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Single-Valued Neutrosophic Minimum 
Spanning Tree and Its Clustering Method
Abstract: Clustering plays an important role in data mining, pattern recognition, and machine learning. 
Then, single-valued neutrosophic sets (SVNSs) are a useful means to describe and handle indeterminate 
and inconsistent information, which fuzzy sets and intuitionistic fuzzy sets cannot describe and deal 
with. To cluster the data represented by single-value neutrosophic information, the article proposes a 
single-valued neutrosophic minimum spanning tree (SVNMST) clustering algorithm. Firstly, we defined 
a generalized distance measure between SVNSs. Then, we present an SVNMST clustering algorithm for 
clustering single-value neutrosophic data based on the generalized distance measure of SVNSs. Finally, 
two illustrative examples are given to demonstrate the application and effectiveness of the developed 
approach.
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1  Introduction
Clustering plays an important role in data mining, pattern recognition, and machine learning. Clustering 
data sets into disjoint groups is a problem arising in many domains. Generally, the goal of clustering is to 
find groups that are both homogeneous and well separated, that is, entities within the same group should 
be similar and entities in different groups dissimilar. Then, data sets can be represented by weighted graphs, 
where nodes correspond to the entities to be clustered and edges correspond to a dissimilarity or similarity 
measure between those entities. Graph theory [3] provided us with a very convenient tool to describe cluster-
ing problems. However, a minimum spanning tree (MST) is a very useful graph structure and can capture per-
ceptual grouping [4]. Zahn [13] defined several criteria of edge inconsistency for detecting clusters of different 
shapes and proposed the clustering algorithm using MST. Xu et al. [10] introduced three MST algorithms and 
applied them to clustering gene expression data. Owing to the fuzziness and uncertainty of many practical 
problems in the real world, Ruspini [7] first presented the concept of fuzzy division and a fuzzy clustering 
approach. Dong et al. [2] introduced a hierarchical clustering algorithm based on fuzzy graph connected-
ness. Then, Chen et  al. [1] put forward a fuzzy graph maximal tree clustering method of the fuzzy graph 
constructing the fuzzy similarity relation matrix and used the threshold of fuzzy similarity relation matrix 
to cut maximum spanning tree, and then obtained the classification on level. Zhao et al. [15] proposed two 
intuitionistic fuzzy minimum spanning tree (IFMST) clustering algorithms to deal with intuitionistic fuzzy 
information and extended them to clustering interval-valued intuitionistic fuzzy information. Furthermore, 
Zhang and Xu [14] introduced a MST algorithm-based clustering method under hesitant fuzzy environment.

To represent uncertainty, imprecise, incomplete, and inconsistent information that exist in real world, 
Smarandache [8] gave the concept of a neutrosophic set from philosophical point of view. The neutrosophic 
set [8] is a powerful general formal framework that generalizes the concept of the classic set, fuzzy set, 
interval valued fuzzy set, intuitionistic fuzzy set, interval valued intuitionistic fuzzy set, paraconsistent set, 
dialetheist set, paradoxist set, and tautological set. In the neutrosophic set, truth membership, indetermi-
nacy membership, and falsity membership are represented independently. However, the neutrosophic set 
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generalizes the above-mentioned sets from the philosophical point of view, and its functions TA(x), IA(x), 
and FA(x) are real standard or nonstandard subsets of ]–0, 1+[, i.e., TA(x): X → ]–0, 1+[, IA(x): X → ]–0, 1+[, 
and FA(x): X → ]–0, 1+[. So it will be difficult to apply in real scientific and engineering areas. Thus, Wang 
et al. [9] introduced a single-valued neutrosophic set (SVNS), which is an instance of a neutrosophic set. 
It can describe and handle indeterminate information and inconsistent information, which fuzzy sets and 
intuitionistic fuzzy sets cannot describe and deal with. Recently, Ye [11, 12] presented the correlation coef-
ficient of SVNSs and the cross-entropy measure of SVNSs and applied them to single-valued neutrosophic 
decision-making problems. Yet, until now, there has been no study on clustering the data represented by 
single-valued neutrosophic information. However, the existing MST clustering algorithms cannot cluster the 
single-valued neutrosophic data. Therefore, this article proposes a single-valued neutrosophic minimum 
spanning tree (SVNMST) clustering algorithm to deal with the data represented by SVNSs. To do so, the rest 
of the article is organized as follows. Section 2 introduces some basic concepts of SVNSs, the graph, and its 
MST. Section 3 defines a generalized distance measure between SVNSs. In Section 4, a single-valued neutro-
sophic clustering algorithm is proposed based on the MST. In Section 5, two illustrative examples are given 
to demonstrate the applications and the effectiveness of the proposed approach. Conclusions and further 
research are contained in Section 6.

