Smarandache Triple Tripotents in \mathbb{Z}_n

and in Group Ring \mathbb{Z}_2G

P. A. Hummadi and A. K. Muhammad

Department of mathematics, College of Education, Scientific Departments
University of Salahaddin, Erbil, Iraq
Pahummadi@gmail.com, Awaz2222@yahoo.com

Abstract

In this paper, we study tripotent elements and Smarandache triple tripotents (S-T. tripotents) in \mathbb{Z}_n, the ring of integers modulo n, and in group ring \mathbb{Z}_2G where G is a cyclic group of order $2n$ (n is an odd number).

Keywords: Tripotent, Smarandache triple tripotent

Introduction

The concept of m-idempotent was introduced by H. Chaoling and G. Yonghua at 2010,[2]. Smarandache concepts introduced by Florentin Smarandache [7]. Smarandache idempotent element in rings defined by Vasantha Kandasamy [8]. This paper has two sections. In section one we introduce the concept of Smarandache triple tripotent in rings (S-T. tripotent). We find the number of tripotents and S-T. tripotents and their forms in \mathbb{Z}_n, the ring of integers modulo n. In section two, we study tripotents and S-T. tripotents in the group ring \mathbb{Z}_2G, where G is a cyclic group of order $2n$ (n is an odd number), in particular, when n is a Mersenne prime that is a prime of the form $2^k - 1$ for some prime k, and we obtain their numbers.

§1. Tripotents and S-T. tripotents in the ring \mathbb{Z}_n.

In this section the concept of S-T. tripotent introduced. We study tripotents and S - T. tripotents in \mathbb{Z}_n, for $n = 2^k$, pq, pqr, for distinct primes p, q and r, we find the number of tripotents and S-T. tripotents and their forms.
Definition 1.1.[2]. An element α of a ring R is called tripotent (3–idempotent), if $\alpha^3 = \alpha$. A tripotent element is said to be non-trivial tripotent if $\alpha^2 \neq \alpha$.

Now, we introduce the concept of S-T. tripotent.

Definition 1.2. Three distinct non-trivial tripotents x, y, z in a commutative ring R called Smarandache triple tripotent (S-T. tripotent) if $xy=z$, $xz=y$ and $yz=x$.

The proof of the following result is easy.

Proposition 1.3. In \mathbb{Z}_n, $n > 2$, the element $[n-1]$ (equivalence class of $n-1$) is a non-trivial tripotent (we write $n-1$ instead of $[n-1]$).

The following useful Lemma is needed.

Lemma 1.4. If x is a non-trivial idempotent of \mathbb{Z}_n and $x-1 \neq 2n$, then $x-1$ and $2x-1$ are non-trivial tripotents.

Proof: Let x be a non-trivial idempotent of \mathbb{Z}_n with $x-1 \neq \frac{n}{2}$. Then $x^2 \equiv x$ (mod n).

Now, $(x-1)^3 \equiv x-1$ (mod n), hence $x-1$ is a tripotent. We have to show that $(x-1)$ is not an idempotent. If $(x-1)^2 \equiv x-1$ (mod n), then $1-x \equiv x-1$ (mod n). Hence $2(x-1) \equiv 0$ (mod n). This means that $n|2(x-1)$. If n is an odd number, then $n|(x-1)$, hence $x \equiv 1$ (mod n) which is a trivial idempotent. If n is an even number, then $x-1 \equiv 0$ (mod $\frac{n}{2}$), so $x-1 \equiv \frac{n}{2}$ (mod n) which is a contradiction with the assumption. Therefore $x-1$ is a non-trivial tripotent. Similarly we can show $(2x-1)$ is a non trivial tripotent. ■

The converse of Lemma 1.4 is not true in general (if y and $2y+1$ are non-trivial tripotents, then it is not necessary that $y+1$ is an idempotent and $y \neq \frac{n}{2}$).

Example 1.5. In \mathbb{Z}_{60}, the ring of integers modulo 60, take $y=4$, then $2y+1=9$. Clearly y and $2y+1$ are non-trivial tripotents, but $y+1=5$ is not an idempotent.

In the following result, a condition under which the converse of Lemma 1.4 is true is given.

Proposition 1.6. Let y and $2y+1$ be non-trivial tripotents in \mathbb{Z}_n, such that $(n, 12)=1$. Then $y+1$ is a nontrivial idempotent and $y \neq \frac{n}{2}$ (mod n).

Proof: From the assumption we have $y^3 \equiv y$ (mod n) and $(2y+1)^3 \equiv 2y+1$ (mod n). This implies that $n|12(y^2+y)$. But $(n,12)=1$, so $y^2+y\equiv 0$ (mod n). Consequently $(y+1)^2 \equiv y+1$ (mod n). Hence $(y+1)$ is a non trivial idempotent, and clearly $y \neq \frac{n}{2}$ (mod n). ■
Proposition 1.7. The ring \(\mathbb{Z}_{2^n} \), \(n > 2 \) has exactly three non trivial tripotents, furthermore they forms a S-T. tripotent.

