2-1$.

(7) $pr|x^2-1$ and q|x.

In case (1), $pqr|x^2-1$, then $x^2\equiv 1 \pmod{pqr}$. This congruence has 8 solutions they are 1, 2spq-1, $2s_1qr-1$, $2s_2pr-1$, 1-2spq, $1-2s_1qr$, $1-2s_2pr$ and pqr-1, [6]. But all of them were obtained before.

In case (2), $x \equiv 0 \pmod{p}$, then $x \equiv t_3 p \pmod{pqr}$, for some $t_3 0 \le t_3 \le qr-1$, and $x^2 \equiv 1 \pmod{qr}$, hence, $x^2 \equiv 1+s_3 qr \pmod{pqr}$, for some $s_3 0 \le s_3 \le p-1$, thus $(t_3 p)^2 - s_3 qr = 1$, hence $x = (t_3 p)^2$ is an idempotent.

Case (3) $x^2 \equiv 1 \pmod{p}$. Then $x \equiv 1 \pmod{p}$ or $x \equiv p-1 \pmod{p}$. If $x \equiv 1 \pmod{p}$, hence $x \equiv 1 + kp \pmod{pq}$, for some k, $0 \le k \le qr-1$. When $x \equiv p-1 \pmod{p}$, then $x \equiv k_1p-1 \pmod{pq}$, for some $k_1, 1 \le k_1 \le qr-1$, and $x \equiv qr \pmod{pq}$, hence $x \equiv jqr \pmod{pq}$, for some j, $1 \le j \le p-1$, therefore jqr-kp =1 which means $x \equiv jqr$ is an idempotent, also k_1p -jqr=1, Leeds to a contradiction, since $x \equiv jqr$ is a non trivial tripotent.

Cases(4) and (6) are Similar to case (3).

Cases (5) and (7) are Similar to case (2).

Hence Z_{pqr} has exactly 19 non trivial tripotents. One can show that the triples 2spq-1, 1-2spq, pqr-1; 1-2s₁qr, 2s₁qr-1, pqr-1 and 2s₂pr, 1-2s₂pr, pqr-1 are a S-T. tripotents.

We have to mention here that in general there are more than three S-T. tripotents but we could not find their forms.

Example 1.15. The non trivial tripotents of Z_{105} , are 20, 104, 90, 35, 84, 71, 99, 29, 34, 64, 49, 76, 56, 6, 50, 55, 41, 14, 69 and the triples : 29, 41, 34; 69, 99, 6; 4, 49, 56; 20, 55, 50; 104, 41, 64; 71, 76, 41; 64, 71, 29; 64, 76, 34; 104, 71, 34; 104, 76, 24 are S-T. tripotents.

§2. Smarandache triple tripotents in the group ring Z₂G

In this section we study tripotents and S-T. tripotents in the group ring Z_2G , where G is a cyclic group of order 2n (n is an odd number) generated by g, specially, when n is a Mersenne prime, and we obtain their numbers. For definition of group ring see[3]. We start by the following definition.

Definition 2.1.[8]. Let R be a ring. An element $0 \neq x \in R$ is a Smarandache idempotent (S-idempotent) of R if

1) $x^2 = x$.

2) There exists $a \in \mathbb{R} \setminus \{0, 1, x\}$

i) $a^2 = x$ and

ii) xa = a (ax = a) or ax = x (xa = x).

a called the Smarandache co-idempotent (S-co-idempotent).

The following lemma is needed.

Lemma 2.2. Let α be a S-idempotent of the group ring Z₂G, where G is a cyclic group of order 2n (n is an odd number) generated by g and β be a S-co-idempotent of α with $\alpha\beta=\beta$. Then β , $\alpha+\beta+g^n$ and $\alpha+\beta+1$ are non trivial tripotents.

Proof: Since β is a S-co-idempotent of α , we get $\beta^2 = \alpha \neq \beta$, consequently $\beta^3 = \beta$, hence β is a non trivial tripotent. Then $(\alpha + \beta + g^n)^3 = \alpha + \beta + g^n$, hence $\alpha + \beta + g^n$ is a non trivial tripotent. Similarly $\alpha + \beta + 1$ is a non trivial tripotent.