2  Preliminaries
In this section, some basic concepts of SVNSs, the graph, and its MST are introduced to be utilized in the next 
sections.

2.1  Some Concepts of SVNSs

Smarandache [8] introduced the concept of a neutrosophic set from philosophical point of view.

Definition 1 [8]. Let X be a space of points (objects), with a generic element in X denoted by x. A neutrosophic 
set A in X is characterized by a truth membership function TA(x), an indeterminacy membership function 
IA(x), and a falsity membership function FA(x). The functions TA(x), IA(x), and FA(x) are real standard or non-
standard subsets of ]–0, 1+[, that is, TA(x): X →]–0, 1+[, IA(x): X →]–0, 1+[, and FA(x): X →]–0, 1+[, with the condi-
tion –0   ≤   sup TA(x) + sup IA(x) + sup FA(x)   ≤   3+.

Obviously, it is difficult to apply in real scientific and engineering fields. Thus, Wang et al. [9] introduced 
the concept of an SVNS, which is an instance of a neutrosophic set.

Definition 2 [9]. Let X be a space of points (objects) with generic elements in X denoted by x. An SVNS A in X 
is characterized by truth membership function TA(x), indeterminacy membership function IA(x), and falsity 
membership function FA(x). For each point x in X, there are TA(x), IA(x), FA(x)∈[0, 1], and 0   ≤   TA(x) + IA(x) + 
FA(x)   ≤   3. Therefore, an SVNS A can be represented by

A  =  {〈x, TA(x), IA(x), FA(x)〉|x∈X}.

The following expressions are defined in [9] for SVNSs A, B:

1. A ⊆ B if and only if TA(x)   ≤   TB(x), IA(x)   ≥   IB(x), FA(x)   ≥   FB(x) for any x in X.

2. A  =  B if and only if A ⊆ B and B ⊆ A.

3. Ac  =  {〈x, FA(x), 1 – IA(x), TA(x)〉|x∈X}.
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2.2  Graph and MSTs

A graph G is a pair of sets G  =  (V, E), where V is the set of vertices (or nodes) and E is the set of edges. There 
are two kinds of graphs: an undirected graph and a directed graph. Each edge in the undirected graph is an 
unordered pair {vi, vj}, whereas each edge in the directed graph is an ordered pair {vi, vj}, where the vertices 
vi and vj are called the end points of an edge. A sequence of edges and vertices that can be traveled between 
two different vertices is called a path. Suppose five nodes are given, then a graph with five nodes and seven 
edges is shown in Figure 1.

In Figure 1, there are different paths from the node B to the node E, such as the path (BAE) and the other 
path (BCDE). For a path, the start node and the destination node are the same, which is called a circuit, like 
(ABCA) or (ADEA).

A connected graph has paths between any pair of nodes. A connected acyclic graph that contains all 
nodes of G is called a spanning tree of the graph, which is any set of straight line segments connecting pairs 
of nodes such that
1. no closed loops occur,
2. each node is visited by at least one line, and
3. a tree is connected.

For example, a spanning tree with integer segment lengths is shown in Figure 2, which is obtained from 
Figure 1. When the nodes B and C or D and E were connected, a closed loop would be formed and the resulting 
figure would not be a tree. Then, we define the length of a tree to be the sum of the lengths of its constituent 
edges, the length of the tree in Figure 2 is 4 + 6 + 5 + 8  =  23 units.

An MST is the spanning tree of the minimum length that is often required. For instance, Figure 3 shows 
the MST obtained from Figure 1, and then its minimum length is 4 + 3 + 2 + 5  =  14 units.

Various algorithms to find the MST have been proposed in [5, 6, 10]. However, there are the two most 
popular algorithms to find the MST of a graph G by operating iteratively [5, 6], which are needed later. At any 
stage, the segment belongs to one of two sets, i.e., set A containing those segments assigned to the MST and 
set B, those not assigned.

The algorithm given by Kruskal [5] is to assign interactively to set A the shortest segment in the set B, 
which does not form a closed loop with any of the segments already in A. Initially, A is empty, and the itera-
tion stops when A contains (n – 1) segments.

The algorithm given by Prim [6] starts with any one of the given nodes and initially assign to A the short-
est segment starting from this node. The procedure continues to add the shortest segment from B, which 
connects to at least one segment from A without forming a closed loop among the segments already in A. The 
iteration stops when A contains (n – 1) segments.