Proof: By Proposition 1.3, the element \((2^n-1)\) is a non trivial tripotent, and easily one show that \(2^{n-1} - 1, 2^{n-1} + 1\) are non trivial tripotents, and that the triple \(2^n - 1, 2^{n-1} - 1, 2^{n-1} + 1\), forms a S-T. tripotent. Now, suppose that \(x\) is any other non trivial tripotent. Then \(x(x^2-1) \equiv 0 \pmod{2^n}\), so \(2^n \mid x(x^2-1)\). This means that, either \(2^n \mid x\) or \(2^n \mid x^2-1\). If \(2^n \mid x\), then \(x \equiv 0 \pmod{2^n}\) which is a contradiction with \(x \not\equiv 0 \pmod{2^n}\). Thus \(2^n \mid x^2-1\), hence \(x^2 \equiv 1 \pmod{2^n}\). This congruence has four solutions they are \(1, 2^{n-1} - 1, 2^{n-1} + 1\), \([6]\). The solution \(1\) is trivial and the others are the same as above. Hence \(\mathbb{Z}_{2^n}\) has exactly three non trivial tripotents, and it is easy to show that the triple \((2^{n-1} - 1), (2^{n-1} + 1), (2^n - 1)\) is a S-T. tripotent. ■

Proposition 1.8. Let \(p\) be an odd prime. Then \(\mathbb{Z}_{p^n}\), for \(n \geq 1\) has only one non trivial tripotent.

Proof: By Proposition 1.3, the element \(p^n - 1\) is a non trivial tripotent. Suppose \(x\) is any other non trivial tripotent in \(\mathbb{Z}_{p^n}\). Then \(x(x^2 - 1) \equiv 0 \pmod{p^n}\), this means \(p^n \mid x(x^2-1)\). If \(n=1\), \(p \mid x(x^2-1)\), then \(p \mid x\) or \(p \mid x^2-1\), but \(p \not\mid x\) because otherwise \(x \equiv 0 \pmod{p}\), hence \(p \mid x^2 - 1\), so \(x^2 \equiv 1 \pmod{p}\). The solutions of the congruence \(x^2 \equiv 1 \pmod{p}\) are \(1, p-1\) \([1]\), but \(1\) is a trivial idempotent and \(p-1\) is the same idempotent obtained by Proposition 1.3. Therefore there is exactly one nontrivial tripotent. Now, suppose \(n>1\) and that \(x \not\equiv p^n - 1\) is any non trivial tripotent. Then \(x(x^2 - 1) \equiv 0 \pmod{p^n}\). Since \(p\) is a prime, either \(p^n \mid x\) or \(p^n \mid x^2-1\). If \(p^n \mid x\), then \(x \equiv 0 \pmod{p^n}\) contradiction with \(x \not\equiv 0 \pmod{p^n}\), therefore \(p^n \mid x^2-1\), that means \(x^2 \equiv 1 \pmod{p^n}\), but this congruence has exactly two incongruent solutions \([6]\), either \(x \equiv 1 \pmod{p^n}\) which is a trivial idempotent or \(x \equiv p^n - 1 \pmod{p^n}\) which his the tripotent obtained from Proposition 1.3. Hence \(\mathbb{Z}_{p^n}\) has exactly one non trivial tripotent. ■

Recall that if \(a, b\) are positive integers with \((a, b) = d\), then the Diophantine equation \(xa + yb = c\) has infinite solutions if \(d \mid c\) and has no solution if \(d \nmid c\), we give the following result.

Theorem 1.9. Let \(n = pq\), where \(p\) and \(q\) are distinct odd primes. Then \(\mathbb{Z}_n\) has exactly five non trivial tripotents, and one S-T. tripotent.

Proof: By Proposition 1.3, the element \(pq - 1\) is a non trivial tripotent of \(\mathbb{Z}_n\). By Diophantine equation, there exist \(t, s \in \mathbb{Z}\), \(t > 0\) such that \(tq - sp = 1\) and there exist \(t_1, s_1 \in \mathbb{Z}\), \(t > 0\) such that \(t_1p - s_1q = 1\). It is shown in \([4]\), that \(tq\) and \(t_1p\) are non trivial idempotents (In fact \(tq = n+1 - tq \pmod{pq}\)) of \(\mathbb{Z}_{pq}\). Then by Lemma 1.4 the elements \(tq - 1, 2tq - 1, n - tq\) and \(1 - 2tq\) are non trivial tripotents. So we get five non trivial tripotents. Suppose that \(x\) be any other non trivial tripotent, thus
let $x^2 \equiv x \pmod{pq}$, so $x(x^2 - 1) \equiv 0 \pmod{pq}$, which means $pq | x(x^2 - 1)$. There are three cases:

1. $p | x$ and $q | x^2 - 1$.
2. $p | x^2 - 1$ and $q | x$, and
3. $pq | x^2 - 1$.