Theorem 2.3. In the group ring Z₂G, where G is a cyclic group of order 2n (n is an odd number) generated by g, for any k distinct integers $t_1 < t_2 < \cdots < t_k$, 0 < k, $t_i \le n-1$ for each i, $g^{t_1}+g^{t_2}+\cdots+g^{t_k}+g^n+g^{n+t_1}+g^{n+t_2}+\cdots+g^{n+t_k}$ and $1 + g^{t_1}+g^{t_2}+\cdots+g^{t_k}+g^{n+t_1}+g^{n+t_2}+\cdots+g^{n+t_k}$ are non trivial tripotents. Moreover the number of non trivial tripotents is equal to $\sum_{i=1}^{n-1} {n-1 \choose i} + \sum_{i=1}^{n-1} {n-1 \choose i}$.

Proof: Let t_1, t_2, \dots, t_k be any k distinct integers with $0 < t_1 < t_2 < \dots < t_k, t_i$, $k \le n-1$. Let $d_k = g^{t_1} + g^{t_2} + \dots + g^{t_k} + g^n + g^{n+t_1} + g^{n+t_2} + \dots + g^{n+t_k}$. Then $d_k^2 = g^{2t_1} + g^{2t_2} + \dots + g^{2t_k} + g^{2n+2t_1} + g^{2n+2t_2} + \dots + g^{2n+2t_k} = 1 \neq d_k$. Hence $d_k^3 = d_k$, so d_k is a nontrivial tripotent. Using some known facts from probability theory, the number of such tripotents is $\sum_{1}^{n-1} {n-1 \choose s}$. Clearly g^n is also a non trivial tripotent we denote $d_0 = g^n$. Let $f_k = 1 + g^{t_1} + g^{t_2} + \dots + g^{t_k} + g^{n+t_1} + g^{n+t_2} + \dots + g^{n+t_k}$. Then $f_k^2 = 1 + g^{t_1} + g^{t_2} + \dots + g^{t_k} + g^{n+t_1} + g^{n+t_2} + \dots + g^{n+t_k} = 1 \neq f_k$. Hence $f_k^3 = f_k$, so f_k is a non-trivial tripotent. Also using some known facts from probability theory, we get the number of such tripotents is $\sum_{1}^{n-1} {n-1 \choose s}$. Hence the number of non trivial tripotents we obtain is $\sum_{0}^{n-1} {n-1 \choose s} + \sum_{1}^{n-1} {n-1 \choose s}$.

Remark 2.4. If $\alpha_1, \alpha_2, \alpha_3, \dots, \alpha_m$ are m non trivial tripotents of Z₂G, where G is a cyclic group of order 2n (n is an odd number) generated by g, and $\alpha_i \neq \beta$ for all i, where β is a S-co- idempotent of the S-idempotent $\alpha = g^2 + g^4 + \dots + g^{2n-2}$,[5] where $\alpha \neq \alpha_i$, then $\alpha_1 + \alpha_2 + \alpha_3 + \dots + \alpha_m$ is a tripotent if m is an odd number, and $1+\alpha_1 + \alpha_2 + \alpha_3 + \dots + \alpha_m$ is a tripotent if m is an even number.

Proposition 2.5. In the group ring Z₂G, where G is a cyclic group of order 2n (n is an odd number) generated by g, if α_1 , α_2 are any two non trivial tripotents in Z₂G, then the triple α_1 , α_2 , $1 + \alpha_1 + \alpha_2$ is a S-T. tripotent.