Usually, clustering data sets can be represented as weighted graphs, where nodes correspond to the enti-
ties to be clustered and edges correspond to distance measure (or called dissimilarity measure) between 
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Figure 1. Graph.
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those entities. If a fuzzy relation R over V  ×  V is defined, then the membership function μR(v1, v2), where (v1, 
v2)∈V  ×  V takes various values from 0 to 1, and then such a graph is called a fuzzy graph. When R is an intui-
tionistic fuzzy relation over V  ×  V, then such a graph is called an intuitionistic fuzzy graph [15].

3  Distance Measures of SVNSs
For two SVNSs A and B in a universe of discourse, X  =  {xl, x2, … , xn}, which are denoted by A  =  {〈xi,TA(xi), IA(xi), 
FA(xi)〉|xi∈X}, and B  =  {〈xi,TA(xi), IA(xi), FA(xi)〉|xi∈X}, where TA(xi), IA(xi), FA(xi), TB(xi), IB(xi), FB(xi)∈[0, 1] for every 
xi∈X. Let us to consider the weight wi (i  =  1, 2, … , n) of an element xi (i  =  1, 2, … , n), with wi  ≥  0 (i  =  1, 2, … , n) 
and 
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where λ  >  0.
Especially if λ  =  1, 2, Equation (1) reduces to the single-valued neutrosophic-weighted Hamming distance 

and the single-valued neutrosophic-weighted Euclidean distance, respectively, as follows:
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Figure 3. Minimum Spanning Tree.
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Then, for the distance measure we have the following proposition.

Proposition 1. The above-defined distance d
λ
(A, B) for λ  >  0 satisfies the following properties:

(P1) d
λ
(A, B)   ≥   0;

(P2) d
λ
(A, B)  =  0 if and only if A  =  B;

(P3) d
λ
(A, B)  =  d

λ
(B, A);

(P4) If A ⊆ B ⊆ C, C is an SVNS in X, then d
λ
(A, C)   ≥   d

λ
(A, B) and d

λ
(A, C)   ≥   d

λ
(B, C).

Proof. It is easy to see that d
λ
(A, B) satisfies the properties (P1)–(P3). Therefore, we only prove (P4). Let A ⊆ 

B ⊆ C, then, TA(xi)   ≤   TB(xi)   ≤   TC(xi), IA(xi)   ≥   IB(xi)   ≥   IC(xi), and FA(xi)   ≥   FB(xi)   ≥   FC(xi) for every xi∈X. Then, we 
obtain the following relations:
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Combining the above inequalities with the above-defined distance formula (1), we can obtain that

d
λ
(A, B)   ≤   d

λ
(A, C) and d

λ
(B, C)   ≤   d

λ
(A, C) for λ  >  0.

Thus, the property (P4) is obtained. 
In the following, we give the definition of single-valued neutrosophic distance matrix.

Definition 3. Let Aj (j  =  1, 2, … , m) be a collection of m SVNSs, then D  =  (dij)m × m is called a single-valued 
neutrosophic distance matrix, where dij  =  d

λ
(Ai, Aj) is the distance between Ai and Aj, and its properties are as 

follows:
1. 0   ≤   dij   ≤   1 for all i, j  =  1, 2, … , m;
2. dij  =  0 if and only if Ai  =  Aj;
3. dij  =  dji for all i, j  =  1, 2, … , m.

4  SVNMST Clustering Algorithm
In this section, an SVNMST clustering algorithm is proposed as a generalization of an IFMST clustering algo-
rithm [15].

Let X  =  {x1, x2, … , xn} be an attribution space and the weight vector of an element xi (i  =  1, 2, … , n) be w  =  
{w1, w2, … , wn}, with wi   ≥   0 (i  =  1, 2, … , n) and 

1
1.n

ii
w

=
=∑  Assume that Aj (j  =  1, 2, … , m) is a collection of m 

SVNSs, which express m samples to be clustered. Then, there is the following form:

Authenticated | yehjun@aliyun.com author's copy
Download Date | 8/8/14 12:48 AM



316      J. Ye: Single-Valued Neutrosophic Minimum Spanning Tree

{ }, ( ), ( ), ( ) | .
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Thus, we propose an SVNMST clustering algorithm, which is described by the following steps:
Step 1.  Calculate the distance of dij  =  d

λ
(Ai, Aj) (i, j  =  1, 2, … , m) by Equation (1) to establish the single-valued 

neutrosophic distance matrix D  =  (dij)m × m.
Step 2.  Draw the single-valued neutrosophic graph G(V, E) where every edge between Ai and Aj is assigned 

the weight (single-valued neutrosophic distance) dij coming from an element of the single-valued neu-
trosophic distance matrix D  =  (dij)m × m, which represents the dissimilarity degree between samples Ai 
and Aj.

