The electromagnetic wave evolution on very long distance

Pierre Réal Gosselin

2015-09-12

Abstract

We lay down the fundamental hypothesis that any electromagnetic radiation transforms progressively, evolving towards and finally reaching after an appropriate distance the value of the cosmic microwave background radiation, a $1.873 \, \text{mm}$ wavelength. This way we explain the cosmic redshift Z of far away Galaxies using only Maxwell’s equations and the energy quantum principle of the photons. Hubble’s law sprouts out naturally as the consequence of this transformation. According to this hypothesis we compute the constant $H_0 \,(84,3 \, \text{Km} \cdot \text{s}^{-1} \cdot \text{Mpc}^{-1})$ using data from the Pioneer satellite and doing so deciphering the enigma of its anomalous behaviour. This hypothesis is confirmed by solving some cases that are still enigmatic for the standard cosmology. We review the distance modulus formula and comment on the limits of cosmological observations.
Contents

1 Introduction 3

2 Theory 5
 2.1 Extreme propagation I .. 5
 2.2 Extreme propagation II .. 8
 2.3 Wavelength evolution ... 11

3 The Hubble constant 13
 3.1 Pioneer ... 13
 3.2 \(H_0 \) ... 14
 3.3 Galaxies ... 14

4 Solved enigmas 16
 4.1 Receding speed of the Cepheids .. 16
 4.2 Luminosity increase .. 16
 4.3 Cosmic microwave background and supernova 17

5 Distance 18
 5.1 Distance modulus ... 18
 5.2 The world we can see ... 19

6 Conclusion 22

References 23

List of Tables

1 Distance and distance modulus as a function of cosmic-shift 20
2 Transformation distances .. 21

List of Figures

1 Spectral line evolution ... 9
2 Wavelength evolution ... 13
3 Hubble constants as a function of distance for Cepheids 16
4 Distance modulus and true distance 19
1 Introduction

Interpreting the redshift \(Z \) of the radiation coming from distant galaxies as a Doppler effect implies that those galaxies are moving away from the observer. In 1929 Edwin Hubble [Hub29] [Wik00] showed that the receding speed \(v \) of the observed galaxies was proportional to their distance \(d \) from the observer, was isotropic and related by the proportionality constant \(H_0 \). In the following years, this constant was evaluated to 73 kilometres per second per Mega parsec but recently revised according to Planck satellite’s data [Col13] to 67 kilometres per second per Mega parsec. Hubble law is written as,

\[
v = dH_0
\]

(1.1)

where \(v \) is the source receding speed, \(d \) its distance from the observer and \(H_0 \) the proportionality constant. The redshift \(Z \) is a measure of this speed relative to light’s vacuum speed

\[
Z = \frac{v}{c}
\]

(1.2)

so that the distance is given as

\[
d = \frac{cZ}{H_0}
\]

(1.3)

Relative to the source wavelength \(\lambda_o \) and the observed wavelength \(\lambda \), the redshift is

\[
Z = \frac{\lambda_o - \lambda}{\lambda_o}
\]

(1.4)

Such interpretation infers an expanding universe since all observable objects seems to speed away the farther they are from the observer. Conversely, this implies [NAS13] that \(1/H_0 \) years ago or approximately 13.7 billions years, all the universe was embedded in a singularity that exploded to produce the expanding universe that we are observing today.

The Doppler effect being the ratio of source’s speed to light’s speed and the fact that nothing can exceed the speed of light this ratio must always be lower than one. But it is common to observe galaxies showing \(Z \) ratios greater than one up to values of 12 according to the more recent observations [Ba13a] [Ba13b]. This goes against interpreting the redshift as Doppler caused and also against an expanding universe.

But since Hubble discovery [Hub29] and coupled to Lemaître thesis [Lem27a] [Lem27b] [Lem31] [Ste12], nearly all cosmology theoreticians agree on a new kind of universe expansion. This is no more an explosion of matter into space but the more esoteric concept of a space expansion which is seen through the general relativity glasses. The expanding space idea explains the redshift by the stretching the light rays suffers during their travel through space. Considering the elasticity of space is mere speculation because there aren’t any experiences possible to prove it. This is an open door to all kinds of exotic universe models and even to questioning the known observed properties of matter: Cameron [CP12], Terazawa [Ter12].
Observing light or photons in our local universe as well as in the laboratory shows us that photons are particles or waves that keep their properties indefinitely. On the contrary, atomic particles have a measurable lifetime and can decay into other particles. Since light speed is the maximum speed of any interaction that may happen in the universe this implies that photons cannot suffer any other action except to move. Then time doesn’t exist for the photon and it is immutable.

Nothing may suggest that physics’s laws are different at large distance from us than in our local environment. If we agree on the fact that there aren’t any difference between the local universe and the most remote one and also between, then it is advisable to consider that the photons might suffer a kind of transformation between the emission point and the observer. This way the redshift can be justified differently than by the stretching of space. The sole laboratory that can permit this verification is the universe itself since the billion of years required. We propose to explain the redshift and Hubble law through such a slow transformation en route of the electromagnetic radiation or the photons. According with the afore mentioned immutability of the photon, it must be must conceded that the maximum speed of any interaction in the universe is a little bit higher than the photon speed. This limit might be very close to the light speed because of the extremely long time required for photon transformation and the fact that all experiments done up to now are very well explained using the speed of light as the maximum speed limit of interactions in the universe. Then the photon is subject to structural transformation like any other denizen of the universe. This proposal seems to us much more acceptable and less esoteric than the elasticity of the space.