In case (1), $x \equiv 0 \pmod{p}$, hence $x \equiv kp \pmod{pq}$, for some k, $0 \leq k \leq q - 1$, and

$q | x^2 - 1$, then $x^2 \equiv 1 \pmod{q}$, by [1], $x \equiv 1 \pmod{q}$ or $x \equiv q - 1 \pmod{q}$. If $x \equiv 1 \pmod{q}$, hence $x \equiv 1 + rq \pmod{pq}$ for some r, $0 \leq r \leq p - 1$, then $kp-rq=1$ which means $x=kp$ is an idempotent (it is a trivial tripotent). When $x \equiv q - 1 \pmod{q}$, we get $x \equiv s_3 q - 1 \pmod{pq}$ for some s_3, $0 \leq s_3 \leq p - 1$. Therefore $s_3 q - kp = 1$, this means $x=kp$ is a non trivial tripotent which is obtained before.

Case (2) is similar.

Case (3) $pq | x^2 - 1$, then $x^2 \equiv 1 \pmod{pq}$. This congruence has four solutions 1, 1-2tq, 2tq-1 and pq-1, [6]. The solution 1 is trivial, the others was obtained before. Therefore Z_{pq} has exactly five non trivial tripotents, and a simple calculation shows that the triple $(n-1), (1-2tq), (2tq-1)$ is a S-T. tripotent.

Proposition 1.10. Let p be an odd prime. Then Z_{2p} has exactly two non trivial tripotents.

Proof: It is shown in [4], that Z_{2p} has only two non trivial idempotents namely p and $p+1$. Then by Lemma 1, the elements $p - 1$ and $2p - 1$ are non trivial tripotents in Z_{2p}. But $2p - 1$ is the same tripotent obtained by Proposition 1,3. Hence Z_{2p} has two non trivial tripotents. Suppose that x is any other non trivial tripotent, then $x(x^2 - 1) \equiv 0 \pmod{2p}$, there are two cases:

1. $2 | x$, and $p | x^2 - 1$.
2. $2 | x^2 - 1$ and $p | x$.

In case (1), $x \equiv 0 \pmod{2}$, hence $x \equiv 2t_1 \pmod{2p}$, for some $0 \leq t_1 \leq p - 1$, and

$p | x^2 - 1$, then $x^2 \equiv 1 \pmod{p}$. The congruent $x^2 \equiv 1 \pmod{p}$ has exactly two solutions 1, $1 \pmod{p}$, if $x \equiv 1 \pmod{p}$, then $x \equiv 1 + kp \pmod{2p}$ for some $0 \leq k \leq 2p - 1$, hence $2t_1 - kp = 1$ which means $x = 2t_1$ is an idempotent. When $x \equiv p - 1 \pmod{2p}$, hence $x \equiv s_1 p - 1 \pmod{2p}$ for some $0 \leq s_1 \leq 2p - 1$. Therefore $s_1 p - 2t_1 = 1$ this means $x = 2t_1$ is a non trivial tripotent which is obtained before.

Case (2), is similar.

Hence Z_{2p} has exactly two non trivial tripotents.

Theorem 1.11. Let $n = p^a q$, where p, q are distinct odd primes. Then Z_n has exactly five non trivial tripotents, and one S-T. tripotent.

Proof: By Diophantine equation, there exist $t, s \in \mathbb{Z}$, $t > 0$ such that $tq - sp^a = 1$.

By similar method used in the proof of Theorem 1,9 one can show that $p^a q - 1, tq - 1, 2tq - 1, n - tq$ and $1 - 2tq$ are non trivial tripotents in $Z_{p^a q}$, and it is easy to show that the triple $n - 1, 1 - 2tq$ and $2tq - 1$, is a S-T. tripotent.
Theorem 1.12. Let \(n=2pq \) where \(p \) and \(q \) are distinct odd primes. Then \(\mathbb{Z}_n \) has exactly ten non trivial tripotents and two S-T. tripotents.

Proof: By Proposition 1.3, the element \(2pq-1 \) is a non trivial tripotent. Suppose that \(p < q \). Then by Diophantine equation, there exist \(t, s \in \mathbb{Z}, t > 0 \) such that \(tq-sp=1 \) as \((p, q)=1 \). As it is shown in [4], \(Z_n \) has exactly 6 non trivial idempotents they are \(pq, pq+1, tq, 2pq+1-tq, pq+1q \) and \(1-tq+pq \). By Lemma 1.4 the elements \(pq-1, 2pq-1, tq-1, 2tq-1, 2pq-tq, 1-2tq \) and \(pq+1q-1 \) are non trivial tripotents. The element \(2pq-1 \) is the same non trivial tripotent obtained by Proposition 1.3, so we obtain seven non trivial tripotents and it is not difficult to show that \(1-2tq+pq, 2tq-1+pq \) and \(2pq-tq+pq \) are also non trivial tripotents. Hence \(Z_{2pq} \) has ten non trivial tripotents. Suppose that \(x \) is any other non trivial tripotent for \(Z_{2pq} \). Then \(x (x^2-1) \equiv 0 \pmod{2pq} \), this means that \(pq \mid x(x^2-1) \). There are three cases:

1. \(pq \mid x \) or \(pq \mid x^2-1 \)
2. \(q \mid x \) and \(p \mid x^2-1 \)
3. \(q \mid x^2-1 \) and \(p \mid x \).