Step 3.  Build the MST of the single-valued neutrosophic graph G(V, E) by Kruskal’s method [5] or Prim’s 
method [6]:
1. Sort the edges of G in increasing order by weights.
2. Keep a subgraph S of G, which is initially empty, and at each step, choose the edge e with the 

smallest weight to be added to the subgraph S, where the end point of e are disconnected.
3. Repeat process (2) until the subgraph S spans all vertices. Hence, the MST of the single-valued 

neutrosophic graph G(V, E) is obtained.

Step 4.  Perform clustering by use of the SVNMST. We can get a certain number of subtrees (clustering) by 
disconnecting all the edges of the MST with weights greater than a threshold r. The clustering results 
induced by the subtrees do not depend on some particular MST [14, 15].

5  Illustrative Examples
In this section, two illustrative examples are presented to demonstrate the real applications and the effective-
ness of the proposed approach.

Example 1. A car market is going to classify eight different cars of Aj (j  =  1, 2, … , 8). Every car has six evalua-
tion factors (attributes): (1) x1: fuel consumption; (2) x2: coefficient of friction; (3) x3: price; (4) x4: comfortable 
degree; (5) x5: design; (6) x6: security coefficient. The characteristics of each car under the six attributes are 
represented by the form of SVNSs, and then the single-valued neutrosophic data are as follows:

A1  =  { < x1, 0.3, 0.2, 0.5 > ,  < x2, 0.6, 0.3, 0.1 > ,  < x3, 0.4, 0.3, 0.3 > ,  < x4, 0.8, 0.1, 0.1 > ,  < x5, 0.1, 0.3, 0.6 > ,  < x6, 0.5, 
0.2, 0.4 > };

A2 = { < x1, 0.6, 0.3, 0.3 > ,  < x2, 0.5, 0.4, 0.2 > ,  < x3, 0.6, 0.2, 0.1 > ,  < x4, 0.7, 0.2, 0.1 > ,  < x5, 0.3, 0.1, 0.6 > ,  < x6, 0.4, 
0.3, 0.3 > };

A3 = { < x1, 0.4, 0.2, 0.4 > ,  < x2, 0.8, 0.2, 0.1 > ,  < x3, 0.5, 0.3, 0.1 > ,  < x4, 0.6, 0.1, 0.2 > ,  < x5, 0.4, 0.1, 0.5 > ,  < x6, 0.3, 
0.2, 0.2 > };

A4 = { < x1, 0.2, 0.4, 0.4 > ,  < x2, 0.4, 0.5, 0.1 > ,  < x3, 0.9, 0.2, 0.0 > ,  < x4, 0.8, 0.2, 0.1 > ,  < x5, 0.2, 0.3, 0.5 > ,  < x6, 0.7, 
0.3, 0.1 > };

A5 = { < x1, 0.2, 0.3, 0.3 > ,  < x2, 0.3, 0.2, 0.6 > ,  < x3, 0.5, 0.1, 0.4 > ,  < x4, 0.7, 0.1, 0.1 > ,  < x5, 0.4, 0.2, 0.4 > ,  < x6, 0.3, 
0.2, 0.6 > };

A6 = { < x1, 0.3, 0.2, 0.4 > ,  < x2, 0.2, 0.1, 0.7 > ,  < x3, 0.4, 0.2, 0.5 > ,  < x4, 0.8, 0.0, 0.1 > ,  < x5, 0.4, 0.3, 0.5 > ,  < x6, 0.2, 
0.1, 0.7 > };

A7 = { < x1, 0.4, 0.4, 0.3 > ,  < x2, 0.5, 0.3, 0.1 > ,  < x3, 0.6, 0.1, 0.2 > ,  < x4, 0.2, 0.3, 0.7 > ,  < x5, 0.3, 0.1, 0.5 > ,  < x6, 0.7, 
0.2, 0.1 > };

A8 = { < x1, 0.4, 0.1, 0.2 > ,  < x2, 0.6, 0.1, 0.1 > ,  < x3, 0.8, 0.2, 0.1 > ,  < x4, 0.7, 0.2, 0.1 > ,  < x5, 0.1, 0.1, 0.8 > ,  < x6, 0.2, 
0.1, 0.8 > }.
If the weight vector of the attribute xi (i  =  1, 2, … , 6) is w  =  (0.16, 0.12, 0.25, 0.2, 0.15, 0.12)T, then we utilize the 
SVNMST clustering algorithm to group the eight different cars of Aj (j  =  1, 2, … , 8).
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Step 1.  Calculate the distance dij  =  d
λ
(Ai, Aj) by Equation (1) (take λ  =  2). Then we can establish the single-

valued neutrosophic distance matrix D  =  (dij)m × m as follows:

0.0000 0.2737 0.2551 0.3583 0.4022 0.4559 0.5052 0.4100
0.2737 0.0000 0.2269 0.2605 0.4064 0.5334 0.4271 0.4117
0.2551 0.2269 0.0000 0.3311 0.4577 0.5527 0.3983 0.4450
0.3583 0.2605 0.3311 0.0000 0.5442 0.6720 0.4559 0.5794
0.4022

D =
0.4064 0.4577 0.5442 0.0000 0.1987 0.5957 0.4811

0.4559 0.5334 0.5527 0.6720 0.1987 0.0000 0.7155 0.5248
0.5052 0.4271 0.3983 0.4559 0.5957 0.7155 0.0000 0.6370
0.4100 0.4117 0.4450 0.5794 0.4811 0.5248 0.6370 0.0000

 












.













Step 2.  Draw the single-valued neutrosophic graph G(V, E) where every edge between Ai and Aj (i, j  =  1, 2, … , 8) 
is assigned the weight (single-valued neutrosophic distance) dij coming from an element of the single-
valued neutrosophic distance matrix D  =  (dij)m × m, which represents the dissimilarity degree between 
the samples Ai and Aj. Then, the single-valued neutrosophic graph G(V, E) is shown in Figure 4.

Step 3.  Establish the MST of the single-valued neutrosophic graph G(V, E) by Kruskal’s method [5] or Prim’s 
method [6]:
1. Sort the edges of G in increasing order by weights:

 d56 < d23 < d13 < d24 < d12 < d34 < d14 < d37 < d15 <d25 < d18 < d28 < d27 < d38 < d16 =  d47 < d35 < d58 < d17 < d68 < 
d26 < d45 < d36 < d48 < d57 < d78 < d46 < d67

2. Keep an empty subgraph S of G and add the edge e with the smallest weight to S, where the end 
points of e are disconnected; thus, we choose the edge e56 between A5 and A6.

3. Repeat process (2) until the subgraph S spans eight nodes. Thus, the MST of the single-valued 
neutrosophic graph G(V, E) is obtained, as shown in Figure 5.

Step 4.  Select a threshold r and disconnect all the edges of the MST with weights greater than r to obtain a 
certain number of subtrees (clusters), as listed in Table 1.

To compare the SVNMST clustering algorithm with the intuitionistic fuzzy MST clustering algorithm and the 
fuzzy MST clustering algorithm, we introduce the following example discussed in [14, 15] for comparative 
convenience.

Example 2. To complete an operational mission, the six sets of operational plans are made (adapted from 
[14, 15]). To group these operational plans with respect to their comprehensive function, a military committee 

A1

A3

A4

A5

A7

A8

A2

A6

Figure 4. Single-Valued Neutrosophic Graph G(V, E) with the Eight Nodes.
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has been set up to provide assessment information on them. The attributes that are considered here in assess-
ment of the six operational plans Aj (j  =  1, 2, … , 6) are (1) x1 is the effectiveness of operational organization 
and (2) x2 is the effectiveness of operational command. The weight vector of the attributes xi (i  =  1, 2) is w  =  
(0.45, 0.55)T. The military committee evaluates the performance of the six operational plans Aj (j  =  1, 2, … , 6) 
with respect to the attributes xi (i  =  1, 2) and gives the SVNSs as follows:

A1  =  { < x1, 0.7, 0.2, 0.15 > ,  < x2, 0.6, 0.3, 0.2 > };

A2  =  { < x1, 0.4, 0.3, 0.35 > ,  < x2, 0.8, 0.1, 0.1 > };

A3  =  { < x1, 0.55, 0.2, 0.25 > ,  < x2, 0.7, 0.1, 0.15 > };

A4  =  { < x1, 0.44, 0.2, 0.35 > ,  < x2, 0.6, 0.2, 0.2 > };

A5  =  { < x1, 0.5, 0.15, 0.35 > ,  < x2, 0.75, 0.1, 0.2 > };

A6  =  { < x1, 0.55, 0.2, 0.25 > ,  < x2, 0.57, 0.2, 0.15 > }.

Then we employ SVNMST clustering algorithm to group these operational plans Aj (j  =  1, 2, … , 6).
Step 1.  Calculate the distance dij  =  d

λ
(Ai, Aj) by Equation (1) (take λ  =  2). Then we can establish the single-

valued neutrosophic distance matrix D  =  (dij)m × m as follows:

0.0000 0.2327 0.1507 0.1637 0.1940 0.1051
0.2327 0.0000 0.1127 0.1326 0.1131 0.1546
0.1507 0.1127 0.0000 0.1056 0.0764 0.0802
0.1637 0.1326 0.1056 0.0000 0.0940 0.0784
0.1940 0.1131 0.0764 0.0940 0.0000 0.1210
0.1051 0.1546 0.0802

D = .