On an other side, consider the electromagnetic radiation that comes from all parts of the sky. It has a wider spectrum much larger than the optical one. Particularly, radio astronomers A. Penzias et R. Wilson [PW65] in 1964 discovered a uniform and isotropic radiation at a microwave frequency of 160.2 GHz or 1,873 mm in wavelength corresponding to a temperature of 2,725.48 °K [Fix09]. This radiation couldn’t be associated with any object of the sky and its presence has been explained as a residual of the Big Bang that happened 13.7 billions years ago. Very energetic photons emitted at that time might have lost their energy through space expansion ensuing the stretching of their wavelength. Today we would observe them as a cosmic microwave background residual (CMB).

We already have proposed the transformation of the photons en route but this process mustn’t proceed indefinitely, it must end somewhere. If it didn’t, it would end up with an infinite number of photons of zero energy, an unacceptable situation in nature. We then propose that this endpoint of transformation happens when the photon energy reaches the CMB level. This way all radiation coming from everywhere melts in a kind of uniform fog that makes the physical limit of the observable world.
2 Theory

According to our hypothesis, we proceed from the principle of energy conservation and built following two methods. The first one makes use of Maxwell’s electromagnetic field equations while the second one is based on a sequence of successive photon mutations. Both gives the same results. Thereafter we consider the evolution of the electromagnetic wave.

2.1 Extreme propagation I

The vacuum properties of an electromagnetic wave at very far distances are unknown to us. We suppose they are the same as they are locally meaning that Maxwell’s laws of electromagnetism are the same everywhere in the universe. Then for a plane wave moving in the direction \vec{k}, the electrical field \vec{E} and the magnetic field \vec{H} are dependent on distance d and time t.

$$\vec{E} = i E_x(d, t)$$ \hspace{1cm} (2.1)

$$E_x = E \exp \left[j\omega(t - \frac{d}{c}) + \theta \right]$$ \hspace{1cm} (2.2)

$$\vec{H} = j H_y(d, t)$$ \hspace{1cm} (2.3)

$$H_y = H \exp \left[j\omega(t - \frac{d}{c}) + \theta \right]$$ \hspace{1cm} (2.4)

The Poynting vector represents the energy flux carried by the wave

$$\vec{S} = \vec{E} \times \vec{H}$$ \hspace{1cm} (2.5)

which is for the plane wave

$$\vec{S} = \frac{E^2}{\mu_0 c} \vec{k}$$ \hspace{1cm} (2.6)

Between extremely distant points the Poynting vector cannot represent the energy conservation principle. A redshift is observed meaning a variation of the wavelength, an absent parameter of \vec{S}. Meanwhile the Poynting vector certainly represents the mean energy carried by the photons of the wave each being of energy

$$E = \hbar \omega$$ \hspace{1cm} (2.7)

When considering extremely long distances it might be appropriate to consider the variation of the photon density N and it’s energy level so that the energy regime is preserved and the quantity

$$\xi = Nh\omega$$ \hspace{1cm} (2.8)
is kept constant on long distances while N and ω vary according to the distance d. Bringing together those two quantities

$$S = \xi \xi \quad (2.9)$$

$$\frac{E^2}{\mu_0 c} = hN(d)\omega(d) \quad (2.10)$$

$$E = (\mu_0 c h N(d) \omega(d))^{\frac{1}{2}} \quad (2.11)$$

shows an electrical field E varying as a function of the photon density N and the circular frequency ω both being dependent on the distance d. Then the components of the electromagnetic wave are

$$E_x = (\mu_0 c h N(d) \omega(d))^{\frac{1}{2}} \exp[j\omega(d)(t - \frac{d}{c}) + \theta] \quad (2.12)$$

$$H_y = (\frac{h N(d) \omega(d)}{\mu_0 c})^{\frac{1}{2}} \exp[j\omega(d)(t - \frac{d}{c}) + \theta] \quad (2.13)$$

Simplifying the writing

$$E_x = F_d \exp[j\omega_d(t - \frac{d}{c}) + \theta] = F_d \exp[f] \quad (2.14)$$

$$H_y = G_d \exp[j\omega_d(t - \frac{d}{c}) + \theta] = G_d \exp[f] \quad (2.15)$$

and knowing that

$$\frac{\partial E_x}{\partial d} = -\mu_0 \frac{\partial H_y}{\partial t} \quad (2.16)$$

we get

$$\frac{\partial E_x}{\partial d} = \frac{\partial F_d}{\partial d} \exp[f] + jF_d \exp[f] \left\{ \frac{\partial \omega_d}{\partial d}(t - \frac{d}{c}) - \frac{\omega_d}{c} \right\} \quad (2.17)$$

$$\frac{\partial H_y}{\partial t} = G_d \exp[f] \left\{ j\omega_d \right\} \quad (2.18)$$

Since that at any point in space

$$\frac{E}{H} = \frac{F_d}{G_d} = \mu_0 c \quad (2.19)$$

$$\therefore \quad G_d = \frac{F_d}{\mu_0 c} \quad (2.20)$$

then

$$\frac{\partial F_d}{\partial d} + jF_d \frac{\partial \omega_d}{\partial d} (t - \frac{d}{c}) = 0 \quad (2.21)$$

Considering

$$E = F = |(\mu_0 c h N_d \omega_d)^{\frac{1}{2}}| \quad (2.22)$$
one get

\[
\left\{ N_d \frac{\partial \omega_d}{\partial d} + \omega_d \frac{\partial N_d}{\partial d} \right\} + j \left\{ 2N_d \omega_d \frac{\partial \omega_d}{\partial d} \left(t - \frac{d}{c} \right) \right\} = 0
\] (2.23)

The real part between braces may be obtained differently by considering the fact that the quantity \(\xi \) (2.8) doesn’t vary with distance so it’s derivative is null and we get

\[
\frac{\partial \xi}{\partial d} = N_d \frac{\partial \omega_d}{\partial d} + \omega_d \frac{\partial N_d}{\partial d} = 0
\] (2.24)