In case (1), \(x=pq \pmod{2pq} \), but \(pq \) is an idempotent, so it is a trivial tripotent. If \(pq \mid x^2-1 \), then \(x \equiv 1 \pmod{pq} \), this congruence has the following four solutions, \(1 \) which is trivial, \(2pq-1, 1-2tq \) and \(2pq-1 \) are obtained before.

In case (2), \(x \equiv 0 \pmod{q} \), hence \(x \equiv t_1 q \pmod{2pq} \) for some \(0 \leq t_1 \leq 2p-1 \), and \(p \mid x^2-1 \), then \(x^2 \equiv 1 \pmod{p} \), by [1] \(x \equiv 1 \pmod{pq} \), or \(x \equiv -1 \pmod{pq} \), are solutions of the congruence \(x^2 \equiv 1 \pmod{pq} \). If \(x \equiv 1 \pmod{pq} \), hence \(x \equiv 1+r \pmod{pq} \), for some \(0 \leq r \leq 2q-1 \), then \(x \equiv 1 \pmod{pq} \) is an idempotent. When \(x \equiv -1 \pmod{pq} \), hence \(x \equiv 1 \pmod{pq} \) for some \(0 \leq s_1 \leq 2q-1 \). Therefore \(x \equiv 1 \pmod{pq} \) is a non trivial tripotent which is obtained before. Case (3) is similar.

Hence \(Z_{2pq} \) has exactly ten non trivial tripotents.

Now, we show that the triple \((2pq-1), (2tq-1), (1-2tq) \) is a S-T. tripotent.

\[
\begin{align*}
(2pq-1)(2tq-1) \pmod{2pq} &= 4tqpq - 2pq - 2tq + 1 \equiv 1-2tq \pmod{2pq},
(2pq-1)(1-2tq) \pmod{2pq} &= 2pq-1 \equiv 2pq-1 \pmod{2pq},
(2tq-1)(1-2tq) \pmod{2pq} &= 2pq-1 \equiv 2pq-1 \pmod{2pq}
\end{align*}
\]

Therefore \((2pq-1), (2tq-1) \) and \((1-2tq) \) is a S-T. tripotent. Similarly \((pq-1), (1-2tq +pq), (2tq-1+pq) \) forms a S-T. tripotent. Hence \(Z_{2pq} \) has two S-T. tripotents.

The following example illustrates the above results.

Example 1.13.

1) The non trivial tripotents of \(\mathbb{Z}_8 \) are \(3, 5 \) and \(7 \). The triple \(3, 5, 7 \) is a S-T. tripotent, (proposition 1.7).

2) \(Z_{243} \) has only one non trivial tripotent, namely \(242 \), (proposition 1.8).

3) Consider \(Z_n, n=3\cdot 7=21 \). Now, \(1(7) -2(3) =1 \) by Theorem 1.10, the tripotents are \(6, 14, 20, 8, 13 \), and the triple \(20, 8, 13 \) is a S-T. tripotent, (Theorem 1.9).
4) \mathbb{Z}_{10} has exactly two non trivial tripotents they are 4 and 9, (proposition 1.10)

5) In \mathbb{Z}_{135}, 11(5)-2(27)=1. By Theorem 1.11, \mathbb{Z}_{135} has five non trivial tripotents 54, 80, 26, 109, 134, and the triple 26, 109, 134 is a S-T. tripotent.

6) In \mathbb{Z}_{154}, 2(11)-3(7)=1. By Theorem 1.12 the elements 76, 21, 132, 98, 153, 43, 55, 120, 111 and 34 are non trivial tripotents, the triples 153, 43, 111 and 76, 120, 34 are S-T. tripotents.

Theorem 1.14. Let $n=pqr$ for distinct odd primes p, q, r. Then \mathbb{Z}_n has exactly 19 non trivial tripotents, and at least three S-T. tripotents.

Proof: By Proposition 1.3, the element $pqr-1$ is a non trivial tripotent. Since $(pq, r)=1$ there are $s, t \in \mathbb{Z}$ with $t > 0$ such that $spq-tr=1$, and there are s_2, t_2 such that $s_2pr-t_2q=1$. It is shown in [4], \mathbb{Z}_{pqr} has 6 non trivial idempotents, they are $spq, s_1qr, s_2pr, pqr+1-spq, pqr+1-s_1qr$ and $pqr+1-s_2pr$. By Lemma 1.4 the elements $spq-1, 2spq-1, s_1qr-1, 2s_1qr-1, s_2pr-1, 1-2spq, 1-2s_1qr, 1-2s_2pr, pqr-spq, pqr-s_1qr$ and $pqr-s_2pr$ are non trivial tripotents. We can also show that the following six elements $spq-s_1qr, s_1qr-spq, s_2pr-spq, s_2pr-s_1qr$ and s_2pr-s_1qr are also non trivial tripotents in \mathbb{Z}_n. Suppose that x is any other non trivial tripotent of \mathbb{Z}_n, then $x(x^2-1)\equiv 0 \pmod{pqr}$. This means that $pqr \mid x(x^2-1)$. If $pqr \mid x$ then $x \equiv 0 \pmod{pqr}$, contradiction with $x \equiv 0 \pmod{pqr}$. So we have the cases:

(1) $pqr \mid x^2-1$.
(2) $p \mid x$ and $qr \mid x^2-1$.
(3) $p \mid x^2-1$ and $q \mid x$.
(4) $pq \mid x$ and $r \mid x^2-1$.
(5) $pq \mid x^2-1$ and $qr \mid x$.
(6) $pr \mid x^2-1$ and $q \mid x$.
(7) $pr \mid x^2-1$ and $q \mid x$.