Proof: Since in the group ring Z_2G the tripotents obtained are of the form d_k or f_k given in Theorem 2.3, then we have the following cases:

Case 1: α_1, α_2 are of the type d_k . Let $\alpha_1 = d_e = g^{\ell_1} + g^{\ell_2} + \dots + g^{\ell_e} + g^n + g^{n+\ell_1} + g^{n+\ell_2} + \dots + g^{n+\ell_e}$, and $\alpha_2 = d_h = g^{s_1} + g^{s_2} + \dots + g^{s_h} + g^n + g^{n+s_1} + g^{n+s_2} + \dots + g^{n+s_h}$,

where ℓ_1 , ℓ_2 , ..., ℓ_e and s_1 , s_2 , ..., s_h are e and h distinct integers respectively, $\ell_j \leq n-1$, $s_i \leq n-1$ for each i, j. By Remark 2.4, $1 + \alpha_1 + \alpha_2$ is also a non trivial tripotent. We claim that the triple α_1 , α_2 , $1 + \alpha_1 + \alpha_2$ is a S - T. tripotent. For this purpose we describe the multiplication $\alpha_1 \alpha_2$ in the following array say \mathcal{A} :

($g^{l_1+s_1}$	$g^{l_1+s_2}$		$g^{l_1+s_h}$	g^{n+l_1}	$g^{n+l_1+s_1}$	$g^{n+l_1+s_2}$		$g^{n+l_1+s_h}$
		$g^{l_2+s_2}$		$g^{l_2+s_h}$	g^{n+l_2}	$g^{n+l_2+s_1}$	$g^{n+l_2+s_2}$		
	÷	÷	·.	÷	÷	÷	:	•	:
	$g^{l_e+s_1}$	$g^{l_e+s_2}$	•••	$g^{l_e+s_h}$	g^{n+l_e}	$g^{n+l_e+s_1}$	$g^{n+l_e+s_2}$		$g^{n+l_e+s_h}$
	g^{n+s_1}	g^{n+s_2}	•••	g^{n+s_h}	$g^{2n} = 1$	g^{2n+s_1}	g^{2n+s_2}		g^{2n+s_h}
Ę	$s^{n+l_1+s_1}$	$g^{n+l_1+s_2}$		$g^{n+l_1+s_h}$	g^{2n+l_1}	$g^{2n+l_1+s_1}$	$g^{2n+l_1+s_2}$		$g^{2n+l_1+s_h}$
Ę	$n+l_2+s_1$	$g^{n+l_2+s_2}$		$g^{n+l_2+s_h}$	g^{2n+l_2}	$g^{2n+l_2+s_1}$	$g^{2n+l_2+s_2}$		$g^{2n+l_2+s_h}$
	÷	:	·.	÷	÷	÷	:	•	:
\ _e	$n+l_e+s_1$	$g^{n+l_e+s_2}$		$g^{n+l_e+s_h}$	g^{2n+l_e}	$g^{2n+l_e+s_1}$	$g^{2n+l_e+s_2}$		$g^{2n+l_e+s_h}$

 $\mathcal{A} = \left[a_{ij}\right]_{(2e+1)\times(2h+1)}, \text{ where } a_{ij} \text{ is the summand of } \alpha_1 \alpha_2 \text{ which is equal to the product of the ith summand of } \alpha_1 \text{ with jth summand of } \alpha_2. \text{ Considering the first and the (e+2) th rows of this array we see that if } g^i \text{occurs in one of them it occurs in both of them for each i except (} i=n+\ell_1, \ell_1\text{)}, (as g^{2n+\ell_1} = g^{\ell_1}\text{)}. By adding the terms of these two rows it remains only <math>g^{\ell_1} + g^{n+\ell_1}$ (observing that the coefficient of each g^i , i=1, ..., 2n-1 is in Z_2G). Again by adding the second and the (e+3) th rows in this array, according to the same argument it remains only $g^{\ell_2} + g^{n+\ell_2}$. Proceeding in this manner we will get the (e) th and the (2e+1) th rows, adding there terms it remains only $g^{\ell_e} + g^{n+\ell_e}$. So by adding all terms of this array we get, $1 + g^{\ell_1} + g^{\ell_2} + \dots + g^{\ell_e} + g^{n+\ell_1} + g^{n+\ell_2} + \dots + g^{n+s_1} = 1 + \alpha_1 + \alpha_2$, which is clearly a non trivial tripotent in second type. By the same way we get $\alpha_1(1 + \alpha_1 + \alpha_2) = \alpha_2$ and $\alpha_2(1 + \alpha_1 + \alpha_2) = \alpha_1$. Therefore the triple α_1 , α_2 , $1 + \alpha_1 + \alpha_2$ is a S-T. tripotent.