The solution to this differential equation is

\[
N_d = \alpha e^{\frac{d}{\eta}} + C_1
\] (2.25)

\[
\omega_d = \beta e^{-\frac{d}{\eta}} + C_2
\] (2.26)

where

\[
\frac{\partial N_d}{\partial d} = \frac{\alpha}{\eta} e^{\frac{d}{\eta}}
\] (2.27)

\[
\frac{\partial \omega_d}{\partial d} = -\frac{\beta}{\eta} e^{-\frac{d}{\eta}}
\] (2.28)

giving

\[
\alpha C_2 e^{\frac{d}{\eta}} = \beta C_1 e^{-\frac{d}{\eta}}
\] (2.29)

This last equation being true for any value of \(d \) implies \(C_1 = C_2 = 0 \). The limiting conditions are at \(d = 0 \): \(N_d = N_o \), \(\omega_d = \omega_o \) so that

\[
\alpha = N_o
\] (2.30)

\[
\beta = \omega_o
\] (2.31)

and finally

\[
N_d = N_o e^{\frac{d}{\eta}}
\] (2.32)

\[
\omega_d = \omega_o e^{-\frac{d}{\eta}}
\] (2.33)

where the wavelength is

\[
\lambda_d = \lambda_o e^{\frac{d}{\eta}}
\] (2.34)

The redshift is

\[
Z_d = e^{\frac{d}{\eta}} - 1
\] (2.35)

and for very short distances \(d \ll \eta \)

\[
Z_d \approx \frac{d}{\eta}
\] (2.36)
Here we have Hubble’s law which in order to be recognized under it’s classical form we chose

$$\eta = \frac{c}{H_0}$$

and generally we have for the distance scaling of the redshift

$$Z_d = e^{\frac{dH_0}{c}} - 1$$

Inversely the distance expressed as a function of the redshift become

$$d = \frac{c}{H_0} \ln(Z + 1)$$

and for the wavelength

$$\lambda_d = \lambda_o e^{\frac{dH_0}{c}}$$

and the photon density

$$N_d = N_o \frac{dH_0}{c} = N_o (Z + 1)$$

This shows that the calculation of cosmic distances using the classical Hubble law leads to overestimate real distances and that a logarithmic scale is the due way. The source wavelength and intensity grows linearly according to the redshift or exponentially for the distance. Figure 1 shows the relationship between the intensity and the wavelength as a function of the redshift for a Gaussian mimicking a spectral line. Any spectrum keeps its structure while its wavelength (2.40) and intensity (2.41) grows as a function of distance. The apparent receding speed is exponential as per equations (2.39) and (1.2).

$$d = \frac{c}{H_o} \ln\left(\frac{v}{c} + 1\right)$$

$$v = c \left\{ e^{\left(\frac{dH_0}{c}\right)} - 1 \right\}$$

2.2 Extreme propagation II

Spectral properties of atoms are well known in the laboratory. But when we observe them from far distances they show a redshift of their wavelength. Individual photons are characterized by a wavelength λ_0, and energy E_0

$$E_0 = \frac{hc}{\lambda_0}$$

Let us consider a cohort of N_o photons per unit volume showing an energy per unit of volume G_o

$$G_o = N_o E_o$$
After a time T there are $N_k > N_o$ photons per unit volume showing an energy per unit of volume G_k

$$G_k = N_k E_k$$ (2.46)

According to the principle of conservation of energy we write

$$N_k E_k = N_o E_o$$ (2.47)

Here we suppose that the transformation of the photons happens by successive leaps. A first one produces a new photon and the energy in the group is re-equilibrated. This process is the same for all other transformations happening in the group. After k transformations the energy of $N_o + k$ photons becomes

$$E_k = \frac{N_o E_o}{N_o + k}$$ (2.48)

After k transformations the number of new photons is

$$k = N_o \left\{ \frac{E_o}{E_k} - 1 \right\}$$ (2.49)

$$k = N_o \left\{ \frac{hc}{\lambda_k} - \frac{hc}{\lambda_o} - 1 \right\}$$ (2.50)

$$k = N_o \frac{\lambda_k - \lambda_o}{\lambda_o}$$ (2.51)

$$k = N_o \ Z_k$$ (2.52)
where we made use of the redshift Z_k. The photon density is then

$$N_k = N_o + k$$ \hspace{1cm} (2.53)
$$N_k = N_o + N_o Z_k$$ \hspace{1cm} (2.54)
$$N_k = N_o (Z_k + 1)$$ \hspace{1cm} (2.55)

The spectral line intensity I_k is proportional to the number of photons per unit of volume and it also increases the same way as

$$I_k = I_o (Z_k + 1)$$ \hspace{1cm} (2.56)

and the photon energy is

$$E_k = \frac{E_o}{Z_k + 1}$$ \hspace{1cm} (2.57)

and the wavelength is

$$\lambda_k = \lambda_o (Z_k + 1)$$ \hspace{1cm} (2.58)

Between successive transformations the cohort moves a distance Δd. Without saying anything about the way such transformations happens, we suppose that the tension pushing the photons to transform is proportional to the actual photon density N_k. The number of new photons Δk per unit of distance is

$$\frac{\Delta k}{\Delta d} \propto N_k$$ \hspace{1cm} (2.59)

and inversely, the distance of transformation is given by

$$\frac{\Delta d}{\Delta k} \propto \frac{1}{N_k}$$ \hspace{1cm} (2.60)

which says that the distances where the transformations happens are inversely proportional to the photon density which constantly increases upon distance. If b is the proportionality constant and $N_k = N_o + k$ we have for small intervals

$$\frac{\partial d}{\partial k} = \frac{b}{N_o + k}$$ \hspace{1cm} (2.61)