In case (1), $pqr \mid x^2-1$, then $x^2 \equiv 1 \pmod{pqr}$. This congruence has 8 solutions they are 1, 2spq-1, 2s_1qr-1, 2s_2pr-1, 1-2spq, 1-2s_1qr, 1-2s_2pr and $pqr-1$, [6]. But all of them were obtained before.

In case (2), $x \equiv 0 \pmod{p}$, then $x \equiv t_3p \pmod{pqr}$, for some $t_3, 0 \leq t_3 \leq qr-1$, and $x^2 \equiv 1 \pmod{qr}$, hence $x^2 \equiv 1+s_3qr \pmod{pqr}$, for some $s_3, 0 \leq s_3 \leq p-1$, thus $(r(p))^2-s_3qr=1$, hence $x \equiv r(t(p))^2$ is an idempotent.

Case (3) $x^2 \equiv 1 \pmod{p}$. Then $x \equiv 1 \pmod{p}$ or $x \equiv p-1 \pmod{p}$. If $x \equiv 1 \pmod{p}$, hence $x \equiv 1+kp \pmod{pqr}$, for some $k, 0 \leq k \leq qr-1$. When $x \equiv p-1 \pmod{p}$, then $x \equiv k_1p-1 \pmod{pqr}$, for some $k_1, 1 \leq k_1 \leq qr-1$, and $x \equiv qr \pmod{pqr}$, hence $x \equiv jqr \pmod{pqr}$, for some $j, 1 \leq j \leq p-1$, therefore $jqr-kp=1$ which means $x=jqr$ is an idempotent, also $k_1p-jqr=1$, leads to a contradiction, since $x=jqr$ is a non trivial tripotent.

Cases (4) and (6) are similar to case (3).

Cases (5) and (7) are similar to case (2).

Hence \mathbb{Z}_{pqr} has exactly 19 non trivial tripotents. One can show that the triples 2spq-1, 1-2spq, pqr-1; 1-2s_1qr, 2s_1qr-1, pqr-1 and 2s_2pr, 1-2s_2pr, pqr-1 are S-T. tripotents.

We have to mention here that in general there are more than three S-T. tripotents but we could not find their forms.
Example 1.15. The non trivial tripotents of \(Z_{105} \), are 20, 104, 90, 35, 171, 99, 29, 34, 64, 49, 76, 56, 6, 50, 55, 41, 14, 69 and the triples : 29, 41, 34; 69, 99, 6; 4, 49, 56; 20, 55, 50; 104, 41, 64; 71, 76, 41; 64, 71, 29; 64, 76, 34; 104, 71, 34; 104, 76, 24 are S-T. tripotents.

\[\text{§2. Smarandache triple tripotents in the group ring } Z_2G \]

In this section we study tripotents and S-T. tripotents in the group ring \(Z_2G \), where \(G \) is a cyclic group of order \(2n \) (\(n \) is an odd number) generated by \(g \), specially, when \(n \) is a Mersenne prime, and we obtain their numbers. For definition of group ring see[3]. We start by the following definition.

Definition 2.1.[8]. Let \(R \) be a ring. An element \(0 \neq x \in R \) is a Smarandache idempotent (S-idempotent) of \(R \) if

1) \(x^2=x \).
2) There exists a \(a \in R \setminus \{0, 1, x\} \)
 i) \(a^2 = x \) and
 ii) \(xa = a \) (ax = a) or \(ax = x \) (xa = x).

\(a \) called the Smarandache co-idempotent (S-co-idempotent).

The following lemma is needed.

Lemma 2.2. Let \(\alpha \) be a S-idempotent of the group ring \(Z_2G \), where \(G \) is a cyclic group of order \(2n \) (\(n \) is an odd number) generated by \(g \) and \(\beta \) be a S-co-idempotent of \(\alpha \) with \(\alpha \beta = \beta \). Then \(\beta, \alpha + \beta + g^\alpha + g^\beta \) and \(\alpha + \beta + 1 \) are non trivial tripotents.

Proof: Since \(\beta \) is a S-co-idempotent of \(\alpha \), we get \(\beta^2 = \alpha \neq \beta \), consequently \(\beta^3 = \beta \), hence \(\beta \) is a non trivial tripotent. Then \((\alpha + \beta + g^n)^3 = \alpha + \beta + g^n \), hence \(\alpha + \beta + g^n \) is a non trivial tripotent. Similarly \(\alpha + \beta + 1 \) is a non trivial tripotent. \(\blacksquare \)

Theorem 2.3. In the group ring \(Z_2G \), where \(G \) is a cyclic group of order \(2n \) (\(n \) is an odd number) generated by \(g \), for any \(k \) distinct integers \(t_1 < t_2 < \cdots < t_k \), 0 < \(k \), \(t_i \leq n-1 \) for each \(i \), \(g^{t_1}+g^{t_2}+\cdots+g^{t_k}+g^B+g^{n+t_1}+g^{n+t_2}+\cdots+g^{n+t_k} \) and \(1 + g^{t_1}+g^{t_2}+\cdots+g^{t_k}+g^{n+t_1}+g^{n+t_2}+\cdots+g^{n+t_k} \) are non trivial tripotents. Moreover the number of non trivial tripotents is equal to \(\sum_{s=1}^{n-1} \binom{n-1}{s} + \sum_{s=1}^{n-1} \binom{n-1}{s} \).