0.0784 0.1210 0.0000

 
 
 
 
 
 
 
 
  

A1
A2

A3

A5

A6

A4
A8

A7

Figure 5. The MST of the Single-Valued Neutrosophic Graph G(V, E) with the Eight Nodes.

Table 1. SVNMST Clustering Results of the Eight Different Cars.

r Corresponding to clustering result

r  =  d18  =  0.41 {A1, A2, A3, A4, A5, A6, A7, A8}
r  =  d15  =  0.4022 {A1, A2, A3, A4, A5, A6, A7}, {A8}
r  =  d37  =  0.3983 {A1, A2, A3, A4, A7}, {A5, A6}, {A8}
r  =  d24  =  0.2605 {A1, A2, A3, A4}, {A5, A6}, {A7}, {A8}
r  =  d13  =  0.2551 {A1, A2, A3}, {A4}, {A5, A6}, {A7}, {A8}
r  =  d23  =  0.2269 {A1}, {A2, A3}, {A4}, {A5, A6}, {A7}, {A8}
r  =  d56  =  0.1987 {A1}, {A2}, {A3}, {A4}, {A5, A6}, {A7}, {A8}
r  =  0 {A1}, {A2}, {A3}, {A4}, {A5}, {A6}, {A7}, {A8}
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Step 2.  Draw the single-valued neutrosophic graph G(V, E) where every edge between Ai and Aj (i, j  =  1, 2, … , 6) 
is assigned the weight (single-valued neutrosophic distance) dij coming from an element of the single-
valued neutrosophic distance matrix D  =  (dij)m × m, which represents the dissimilarity degree between 
the samples Ai and Aj. The single-valued neutrosophic graph G(V, E) is shown in Figure 6.

Step 3.  Build the MST of the single-valued neutrosophic graph G(V, E) by Kruskal’s method [5] or Prim’s 
method [6].
1. Sort the edges of G in increasing order by weights:

d35 <  d46 <  d36 <  d45 <  d16 <  d34 <  d23 <  d25 <  d56 <  d24 <  d13 <  d26 <  d14 <  d15 <  d12.

2. Keep an empty subgraph S of G and add the edge e with the smallest weight to S, where the end 
points of e are disconnected; thus, we choose the edge e35 between A3 and A5.

3. Repeat process (2) until the subgraph S spans six nodes. Thus, the MST of the single-valued neu-
trosophic graph G(V, E) is obtained, as shown in Figure 7.

Step 4.  Select a threshold r and disconnect all the edges of the MST with weights greater than r to obtain a 
certain number of subtrees (clusters), as listed in Table 2.

To compare the SVNMST clustering algorithm with the IFMST clustering algorithm in [15], assume that the 
indeterminacy membership function IA(xi) is not considered independently in an SVNS Aj, then the samples’ 
information given by the military committee will be the intuitionistic fuzzy data (adopted in [15]):

A1  =  { < x1, 0.7, 0.15 > ,  < x2, 0.6, 0.2 > }, A2 = { < x1, 0.4, 0.35 > ,  < x2, 0.8, 0.1 > };

A1

A2

A3

A4

A5

A6

Figure 6. Single-Valued Neutrosophic Graph G(V, E) with the Six Nodes.

A1 A2

A3

A5

A6

A4

Figure 7. The MST of the Single-Valued Neutrosophic Graph G(V, E) with the Six Nodes.
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A3  =  { < x1, 0.55, 0.25 > ,  < x2, 0.7, 0.15 > }, A4 = { < x1, 0.44, 0.35 > ,  < x2, 0.6, 0.2 > };

A5  =  { < x1, 0.5, 0.35 > ,  < x2, 0.75, 0.2 > }, A6 = { < x1, 0.55, 0.25 > ,  < x2, 0.57, 0.15 > }.

Then, the operational plans Aj (j  =  1, 2, … , 6) can be clustered by the following IFMST clustering algorithm 
[15].
Step 1. Calculate dij  =  d(Ai, Aj) by the intuitionistic fuzzy distance measure:

 

1/ 2

2 2 2

1

1( , ) [| ( ) ( ) | | ( ) ( ) | | ( ) ( ) | ] .
2

n

i A i B i A i B i A i B i
i

d A B w x x x x x xµ µ ν ν π π
=

  = − + − + − 
  

∑
 

(4)

Thus, we get the intuitionistic fuzzy distance matrix:

0.0000 0.2450 0.1225 0.1170 0.1725 0.1115
0.2450 0.0000 0.1225 0.1280 0.1000 0.1940
0.1225 0.1225 0.0000 0.1045 0.1000 0.0715
0.1170 0.1280 0.1045 0.0000 0.1095 0.0935
0.1725 0.1000 0.1000 0.1095 0.0000 0.1715
0.1115 0.1940 0.0715

D = .