Upon integration

$$d = b \ln(N_o + k) + Cte$$ \hspace{1cm} (2.62)

The initial conditions being $d = 0$ and $k = 0$ then

$$Cte = -b \ln N_o$$ \hspace{1cm} (2.63)

and the distance is

$$d = b \ln \frac{N_o + k}{N_o}$$ \hspace{1cm} (2.64)
Using equation (2.52) we write

\[d = b \ln (Z + 1) \]

(2.65)

from which the redshift and the wavelength as a function of distance are

\[Z = e^d - 1 \]

(2.66)

\[\lambda_d = \lambda_o e^d \]

(2.67)

Expanding the exponential as a series and keeping the first order terms for small distances

\[Z = \frac{d}{b} \]

(2.68)

There we recognize Hubble’s law and we set

\[b = \frac{c}{H_o} \]

(2.69)

From this point we compute the same equations as in the preceding section that is to say equations (2.38), (2.39), (2.40) and (2.41).

2.3 Wavelength evolution

The wavelength transforms as an exponential of the distance (2.40). According to our model, the wavelength converge towards the cosmic radiation background wavelength \(\lambda_{cmb} \) showing at that point a redshift

\[Z_{cmb} = \frac{\lambda_{cmb} - \lambda_o}{\lambda_o} \]

(2.70)

In the preceding sections Hubble law was derived while considering the beginning of the photon’s journey or a relatively short distance for the transformation of the electromagnetic radiation. We must now consider the situation at the end of the distance when the radiation reach its end point \(\lambda_{cmb} \) at \(d_{cmb} \). We must evaluate the constant \(\eta \) in equation (2.34). Then we have

\[\lambda_{cmb} = \lambda_o e^{\frac{d_{cmb}}{\eta}} \]

(2.71)

and get

\[\eta = \frac{d_{cmb}}{\ln(Z_{cmb} + 1)} \]

(2.72)

for which the wavelength is

\[\lambda_d = \lambda_o (Z_{cmb} + 1)^{(d/d_{cmb})} \]

(2.73)

or for the redshift

\[Z_d = (Z_{cmb} + 1)^{(d/d_{cmb})} - 1 \]

(2.74)
and the relative distance
\[d_{\text{cmb}} = \frac{\ln(Z + 1)}{\ln(Z_{\text{cmb}} + 1)} \]
(2.75)

The photon density is
\[N_d = N_o(Z_{\text{cmb}} + 1)^{d/d_{\text{cmb}}} \]
(2.76)

Comparing equations (2.39) and (2.75) we get the value of \(d_{\text{cmb}} \)
\[d_{\text{cmb}} = \frac{c}{H_o} \ln(Z_{\text{cmb}} + 1) \]
(2.77)

and the same results as previously (2.39) (2.40) (2.41)
\[d = \frac{c}{H_o} \ln(Z + 1) \]
(2.78)
\[\lambda_d = \lambda_o e^{dH_o/c} = \lambda_o(Z + 1) \]
(2.79)
\[N_d = N_o e^{dH_o/c} = N_o(Z + 1) \]
(2.80)

Up to this point we considered an energy decrease of the photons. We put forward the hypothesis that for photons less energetic than the CMB, there is an energy increase of the photons while their number density decreases. The photons wavelength decreases until it copes with the CMB wavelength \(\lambda_{\text{cmb}} \). A blue shift should be observed with a simultaneous decrease of the luminosity. Consequently it shall be better to speak of a cosmic-shift that will be \(> 0 \) for a red-shift or \(< 0 \) for a blue-shift. This terminology get rid of the ambiguity between a cosmological reality and intrinsic effect dependant on the speed of an object. This is reflected by a negative constant \(-\eta \) in equations (2.32) and (2.33).

For a wavelength smaller than the CMB radiation the cosmic-shift \(Z \) has a value comprised between zero and the value of the CMB cosmic-shift \(Z_{\text{cmb}} \) which may be infinite \((\lambda_o = 0)\). For a wavelength longer than the CMB radiation the cosmic-shift \(Z \) which is a negative quantity is comprised between 0 and the value of the cosmic-shift \(Z_{\text{cmb}} \) which may reach the minimal value of -1 \((\lambda_o = \infty)\). We then have the following equations

\[d = -\frac{c}{H_o} \ln(Z + 1) \]
(2.81)

\[d_{\text{cmb}} = -\frac{c}{H_o} \ln(Z_{\text{cmb}} + 1) \]
(2.82)

\[\frac{d}{d_{\text{cmb}}} = \frac{\ln(Z + 1)}{\ln(Z_{\text{cmb}} + 1)} \]
(2.83)

\[\lambda_d = \lambda_o e^{-dH_o/c} = \lambda_o(Z + 1) \]
(2.84)

\[N_d = N_o e^{-dH_o/c} = N_o(Z + 1) \]
(2.85)

Figure 2 shows the wavelength evolution as a function of the cosmic-shift. The left side is for the HI (21cm) radiation \((Z < 0)\) and the right side is for the Balmer line \(H_\alpha(6564, 6 \AA) \) \((Z > 0)\).
The enigmatic deceleration of the Pioneer satellite confirms our model of the spatial transformation of the electromagnetic wave. It gives us the opportunity to measure directly the value of the Hubble constant. The procedure might also be applied to galaxies and stars.

3.1 Pioneer

The Pioneer 10 satellite has been decelerating constantly since it’s departure from the solar system and still was when communications ended due to the loss of strength of the signal, Turyshev and Toth [TT10]. The Doppler signal measuring the satellite speed drifted constantly showing a deceleration of the satellite. Since the satellite was out of solar bounds it should have kept a constant speed and up to now no satisfactory explanation has been given to this phenomena.