Case 2: α_1 , α_2 are of the type f_k . Let $\alpha_1 = f_i = 1 + g^{r_1} + g^{r_2} + \dots + g^{r_i} + g^{n+r_1} + g^{n+r_2} + \dots + g^{n+r_i}$, and $\alpha_2 = f_j = 1 + g^{m_1} + g^{m_2} + \dots + g^{m_j} + g^{n+m_1} + g^{n+m_2} + \dots + g^{n+m_j}$, such that r_1, r_2, \dots, r_i and m_1, m_2, \dots, m_j are i and j distinct integers respectively, $r_k \le n-1$, $m_t \le n-1$ for each k, t, so by Remark 2.4, $1 + \alpha_1 + \alpha_2$ is also a non trivial tripotent. By using same method as in case1, we get that the triple α_1 , α_2 , $1 + \alpha_1 + \alpha_2$ is a S-T. tripotent.

Case 3: α_1 of the type d_k and α_2 of the type f_k , where $\alpha_1 = d_h = g^{s_1} + g^{s_2} + \dots + g^{s_h} + g^n + g^{n+s_1} + g^{n+s_2} + \dots + g^{n+s_h}$, $\alpha_2 = f_e = 1 + g^{\ell_1} + g^{\ell_2} + \dots + g^{\ell_e} + g^{n+\ell_1} + g^{n+\ell_2} + \dots + g^{n+\ell_e}$ and Such that s_1, s_2, \dots, s_h and $\ell_1, \ell_2, \dots, \ell_e$ are h and e distinct integers respectively, $s_i \leq n-1$, $\ell_j \leq n-1$ for each i, j, then by Remark 2.4 the element $1 + \alpha_1 + \alpha_2$ is also a non trivial tripotent. If $1 + \alpha_1 + \alpha_2$ belongs to first type, then we get case 1 if it belongs to second type, then we get case 2. Hence the triple $\alpha_1, \alpha_2, 1 + \alpha_1 + \alpha_2$ is a S-T. tripotent.

Theorem 2.6. The group ring Z_2G , where G is a cyclic group of order 2n (n is an odd number) has at least 2^n non trivial tripotens and $\binom{2^{n-1}}{2} + \frac{1}{3}\binom{2^{n-1}-1}{2}$ S-T. tripotents.

Proof: By Theorem 2.3, the group ring Z_2G , has $2^{n-1} + 2^{n-1} - 1 = 2^n - 1$ non trivial tripotents. It is shown in [5], that if G is generated by g, then $\alpha = g^2 + g^4 + \cdots + g^{n-1} + g^{n+1} + \cdots + g^{2n-2}$ is a S-idempotent and $\beta = g + g^3 + \cdots + g^{n-2} + g^{n+2} + \cdots + g^{2n-1}$ is a S-co-idempotent. By Lemma 2.2, β is also a non trivial tripotent. Then Z_2G has at least 2^n non trivial tripotents. By Proposition 2.5, for any two non trivial tripotents α_1, α_2 in Z_2G , the triple $\alpha_1, \alpha_2, 1 + \alpha_1 + \alpha_2$ is a

S-T. tripotent. Using some probability theory we get that, the number of such S-T. tripotents is $\binom{2^{n-1}}{2} + \frac{1}{3}\binom{2^{n-1}-1}{2}$.

Example 2.7. Consider the group ring Z₂G, where $G = \langle g | g^{10}=1 \rangle$ is a cyclic group of order 10, generated by g. Then by Theorem 2.6, the group ring Z₂G has 32 non trivial tripotents and the number of S-T. tripotents is 155. We list some of non trivial tripotents and S-T. tripotents g^5 , $g+g^5+g^6$, $g+g^2+g^5+g^6+g^7$, $g+g^2+g^3+g^5+g^6+g^7+g^8$, $g+g^2+g^3+g^4+g^5+g^6+g^7+g^8+g^9$ $1+g+g^6$, $1+g+g^2+g^6+g^7$, $1+g^2+g^4+g^7+g^9$, $1+g+g^2+g^3+g^6+g^7+g^8$, $1+g+g^2+g^3+g^4+g^5+g^6+g^7+g^8+g^9$, $g+g^2+g^3+g^2+g^3+g^6+g^7+g^8$, $g+g^2+g^3+g^5+g^6+g^7+g^8+g^9$, $g^6+g^7+g^8+g^9$, $g+g^3+g^7+g^9$ are non trivial tripotents. The triples g^5 , $g+g^5+g^6$, $1+g+g^6$ and $1+g+g^6$, $1+g^4+g^9$, $1+g+g^4+g^6+g^9$ are S-T. tripotents