0.0935 0.1715 0.0000

 
 
 
 
 
 
 
 
  

Step 2.  Structuring the intuitionistic fuzzy graph G  =  (V, E), see Step 2 in the SVNMST clustering algorithm 
and Figure 6.

Step 3. Get the MST of the intuitionistic fuzzy graph G  =  (V, E) by Kruskal’s method [5] or Prim’s method [6]:
1. Sort the edges of G in increasing order by weights:

d36 < d46 < d35 = d25 < d34 < d45 < d16 < d14 < d13 = d23 < d24 < d56 < d15 < d26 < d52.
2. Keep an empty subgraph S of G and add the edge e with the smallest weight to S, where the end 

points of e are disconnected; thus, we choose the edge e36 between A3 and A6.
3. Repeat process (2) until the subgraph S spans six nodes. Thus, the MST of the intuitionistic fuzzy 

graph G(V, E) is obtained, as shown in Figure 8.

Step 4.  Select a threshold r and disconnect all the edges of the MST with weights greater than r to obtain a 
certain number of subtrees (clusters), as listed in Table 3.

It is well known that the fuzzy set is only composed of the membership degree. Therefore, we only consider 
the membership degrees of intuitionistic fuzzy data, and then the operational plan information given by the 
following fuzzy data [15]:

A1  =  { < x1, 0.7 > ,  < x2, 0.6 > }, A2  =  { < x1, 0.4 > ,  < x2, 0.8 > }, A3  =  { < x1, 0.55 > ,  < x2, 0.7 > };

A4  =  { < x1, 0.44 > ,  < x2, 0.6 > }, A5  =  { < x1, 0.5 > ,  < x2, 0.75 > }, A6  =  { < x1, 0.55 > ,  < x2, 0.57 > }.

Table 2. SVNMST Clustering Results of the Six Operational Plans.

r Corresponding to clustering result

r  =  d23  =  0.1127 {A1, A2, A3, A4, A5, A6}
r  =  d16  =  0.1051 {A2}, {A1, A3, A4, A5, A6}
r  =  d36  =  0.0802 {A1}, {A2}, {A3, A4, A5, A6}
r  =  d46  =  0.0784 {A1}, {A2}, {A3, A5}, {A4, A6}
r  =  d35  =  0.0764 {A1}, {A2}, {A3, A5}, {A4}, {A6}
r  =  0 {A1}, {A2}, {A3}, {A4}, {A5}, {A6}
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Then, the operational plans Aj (j  =  1, 2, … , 6) can be clustered by the fuzzy MST clustering algorithm:
Step 1. Calculate dij  =  d(Ai, Aj) by the fuzzy distance measure:

 

1/ 2
2

2

1
( , ) [| ( ) ( ) | ] .i A i B i

i
d A B w x xµ µ

=

  = − 
  
∑

 
(5)

Thus, we obtain the fuzzy distance matrix:

0.0000 0.2500 0.1250 0.1744 0.1743 0.1031
0.2500 0.0000 0.1250 0.1507 0.0766 0.1980
0.1250 0.1250 0.0000 0.1046 0.0500 0.0964
0.1744 0.1507 0.1046 0.0000 0.1183 0.0771
0.1743 0.0766 0.0500 0.1183 0.0000 0.1376
0.1031 0.1980 0.0964

D = .

0.0771 0.1376 0.0000

 
 
 
 
 
 
 
 
  

Step 2. Draw the fuzzy graph G  =  (V, E). See also Step 2 in the SVNMST clustering algorithm and Figure 6.
Step 3. Build the MST of the fuzzy graph G  =  (V, E) by Kruskal’s method [5] or Prim’s method [6]:

1. Sort the edges of G in increasing order by weights:
d35 < d25 < d46 < d36 < d16 < d34 < d45 < d13 = d23 < d56 < d24 < d15 < d14 < d26 < d12.

2. Keep an empty subgraph S of G and add the edge e with the smallest weight to S, where the end 
points of e are disconnected; thus, we choose the edge e35 between A3 and A5.

3. Repeat process (2) until the subgraph S spans six nodes. Thus, the MST of the fuzzy graph G(V, E) 
is obtained, as shown in Figure 9.