The satellite distance and speed were measured very precisely by observing a S band signal of frequency $\sim 2,1 \, \text{GHz}$ sent from earth station and returned as $\sim 2,3 \, \text{GHz}$ by the satellite in such a way that the stability and precision of the signal were independent of the satellite equipment. The satellite being out of solar bounds should have moved ballistically according to the classic mechanical laws. Throughout the whole journey, a constant frequency drift of $5,99 \pm 0,01 \times 10^{-9} \, \text{Hz sec}^{-1}$ has been observed toward a higher one. Interpreted as a Doppler shift, it is equivalent to a satellite deceleration of $8,74 \pm 1,33 \times 10^{-10} \, \text{m s}^{-2}$. We consider that this signal variation is nothing else than the effect of the transformation of the electromagnetic signal according to our model.

Clearly if the satellite slows down, one will observe a blue shift of the Doppler signal which is already red shifted because of the satellite receding speed. Newtonian mechanic
tell us that the satellite doesn’t slow down but moves at constant speed. The signal round trip is increasing at a constant pace and according to our model, the signal must suffer a constant change. Since the mean frequency of the signal at $\sim 2,2 GHz$ is lower than the cosmic microwave background of $160,2 GHz$, the frequency of the signal must increase or equivalently the wavelength shorten. So the observed blue shift drift owing to the continuous increasing signal round trip distance. And the false impression of a slowing down of the satellite.

3.2 H_o

This signal shift permits us to compute directly the Hubble constant. Let us consider equation (2.79) and with $d = ct$ and $\lambda = c/\nu$

$$v_d = \nu_o e^{-H_o t} \tag{3.1}$$

The time derivative is

$$\dot{v}_d = \frac{\partial v_d}{\partial t} = -H_o v_d \tag{3.2}$$

and Hubble constant is

$$H_o = -\frac{\dot{v}_d}{v_d} \tag{3.3}$$

Referring to the Pioneer satellite data, we use as the mean frequency the value of $2,19 GHz$ which is between the uplink frequency $\sim 2,1 GHz$, and the downlink one $\sim 2,3 GHz$.

$$H_o = \frac{5,99 \times 10^{-9}}{2,19 \times 10^9} = 2,731934 \times 10^{-18} sec^{-1} \tag{3.4}$$

Knowing that $1 Mpc = 3,08567802 \times 10^{19} Km$

$$H_o = 2,731934 \times 10^{-18} \cdot 3,08567802 \times 10^{19} = 84,298672 Km sec^{-1} Mpc^{-1} \tag{3.5}$$

the experimental value of the Hubble constant is

$$H_o = 84,3 Km sec^{-1} Mpc^{-1} \tag{3.6}$$

3.3 Galaxies

In the context of a slowing down expanding universe, Loeb [Loe98] has proposed to measure the variation of the redshift of galaxies as a function of time. Since there isn’t any such phenomenon as an expanding universe but only a distance change due to the peculiar velocity of the galaxies in the direction of observation, there will be a measurable drift of the red-shift or blue-shift independently of the distance of those galaxies. Long term observations depending on the intrinsic speed of the galaxies will be needed.
If we can follow the frequency drift of a signal from a moving satellite and then derive the value of the Hubble constant, we may consider it possible for galaxies. Then for any galaxy at any distance, monitoring over many years the drifting of a spectral line such as Lyman α or H_{α} will enable us to compute Hubble constant. Equation (3.3) transforms as a function of the wavelength

$$H_o = \frac{\dot{\lambda}_d}{\lambda_d}$$

(3.7)

Using the intrinsic speed of the source v_{int}, the distance time of the electromagnetic radiation Δt and the source one ΔT

$$\dot{\lambda}_d = H_o \lambda_d$$

(3.8)

$$\Delta \lambda_{cd} = \Delta t \cdot H_o \lambda_d$$

(3.9)

$$\Delta t = \frac{\Delta T \cdot v_{int}}{c}$$

(3.10)

$$\Delta \lambda_{cd} = \Delta T \cdot \frac{v_{int}}{c} \cdot H_o \lambda_d$$

(3.11)

we get as a function of the cosmic-shift

$$\Delta \lambda_{cd} = \Delta T \cdot \frac{v_{int}}{c} \cdot H_o \lambda_o (Z + 1)$$

(3.12)

If during $\Delta T = 10$ years, we observe the spectral line $\lambda_o = H_{\alpha} = 6563 \, \text{Å}$ from a galaxy situated at a redshift of $Z = 1$ for which it is estimated it has a line of sight receding speed of $v_{int} = 1000 \, \text{km/s}$ and using for the Hubble constant $84,3 \, \text{km/sec/Mpc}$, a drift of about $3,776 \cdot 10^{-8} \, \text{Å}$ shall be observed. Observing the same way the HI 21cm radiation a drift of $12,08 \cdot 10^{-12} \, \text{cm}$ shall be observed. In both cases it seems impossible to materialize such measures given the smallness of the values.
4 Solved enigmas

More and more deviations or unexplained effects pop up in the context of an expansionist cosmology. Some of those phenomena are very well explained by our model.

4.1 Receding speed of the Cepheids

We have shown that the apparent recession speed is exponential and not linear (2.43). If a linear relation is kept (1.1) when observing objects situated at farther and farther distances or increasing red-shifts, higher and higher values of the Hubble constant H_0 will be found. This explains the difference between Cepheids close to us and others farther from us. This fact is shown and discussed in the paper of Arp [Arp02] where he looks for an explanation by an excess of redshift for the distant Cepheids. Figure 3 reproduces figure 4 of his paper where the increasing values of the Hubble constant as a function of distance are clearly seen.