Proof: Let \(t_1, t_2, \ldots, t_k \) be any \(k \) distinct integers with \(0 < t_1 < t_2 < \cdots < t_k \), \(t_i \), \(k \leq n-1 \). Let \(d_k = g^{t_1}+g^{t_2}+\cdots+g^{t_k}+g^B+g^{n+t_1}+g^{n+t_2}+\cdots+g^{n+t_k} \). Then \(d_k^2 = g^{2t_1}+g^{2t_2}+\cdots+g^{2t_k}+g^{2n+2t_1}+g^{2n+2t_2}+\cdots+g^{2n+2t_k} = 1 \neq d_k \). Hence \(d_k^3 = d_k \), so \(d_k \) is a non trivial tripotent. Using some known facts from probability theory, the number of such tripotents is \(\sum_{s=1}^{n-1} \binom{n-1}{s} \). Clearly \(g^n \) is also a non trivial tripotent we denote \(d_0 = g^n \).

Let \(f_k = 1 + g^{t_1}+g^{t_2}+\cdots+g^{t_k}+g^{n+t_1}+g^{n+t_2}+\cdots+g^{n+t_k} \). Then \(f_k^2 = 1 + g^{t_1}+g^{t_2}+\cdots+g^{t_k}+g^{n+t_1}+g^{n+t_2}+\cdots+g^{n+t_k} = 1 \neq f_k \).
Hence \(f_k^3 = f_k \), so \(f_k \) is a non trivial tripotent. Also using some known facts from probability theory, we get the number of such tripotents is \(\sum_{n=1}^{n-1} \binom{n}{s} \). Hence the number of non trivial tripotents we obtain is \(\sum_{n=1}^{n-1} \binom{n}{s} + \sum_{n=1}^{n-1} \binom{n}{s} \).

Remark 2.4. If \(\alpha_1, \alpha_2, \alpha_3, \ldots, \alpha_m \) are m non trivial tripotents of \(Z_2G \), where \(G \) is a cyclic group of order \(2n \) (\(n \) is an odd number) generated by \(g \), and \(\alpha_i \neq \beta \) for all \(i \), where \(\beta \) is a S-co-idempotent of the S-idempotent \(\alpha = g^2 + g^4 + \cdots + g^{2n-2}, \) \([5]\) where \(\alpha \neq \alpha_i \), then \(\alpha_1 + \alpha_2 + \alpha_3 + \cdots + \alpha_m \) is a tripotent if \(m \) is an odd number, and \(1 + \alpha_1 + \alpha_2 + \cdots + \alpha_m \) is a tripotent if \(m \) is an even number.

Proposition 2.5. In the group ring \(Z_2G \), where \(G \) is a cyclic group of order \(2n \) (\(n \) is an odd number) generated by \(g \), if \(\alpha_1, \alpha_2 \) are any two non trivial tripotents in \(Z_2G \), then the triple \(\alpha_1, \alpha_2, 1 + \alpha_1 + \alpha_2 \) is a S-T. tripotent.

Proof: Since in the group ring \(Z_2G \) the tripotents obtained are of the form \(d_k \) or \(f_k \) given in Theorem 2.3, then we have the following cases:

Case 1: \(\alpha_1, \alpha_2 \) are of the type \(d_k \). Let
\[
\alpha_1 = d_e = g^{\ell_1} + g^{\ell_2} + \cdots + g^{\ell_e} + g^{n+\ell_1} + g^{n+\ell_2} + \cdots + g^{n+\ell_e},
\]
and
\[
\alpha_2 = d_h = g^{s_1} + g^{s_2} + \cdots + g^{s_h} + g^{n+s_1} + g^{n+s_2} + \cdots + g^{n+s_h},
\]
where \(\ell_1, \ell_2, \ldots, \ell_e \) and \(s_1, s_2, \ldots, s_h \) are \(e \) and \(h \) distinct integers respectively, \(\ell_i \leq n-1, s_i \leq n-1 \) for each \(i, j \). By Remark 2.4, \(1 + \alpha_1 + \alpha_2 \) is also a non trivial tripotent. We claim that the triple \(\alpha_1, \alpha_2, 1 + \alpha_1 + \alpha_2 \) is a S-T. tripotent. For this purpose we describe the multiplication \(\alpha_1 \alpha_2 \) in the following array say \(A \):