A1

A2

A3

A5

A6

A4

Figure 8. The MST of the Intuitionistic Fuzzy Graph G  =  (V, E).

Table 3. IFMST Clustering Results of the Six Operational Plans.

r Corresponding to clustering result

r  =  d16  =  0.1115 {A1, A2, A3, A4, A5, A6}
r  =  d25  =  d35  =  0.1 {A1}, {A2, A3, A4, A5, A6}
r  =  d46  =  0.088 {A1}, {A2}, {A5}, {A3, A4, A6}
r  =  d36  =  0.0715 {A1}, {A2}, {A4}, {A5}, {A3, A6}
r  =  0 {A1}, {A2}, {A3}, {A4}, {A5}, {A6}
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Step 4.  Select a threshold r and disconnect all the edges of the MST with weights greater than r to obtain a 
certain number of subtrees (clusters), as listed in Table 4.

For convenient comparisons, we put the clustering results of three kinds of clustering algorithms into Table 5.
From Table 5, we can see that the clustering results of the three clustering algorithms are quite different. 

The main reason can be given by the following comparative analysis.
As is known to all, the single-valued neutrosophic information is a generalization of intuitionistic fuzzy 

information, and intuitionistic fuzzy information is a further generalization of fuzzy information. On the one 
hand, an SVNS is an instance of a neutrosophic set, which gives us an additional possibility to represent 
uncertainty, imprecise, incomplete, and inconsistent information, which exist in real world. It can describe 
and handle indeterminate information and inconsistent information. However, the connector in the fuzzy set 
is defined with respect to T, i.e., membership only, hence the information of indeterminacy and nonmember-
ship is lost. The connectors in the intuitionistic fuzzy set are defined with respect to T and F, i.e., membership 
and nonmembership only; hence, the indeterminacy is what is left from 1 and then the intuitionistic fuzzy 
set can only handle incomplete information but not the indeterminate information and inconsistent informa-
tion, whereas in the SVNS, its truth membership, indeterminacy membership, and falsity membership are 
represented independently, and then they can be defined with respect to any of them (no restriction). There-
fore, the notion of SVNSs is more general. On the other hand, the clustering analysis under single-valued 
neutrosophic environment is suitable for capturing imprecise, uncertain, and inconsistent information in 
clustering the data. Thus, the SVNMST clustering algorithm clusters the single-valued neutrosophic infor-
mation, whereas the IFMST clustering algorithm clusters the intuitionistic fuzzy information and the fuzzy 
MST clustering algorithm clusters the fuzzy information. Obviously, the SVNMST clustering algorithm is the 
extension of both the IFMST clustering algorithm and the fuzzy MST clustering algorithm. Therefore, com-
pared with the IFMST clustering algorithm and the fuzzy MST clustering algorithm, the SVNMST clustering 

A1

A2

A3

A5

A6

A4

Figure 9. The MST of the Fuzzy Graph G  =  (V, E).

Table 4. Fuzzy MST Clustering Results.

r Corresponding to clustering result

r  =  d16  =  0.1031 {A1, A2, A3, A4, A5, A6}
r  =  d36  =  0.0964 {A1}, {A2, A3, A4, A5, A6}
r  =  d46  =  0.0774 {A1}, {A2, A3, A5}, {A4, A6}
r  =  d25  =  0.0766 {A1}, {A2, A3, A5}, {A4}, {A6}
r  =  d35  = 0.0500 {A1}, {A2},{A3, A5}, {A4}, {A6}
r  =  0 {A1}, {A2}, {A3}, {A4}, {A5}, {A6}
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algorithm is more general. Furthermore, when we encounter some situations, which are represented by inde-
terminate information and inconsistent information, the SVNMST clustering algorithm demonstrates its great 
superiority in clustering those single-valued neutrosophic data.

6  Conclusion
This article defined a generalized single-valued neutrosophic weighted distance and proposed the SVNMST 
clustering algorithm as a generalization of the IFMST clustering algorithm. Through the computational tests 
on the SVNMST clustering algorithm, the IFMST clustering algorithm, and the fuzzy MST clustering algorithm, 
the clustering results have shown that the SVNMST clustering algorithm is more general and more reason-
able than the IFMST clustering algorithm and the fuzzy MST clustering algorithm. Furthermore, in situations 
that are represented by indeterminate information and inconsistent information, the SVNMST clustering 
algorithm demonstrates its great superiority in clustering those single-valued neutrosophic data because the 
SVNSs are a powerful tool to deal with uncertainty, imprecise, incomplete, and inconsistent information. In 
the future, the developed algorithm can be applied to many areas such as information retrieval, investment 
decision making, and data mining.

Received September 25, 2013; previously published online January 8, 2014.
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