![Figure 3: Hubble constants as a function of distance for Cepheids](image)

4.2 Luminosity increase

In a study of two ultra and hyper luminous galaxy groups (Lyman Break galaxies) showing high redshift, Oteo and al [Oa13] find that all galaxies of a group at $Z \sim 1$ have a magnitude less than 11,7 and all those of an another group at $Z \sim 3$ have a magnitude greater than 12,4 while both groups were constructed to make two homogeneous populations with identical properties. Those investigators questions the possible influence
of the redshift on the evolution of the far infrared radiation FIR coming from those galaxies. Considering our model, it is clear that the observed luminosity increases as a function of its redshift \((2.41)\). In this case, the redshift ratios between the two groups is simple to double \((3 + 1)/(1 + 1) = 2\). The luminosity will show the same ratio or in term of magnitude it will translate to a difference of \(\sim 2,5 \log(2) = 0,753\). This is the observed magnitude difference between the two groups \([> 12.4] - [< 11.7] = [> 0.7]\).

4.3 Cosmic microwave background and supernova

Yershov and al. [OR14] has showed a high correlation between the local increase of the cosmic microwave background temperature \(T_{\text{sn}}\) at supernova positions and the redshift of those supernova \(Z_{\text{sn}}\). Looking at SN type Ia they find that the temperature increases as \(T_{\text{sn}} = 58,0 \pm 9,0 Z_{\text{sn}} [\mu K]\). This local temperature excess is proportional to the associated redshift of those supernova. The expansionist cosmology cannot explain this phenomenon. However this effect confirms our transformation model of the electromagnetic energy as a function of distance. At those supernova spots, there is always an excess of temperature over the cosmic background. And this increase is directly proportional to the source’s distance or its cosmic-shift. This temperature increase is proportional to the source distance since the farther it is a higher fraction of the energy spectrum is transformed to the CMB level. In fact photons of any wavelength can’t transform farther than their proper CMB distance \(d_{\text{cmb}}\). Then all the spectrum energy which has a \(d_{\text{cmb}}\) less than the distance to this emitter is converted into CMB radiation. This create an accumulation of energy at this wavelength. It follows that at such observation point a local excess of the CMB is observed and this excess is proportional to the distance of this point as measured by its cosmic-shift. It must be noted that the visual portion of such observation is in fact the portion of the spectrum which was shorter than the visual one at the time of emission.
5 Distance

Following the electromagnetic radiation distance transformation, we need to review the distance modulus. We then evaluate the maximum dimension of the observable world.

5.1 Distance modulus

Let us consider the photon density which increases as \((2.80) \) or decrease as \((2.85) \)

\[
N_d = N_0 e^{\frac{4\pi d Ho}{c}} \tag{5.1}
\]

A monochromatic source of luminosity \(L_{o,\lambda_0} \) at a wavelength \(\lambda_0 \) will look at a distance \(d \) as a longer wavelength \(\lambda_d \) \((2.79)\) or a shorter one \((2.84)\)

\[
\lambda_d = \lambda_0 e^{\frac{4\pi Ho}{c}} \tag{5.2}
\]

Such source will produce a flux \(S_{d,\lambda_d} \) that an observer will measure as proportional to the increase of the photon density and inversely proportional to the squared distance

\[
S_{d,\lambda_d} = L_{o,\lambda_0} e^{\frac{4\pi Ho}{c}} \left(\frac{4\pi d^2}{d^2}
ight) \tag{5.3}
\]

At two different distances \(d \) et \(f \) the corresponding fluxes will be \(S_{d,\lambda_d} \) and \(S_{f,\lambda_f} \)

\[
S_{d,\lambda_d} = L_{o,\lambda_0} e^{\frac{4\pi Ho}{c}} \left(\frac{4\pi d^2}{d^2}
ight) \tag{5.4}
\]

\[
S_{f,\lambda_f} = L_{o,\lambda_0} e^{\frac{4\pi Ho}{c}} \left(\frac{4\pi f^2}{f^2}
ight) \tag{5.5}
\]

whose ratio is

\[
\frac{S_{d,\lambda_d}}{S_{f,\lambda_f}} = \left(\frac{f}{d}\right)^2 e^{\frac{4\pi Ho}{c} (d-f)} \tag{5.6}
\]

For this source, the magnitude difference between those two points according to the definition of magnitude is

\[
m_d - m_f = -2.5 \log \frac{S_{d,\lambda_d}}{S_{f,\lambda_f}} \tag{5.7}
\]

\[
m_d - m_f = -2.5 \log \left\{ \left(\frac{f}{d}\right)^2 e^{\frac{4\pi Ho}{c} (d-f)} \right\} \tag{5.8}
\]

At the distance \(f = 10\) pc, \(m_f \) become the conventional reference value for the absolute magnitude \(M \). This magnitude difference is the definition of the distance modulus \(\mu \) and then we have for this source

\[
\mu = m - M = 5 \log d_{pc} - 5 - 1.086 \pm \frac{H_o}{c} \left\{ d_{pc} - 10_{pc} \right\} \tag{5.9}
\]
Using equation (2.78) or (2.81)

\[\mu = 5 \log \left\{ \pm \frac{c}{H_o} \ln (Z_d + 1) \right\} - 5 - 1.086 \left\{ \pm \frac{c}{H_o} \ln (Z_d + 1) - 10 \right\} \] \hspace{1cm} (5.10)

Neglecting the very small value of 10 pc and using \(H_o = 84.3 \text{ Kms}^{-1}\text{Mpc}^{-1} \) and \(c_\odot = 3.5563 \text{ Gpc} \) we obtain the expression for the distance modulus

\[\mu = 42,755 + 5 \log (\pm \ln (Z_d + 1)) - 1.086 \ln (Z_d + 1) \] \hspace{1cm} (5.11)

When the source has a wavelength longer than \(\lambda_{\text{cmb}} \) the cosmic shift \(Z_d \) is negative and greater than -1. This is different from the classical formula

\[\mu = 42,755 + 5 \log Z_d \] \hspace{1cm} (5.12)

Table 1 shows the distance \(d \) and the distance modulus \(\mu \) against the classical values as a function of the redshift \(Z \). The distance modulus grows up to a maximum at \(Z = 6.38 \) and then decreases slowly. Included are the corresponding values of the expansionist model obtained from Nick Gnedin calculator \([Gne01]\) using \(H_o = 67.3 \) and \(\Omega_o = 0.315 \).