\[
\begin{pmatrix}
g^{l_1+s_1} & g^{l_1+s_2} & \cdots & g^{l_1+s_h} & g^{n+l_1+s_1} & g^{n+l_1+s_2} & \cdots & g^{n+l_1+s_h}
g^{l_2+s_1} & g^{l_2+s_2} & \cdots & g^{l_2+s_h} & g^{n+l_2+s_1} & g^{n+l_2+s_2} & \cdots & g^{n+l_2+s_h}
\vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots
g^{l_e+s_1} & g^{l_e+s_2} & \cdots & g^{l_e+s_h} & g^{n+l_e+s_1} & g^{n+l_e+s_2} & \cdots & g^{n+l_e+s_h}
g^{n+l_1+s_1} & g^{n+l_1+s_2} & \cdots & g^{n+l_1+s_h} & g^{2n+l_1+s_1} & g^{2n+l_1+s_2} & \cdots & g^{2n+l_1+s_h}
g^{n+l_2+s_1} & g^{n+l_2+s_2} & \cdots & g^{n+l_2+s_h} & g^{2n+l_2+s_1} & g^{2n+l_2+s_2} & \cdots & g^{2n+l_2+s_h}
\vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots
g^{n+l_e+s_1} & g^{n+l_e+s_2} & \cdots & g^{n+l_e+s_h} & g^{2n+l_e+s_1} & g^{2n+l_e+s_2} & \cdots & g^{2n+l_e+s_h}
\end{pmatrix}
\]
\(A = \left[a_{ij} \right]_{(2e+1) \times (2h+1)} \) where \(a_{ij} \) is the summand of \(\alpha_1 \alpha_2 \) which is equal to the product of the \(ith \) summand of \(\alpha_1 \) with \(jth \) summand of \(\alpha_2 \). Considering the first and the \((e+2)th\) rows of this array we see that if \(g^i \) occurs in one of them it occurs in both of them for each \(i \) except \((i = n+1, t_i) \), (as \(g^{2n+1} = g^{t} \)). By adding the terms of these two rows it remains only \(g^{t} + g^{n+1} \) (observing that the coefficient of each \(g^i, i=1, \cdots, 2n-1 \) is in \(Z_2G \)). Again by adding the second and the \((e+3)th\) rows in this array, according to the same argument it remains only \(g^{t} + g^{n+1} \). Proceeding in this manner we will get the \((e)th\) and the \((2e+1)th\) rows, adding there terms it remains only \(g^{t} + g^{n+1} \). So by adding all terms of this array we get, \(1 + g^{t} + g^{n+1} \). By the same way we get \(\alpha_1 (1 + \alpha_1 + \alpha_2) = \alpha_2 \) and \(\alpha_2 (1 + \alpha_1 + \alpha_2) = \alpha_1 \). Therefore the triple \(\alpha_1, \alpha_2, 1 + \alpha_1 + \alpha_2 \) is a S-T. tripotent.

Case 2: \(\alpha_1, \alpha_2 \) are of the type \(f_k \).
Let \(\alpha_1 = f_1 = 1 + g^{s_1} + g^{s_2} + \cdots + g^{r_i} + g^{n+r_1} + g^{n+r_2} + \cdots + g^{n+r_i}, and \)
\(\alpha_2 = f_j = 1 + g^{m_1} + g^{m_2} + \cdots + g^{m_j} + g^{n+m_1} + g^{n+m_2} + \cdots + g^{n+m_j}, \)
such that \(r_i, r_2, \ldots, r_i \) and \(m_1, m_2, \ldots, m_j \) are \(i \) and \(j \) distinct integers respectively, \(r_i \leq n-1, m_i \leq n-1 \) for each \(k, t, \) so by Remark 2.4, \(1 + \alpha_1 + \alpha_2 \) is also a non trivial tripotent. By using same method as in case 1, we get that the triple \(\alpha_1, \alpha_2, 1 + \alpha_1 + \alpha_2 \) is a S-T. tripotent.

Case 3: \(\alpha_1 \) of the type \(d_k \) and \(\alpha_2 \) of the type \(f_k \), where
\(\alpha_1 = d_h = g^{s_1} + g^{s_2} + \cdots + g^{s_h} + g^n + g^{n+s_1} + g^{n+s_2} + \cdots + g^{n+s_h}, \)
\(\alpha_2 = f_e = 1 + g^{t_1} + g^{t_2} + \cdots + g^{t_e} + g^{n+t_1} + g^{n+t_2} + \cdots + g^{n+t_e}, \)
such that \(s_1, s_2, \ldots, s_h \) and \(t_1, t_2, \ldots, t_e \) are \(h \) and \(e \) distinct integers respectively, \(s_i \leq n-1, t_j \leq n-1 \) for each \(i, j, \) then by Remark 2.4 the element \(1 + \alpha_1 + \alpha_2 \) is also a non trivial tripotent. If \(1 + \alpha_1 + \alpha_2 \) belongs to first type, then we get case 1 if it belongs to second type, then we get case 2. Hence the triple \(\alpha_1, \alpha_2, 1 + \alpha_1 + \alpha_2 \) is a S-T. tripotent.