Theorem 2.8. The group ring Z₂G, where G is a cyclic group of order 2p (p is Mersenne prime) has at least $2^p + (2^m - 2)$ non trivial tripotents and $\binom{2^{p-1}}{2} + \frac{1}{3}\binom{2^{p-1}-1}{2}$ S-T. tripotents, where $m = \frac{p-1}{k}$.

Proof: By Theorem 2.6, the group ring Z_2G has at least 2^p non trivial tripotents. It is shown in [5] that if G is generated by g, then every element of the form $\alpha_{\ell} = g^{2\ell} + g^{2^2\ell} + g^{2^3\ell} + \dots + g^{2^{k_{\ell}}}$ is a S-idempotent of the group ring Z_2G , where ℓ is an odd number less than p, and $\beta_{\ell} = g^{\ell} + g^{t_2} + g^{t_3} + \dots + g^{t_{k-1}} + g^{t_k}$, is a S-co-idempotent of α_{ℓ} with $\alpha_{\ell}\beta_{\ell} = \beta_{\ell}$, where t_i is defined by

$$t_i = \begin{cases} \frac{1}{2}x_i & \text{if } \frac{1}{2}x_i \text{ is odd } (2 \le i \le k) \\ \frac{1}{2}x_i + p & \text{if } \frac{1}{2}x_i \text{ is even } (2 \le i \le k). \end{cases}$$

and x_i , $i \ge 2$ is the smallest positive integer such that $x_i < 2p$. Thus $x_i \equiv 2^i \ell \pmod{2p}$, this means $x_i = 2^i \ell - 2pr$, for some $r \in Z^+$. S-idempotents of the form α_ℓ called basic S-idempotents. Moreover it is shown that the sum of any number S-idempotents is also a S-idempotents, also it is proved that if α is any such S-idempotent and β is a S-co-idempotent of α , then $\alpha\beta=\beta$. By Lemma 2.2, S-co-idempotent are non trivial tripotents. Since the number of such S-co-idempotents is 2^m -1, each of which is a non trivial tripotent. But one of these 2^m -1 S-co-idempotents namely $\beta=g+g^3 + \cdots + g^{n-2} + g^{n+2} + \cdots + g^{2n-1}$ is one of the 2^n non trivial tripotent. Therefore the number of non trivial tripotent is $2^p + (2^m - 2)$ and the number of S-T. tripotents obtained is $\binom{2^{p-1}}{2} + \frac{1}{3}\binom{2^{p-1}-1}{2}$.

References

[1] D. M. Burton, Elementary Number Theory, *Allyn and Bacan*, (1980).

- [2] H. Chaoling and G. Yonghua, On m-idempotents, *African Diaspora Journal* Vo.9,No.1,(2010),64-67.
- [3] D. S. Dummit and R. M. Foote, Abstract Algebra, third edition, *John Wiley* & *Sons,Inc*, (2004).
- [4] P. A. Hummadi ,S-units and S-idempotents, Zanco, the Scientific journal of Salahadden University, VO 21, No 4, (2009).
- [5] P. A. Hummadi and Osman S. A., Smarandache idempotents in certain type of group rings, *journal of Sulaymania University*, Vo 13, No.1, (2010).
- [6] A. Hurwitz, Lectures on Number Theory, New York- Springer-Verlag, (1986).
- [7] F. Smarandache, Special Algebraic Structures, in Collected papers, **Abaddaba, Oradea, Vol.III**, (2000).
- [8] W. B. Vasantha Kandasamy, Smarandache Rings, American Research Press, (2002).

Received: June, 2010