Figure 4 shows the distance modulus (top curves) and the true distances (lower curves).

5.2 The world we can see

Our model shows photon transformation along distance, ending when the photon energy correspond to the CMB radiation. At this point photons have a wavelength of \(1.873 \times 10^7 \text{ Å} \) corresponding to a temperature of \(2,72548 \text{ °K} \). Considering the Hydrogen line \(H_\alpha = \lambda_\alpha = 6563 \text{ Å} \), photons at end of course will have a cosmic-shift of

\[Z_{\text{cmb}} = \frac{\lambda_{\text{cmb}} - \lambda_\alpha}{\lambda_\alpha} = \frac{1.873 \times 10^7 - 6563}{6563} = 2853 \] \hspace{1cm} (5.13)
<table>
<thead>
<tr>
<th>Cosmic-shift</th>
<th>Distance modulus</th>
<th>Distance</th>
<th>Classical distance modulus</th>
<th>Classical expansion model</th>
<th>Module Nick Gnedin calculator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z_d</td>
<td>d_{Gpc}</td>
<td>μ</td>
<td>d_{Gpc}</td>
<td>μ</td>
<td></td>
</tr>
<tr>
<td>-0.99999</td>
<td>40.94</td>
<td>60.56</td>
<td>(2.39)</td>
<td>(5.11)</td>
<td></td>
</tr>
<tr>
<td>-0.9999</td>
<td>32.75</td>
<td>57.58</td>
<td>(5.12)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-0.99</td>
<td>24.57</td>
<td>54.45</td>
<td>(1.3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-0.9</td>
<td>16.38</td>
<td>51.07</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-0.8</td>
<td>8.19</td>
<td>47.07</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-0.7</td>
<td>5.72</td>
<td>45.54</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-0.6</td>
<td>4.28</td>
<td>44.47</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-0.5</td>
<td>3.26</td>
<td>43.56</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-0.4</td>
<td>2.47</td>
<td>42.71</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-0.3</td>
<td>1.82</td>
<td>41.85</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-0.2</td>
<td>1.27</td>
<td>40.90</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-0.1</td>
<td>0.79</td>
<td>39.74</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.1</td>
<td>0.37</td>
<td>37.98</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.2</td>
<td>0.34</td>
<td>37.54</td>
<td>0.36</td>
<td>37.75</td>
<td>0.48</td>
</tr>
<tr>
<td>0.3</td>
<td>0.65</td>
<td>38.86</td>
<td>0.71</td>
<td>39.26</td>
<td>1.02</td>
</tr>
<tr>
<td>0.4</td>
<td>0.93</td>
<td>39.56</td>
<td>1.07</td>
<td>40.14</td>
<td>1.61</td>
</tr>
<tr>
<td>0.5</td>
<td>1.20</td>
<td>40.02</td>
<td>1.42</td>
<td>40.76</td>
<td>2.25</td>
</tr>
<tr>
<td>1</td>
<td>1.44</td>
<td>40.35</td>
<td>1.78</td>
<td>41.25</td>
<td>2.94</td>
</tr>
<tr>
<td>2</td>
<td>2.47</td>
<td>41.20</td>
<td>3.56</td>
<td>42.75</td>
<td>6.81</td>
</tr>
<tr>
<td>3</td>
<td>3.91</td>
<td>41.76</td>
<td>7.11</td>
<td>44.26</td>
<td>15.97</td>
</tr>
<tr>
<td>4</td>
<td>4.93</td>
<td>41.96</td>
<td>10.67</td>
<td>45.14</td>
<td>26.07</td>
</tr>
<tr>
<td>5</td>
<td>5.72</td>
<td>42.04</td>
<td>14.23</td>
<td>45.76</td>
<td>36.72</td>
</tr>
<tr>
<td>6</td>
<td>6.37</td>
<td>42.07</td>
<td>17.78</td>
<td>46.25</td>
<td>47.75</td>
</tr>
<tr>
<td>7</td>
<td>6.92</td>
<td>42.08</td>
<td>21.34</td>
<td>46.64</td>
<td>59.06</td>
</tr>
<tr>
<td>8</td>
<td>7.11</td>
<td>42.09</td>
<td>22.69</td>
<td>46.78</td>
<td>63.42</td>
</tr>
<tr>
<td>9</td>
<td>7.40</td>
<td>42.08</td>
<td>24.89</td>
<td>46.98</td>
<td>70.60</td>
</tr>
<tr>
<td>10</td>
<td>7.81</td>
<td>42.08</td>
<td>28.45</td>
<td>47.27</td>
<td>82.31</td>
</tr>
<tr>
<td>11</td>
<td>8.19</td>
<td>42.06</td>
<td>32.01</td>
<td>47.52</td>
<td>94.16</td>
</tr>
<tr>
<td>12</td>
<td>8.53</td>
<td>42.05</td>
<td>35.56</td>
<td>47.75</td>
<td>106.14</td>
</tr>
<tr>
<td>13</td>
<td>10.13</td>
<td>41.86</td>
<td>71.13</td>
<td>49.26</td>
<td>230.36</td>
</tr>
<tr>
<td>14</td>
<td>12.21</td>
<td>41.70</td>
<td>106.69</td>
<td>50.14</td>
<td>359.09</td>
</tr>
<tr>
<td>15</td>
<td>13.21</td>
<td>41.57</td>
<td>142.25</td>
<td>50.76</td>
<td>490.15</td>
</tr>
<tr>
<td>16</td>
<td>13.98</td>
<td>41.46</td>
<td>177.82</td>
<td>51.25</td>
<td>622.76</td>
</tr>
<tr>
<td>17</td>
<td>16.41</td>
<td>41.06</td>
<td>355.63</td>
<td>52.75</td>
<td>1298.28</td>
</tr>
<tr>
<td>18</td>
<td>18.86</td>
<td>40.62</td>
<td>711.26</td>
<td>54.26</td>
<td>2676.14</td>
</tr>
<tr>
<td>19</td>
<td>20.30</td>
<td>40.34</td>
<td>1066.89</td>
<td>55.14</td>
<td>4069.21</td>
</tr>
<tr>
<td>20</td>
<td>21.32</td>
<td>40.13</td>
<td>1422.53</td>
<td>55.76</td>
<td>5470.00</td>
</tr>
<tr>
<td>21</td>
<td>22.11</td>
<td>39.97</td>
<td>1778.16</td>
<td>56.25</td>
<td>6876.02</td>
</tr>
<tr>
<td>22</td>
<td>24.57</td>
<td>39.45</td>
<td>3556.31</td>
<td>57.75</td>
<td>13945.98</td>
</tr>
<tr>
<td>23</td>
<td>25.00</td>
<td>39.00</td>
<td>4112.63</td>
<td>59.26</td>
<td>28171.69</td>
</tr>
<tr>
<td>24</td>
<td>27.03</td>
<td>38.90</td>
<td>4712.63</td>
<td>60.14</td>
<td>42445.76</td>
</tr>
</tbody>
</table>
The corresponding transformation distance according to the modified Hubble law (2.78) where \(H_0 = 84.3 \, \text{Km s}^{-1} \, \text{Mpc}^{-1} \), \(c = 3 \times 10^5 \, \text{Km s}^{-1} \), \(1 \text{Mpc} = 3.0856 \times 10^{19} \, \text{Km} \) and \(1 \text{pc} = 3.26 \, \text{al} \) is