Theorem 2.6. The group ring \(Z_2G \), where \(G \) is a cyclic group of order \(2n \) (n is an odd number) has at least \(2^n \) non trivial tripotents and \(\left(\begin{array}{c} 2n-1 \end{array} \right) + \frac{1}{3} \left(\begin{array}{c} 2n-1 \end{array} \right) \) S-T. tripotents.

Proof: By Theorem 2.3, the group ring \(Z_2G \), has \(2^{n-1} + 2^{n-1} - 1 = 2^n - 1 \) non trivial tripotents. It is shown in [5], that if \(G \) is generated by \(g \), then \(\alpha = g^2 + g^4 + \cdots + g^{n-1} + g^{n+1} + \cdots + g^{2n-2} \) is a \(S \)-idempotent and \(\beta = g + g^2 + \cdots + g^{n-2} + g^{n+2} + \cdots + g^{2n-1} \) is a \(S \)-co-idempotent. By Lemma 2.2, \(\beta \) is also a non trivial tripotent. Then \(Z_2G \) has at least \(2^n \) non trivial tripotents. By Proposition 2.5, for any two non trivial tripotents \(\alpha_1, \alpha_2 \) in \(Z_2G \), the triple \(\alpha_1, \alpha_2, 1 + \alpha_1 + \alpha_2 \) is a
S-T. tripotent. Using some probability theory we get that, the number of such S-T. tripotents is \(\binom{2^{n-1}}{2} + \frac{1}{2}\binom{2^{n-1}-1}{2} \). ■

Example 2.7. Consider the group ring \(Z_2G \), where \(G = \langle g \mid g^{10}=1 \rangle \) is a cyclic group of order 10, generated by \(g \). Then by Theorem 2.6, the group ring \(Z_2G \) has 32 non trivial tripotents and the number of S-T. tripotents is 155. We list some of non trivial tripotents and S-T. tripotents:

\[g^5, g^5+g^6+g^7, g^2+g^3+g^6+g^7+g^8, g^2+g^4+g^6+g^7+g^8+g^9 \]

\[1+g+g^6, 1+g+g^6+g^7, 1+g^2+g^4+g^7+g^9, 1+g^2+g^4+g^7+g^9, 1+g+g^3+g^6+g^7+g^9 \]

\[g+g^2+g^3+g^4+g^6+g^7+g^9, g+g^2+g^3+g^4+g^6+g^7+g^9 \]

\[1+g+g^6 \text{ and } 1+g+g^6, 1+g^4+g^9, 1+g+g^4+g^6+g^9 \] are S-T. tripotents.

Theorem 2.8. The group ring \(Z_2G \), where \(G \) is a cyclic group of order \(2p \) (\(p \) is Mersenne prime) has at least \(2^m + 2^{m-2} \) non trivial tripotents and \(\binom{2^{p-1}}{2} + \frac{1}{2}\binom{2^{p-1}-1}{2} \) S-T. tripotents, where \(m = \frac{p-1}{2} \).

Proof: By Theorem 2.6, the group ring \(Z_2G \) has at least \(2^p \) non trivial tripotents. It is shown in [5] that if \(G \) is generated by \(g \), then every element of the form \(\alpha = g^{2\ell} + g^{2\ell+2} + g^{2\ell+3} + \cdots + g^{2k\ell} \) is a S-idempotent of the group ring \(Z_2G \), where \(\ell \) is an odd number less than \(p \), and \(\beta = g^{2\ell} + g^{2\ell+2} + g^{2\ell+4} + \cdots + g^{2k\ell-1} + g^{2k\ell} \) is a S-co-idempotent of \(\alpha \) with \(\alpha \beta = \beta \alpha \), where \(t_i \) is defined by

\[t_i = \begin{cases} \frac{x_i}{2} & \text{if } \frac{1}{2}x_i \text{ is odd} \\ \frac{x_i}{2} + p & \text{if } \frac{1}{2}x_i \text{ is even} \end{cases} \]

and \(x_i, i \geq 2 \) is the smallest positive integer such that \(x_i < 2p \).

Thus \(x_i \equiv 2^i \ell \pmod{2p} \), this means \(x_i = 2^i \ell - 2p \), for some \(r \in Z^+ \). S-idempotents of the form \(\alpha \ell \) called basic S-idempotents. Moreover it is shown that the sum of any number S-idempotents is also a S-idempotent, also it is proved that if \(\alpha \) is any such S-idempotent and \(\beta \) is a S-co-idempotent of \(\alpha \), then \(\alpha \beta = \beta \). By Lemma 2.2, S-co-idempotent are non trivial tripotents. Since the number of such S-co-idempotents is \(2^{m-1} \), each of which is a non trivial tripotent. But one of these \(2^{m-1} \) S-co-idempotents namely \(\beta = g^{2m} + \cdots + g^{2m-2} + g^{2m+2} + \cdots + g^{2n-1} \) is one of the \(2^p \) non trivial tripotents obtained from Theorem 2.6, and no three of them form S-T. tripotent. Therefore the number of non trivial tripotents we obtained is \(2^p + (2^{m-2}) \) and the number of S-T. tripotents obtained is \(\binom{2^{p-1}}{2} + \frac{1}{2}\binom{2^{p-1}-1}{2} \). ■

References

Smarandache triple tripotents

Received: June, 2010