\[
d_{\text{cmb}} = \frac{c}{H_0} \ln \{ Z_{\text{cmb}} + 1 \} \quad (5.14)
\]

\[
d_{\text{cmb}} = \frac{3 \times 10^5}{84.3} \ln \{ 2853 + 1 \} \, \text{Mpc} \quad (5.15)
\]

\[
d_{\text{cmb}} = 28.3 \, \text{Gpc} = 92.3 \, \text{Gal} \quad (5.16)
\]

The CMB represents the true limit of the knowledgeable universe, the maximum dimension of the observable universe not its physical dimension. This distance vary upon the wavelength of the photons. It is around 92.3 Giga light years if we consider the \(H_\alpha \) hydrogen line and 194.3 Giga light years if we consider gamma rays. Table 2 shows some values very different from the usual classic value of 13.7 Giga light-years which is nearly thirteen times smaller than the knowledgeable universe.

<table>
<thead>
<tr>
<th>Line</th>
<th>(\lambda_0) [\AA]</th>
<th>(Z_{\text{cmb}})</th>
<th>(d_{\text{cmb}}) [Gpc]</th>
<th>(d_{\text{cmb}}) [Gal]</th>
</tr>
</thead>
<tbody>
<tr>
<td>(L_\alpha)</td>
<td>1216</td>
<td>15402</td>
<td>34.3</td>
<td>111.9</td>
</tr>
<tr>
<td>(L_\infty)</td>
<td>912</td>
<td>20536</td>
<td>35.3</td>
<td>115.2</td>
</tr>
<tr>
<td>(H_\alpha)</td>
<td>6563</td>
<td>2853</td>
<td>28.3</td>
<td>92.3</td>
</tr>
<tr>
<td>(H_\infty)</td>
<td>3646</td>
<td>5136</td>
<td>30.4</td>
<td>99.1</td>
</tr>
<tr>
<td>(\gamma)</td>
<td>1</td>
<td>(1.873 \times 10^7)</td>
<td>59.6</td>
<td>194.3</td>
</tr>
</tbody>
</table>

Table 2: Transformation distances

Let us look at Quasars which are of a very great luminosity and are usually very far away objects. A value of \(Z = 3,638 \) has been measured for Quasar Q0201+113 that put it at a relative distance of

\[
\frac{d}{D} = \frac{\ln(1 + 3.638)}{\ln(1 + 2853)} = 0,1928 \quad (5.17)
\]

It is about 1/5 the theoretical observable limit or 5.46 Gpc (17.8 Gly). ULAS J1120+0641 shows a \(Z = 7.1 \) and is relatively situated at 26% that is 7.4 Gpc or 22.9 Gal
6 Conclusion

The expansionist model of cosmology also called the "Big Bang" is a speculative one. Instead of compounding with an elastic relativistic metric with adjustable parameters, we find more plausible our model based exclusively on Maxwell electromagnetism and the quantum world. Contrarily to tired light models it doesn’t blur images but enhances their luminosity while reddening them.

Our model shows that cosmological distances can be measured according to a logarithmic law of redshift. It gives a sound basis to the Hubble constant which we evaluate to $84,3 \text{ km sec}^{-1} \text{ Mpc}^{-1}$ directly from the Pioneer satellite data. And at the same time it solves the enigma it posed.

We reviewed some problematic cases for the expansionist model and showed that they are naturally explained by our model.

We reviewed the distance modulus according to our model and set new frontiers to the knowledgeable universe. The world is not physically limited to 13,7 billion light-years but knowledgeable up to 100 billion light-years.
References

