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Abstract

Dempster-Shafer theory is widely applied to uncertainty modelling and knowl-

edge reasoning due to its ability of expressing uncertain information. How-

ever, some conditions, such as exclusiveness hypothesis and completeness

constraint, limit its development and application to a large extend. To over-

come these shortcomings in Dempster-Shafer theory and enhance its capa-

bility of representing uncertain information, a novel theory called D numbers

theory is systematically proposed in this paper. Within the proposed theory,

uncertain information is expressed by D numbers, reasoning and synthesiza-

tion of information are implemented by D numbers combination rule. The

proposed D numbers theory is an generalization of Dempster-Shafer theory,

which inherits the advantage of Dempster-Shafer theory and strengthens its

capability of uncertainty modelling.
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Uncertainty modelling

1. Introduction

Since first proposed by Dempster [1] and then developed by Shafer [2],

Dempster-Shafer theory of evidence , also called Dempster-Shafer theory or

evidence theory, has been paid much attentions for a long time and contin-

ually attracted growing interests. This theory needs weaker conditions than

the Bayesian theory of probability, so it is often regarded as an extension of

the Bayesian theory [3, 4, 5, 6]. Many studies have been devoted to further

improve and perfect this theory in many aspects, for instance combination of

evidences [7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19], conflict management

[20, 21, 22, 23, 24, 25, 26, 27], independence of evidence [28, 29, 30, 31],

generation of mass function [32, 33, 34, 35], similarity measure between evi-

dences [36, 37, 38], uncertainty measure of evidences [39, 40, 41, 42, 43, 44,

45, 46, 47], and so on [48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62,

63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73]. Due to its ability to handle uncer-

tain information, Dempster-Shafer theory has been extensively used in many

fields, such as statistical learning [74, 75, 76, 77, 78, 79, 80, 81], classification

and clustering [82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98],

Granular computing [99, 100, 101, 102], uncertainty and knowledge reasoning

[103, 104, 105, 106, 107, 108, 109, 110, 111], decision making [112, 113, 114,

115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126], risk assessment and

evaluation [127, 128, 129, 130], knowledge-based systems and expert systems

[131, 132, 133, 134, 135], and so forth [136, 137, 138, 139, 140, 141, 142, 143,
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144, 145, 146].

Even as a theory of reasoning under the uncertain environment, Dempster-

Shafer theory has an advantage of directly expressing the “uncertainty” by

assigning the probability to the subsets of the set composed of multiple ob-

jects, rather than to each of the individual objects. However, it is also con-

strained by many strong hypotheses and hard constraints which limit its

development and application to a large extend. For one hand, the elements

in a frame of discernment (FOD) are required to be mutually exclusive. It is

called exclusiveness hypothesis. For another, the sum of basic probabilities of

a mass function must be equal to 1, which is called completeness constraint.

In the following of this paper, we will show how these conditions limit the

application of Dempster-Shafer theory.

To overcome these shortcomings in Dempster-Shafer theory and strengthen

its capability of representing uncertain information, a novel theory called D

numbers theory is systematically proposed in this paper. A novel data repre-

sentation called D numbers [147, 148, 149] is used to model uncertain informa-

tion. What’s more, a D numbers combination rule is proposed to synthesize

all the information expressed by D numbers and implement the uncertainty

and knowledge reasoning. Actually, D numbers and D numbers combination

rule is an extension of mass function and Dempster’s rule of combination,

respectively. If meeting certain conditions, they will degenerate to classi-

cal mass function and Dempster’s rule of combination. Consequently, the

proposed D numbers theory is an generalization of Dempster-Shafer theory.

The rest of this paper is organized as follows. Section 2 gives a brief
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introduction about the Dempster-Shafer theory. In Section 3, the proposed

D numbers theory is presented, mainly including D numbers and D numbers

combination rule. Some numerical examples are given to show the application

of D numbers theory in Section 4. Finally, conclusions are given in Section

5.

2. Dempster-Shafer theory

For completeness of the explanation, a few basic concepts about Dempster-

Shafer theory are introduced as follows.

For a finite nonempty set Ω = {H1, H2, · · · , HN}, Ω is called a frame of

discernment (FOD) when satisfying

Hi ∩Hj = ∅, ∀i, j = {1, · · · , N}. (1)

Let 2Ω be the set of all subsets of Ω, namely

2Ω = {A | A ⊆ Ω}. (2)

2Ω is called the power set of Ω. For a FOD Ω, a mass function is a mapping

m from 2Ω to [0, 1], formally defined by:

m : 2Ω → [0, 1] (3)

which satisfies the following condition:

m(∅) = 0 and
∑

A∈2Ω

m(A) = 1 (4)
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In Dempster-Shafer theory, a mass function is also called a basic probability

assignment (BPA). Given a BPA, the belief function Bel : 2Ω → [0, 1] is

defined as

Bel(A) =
∑

B⊆A

m(B) (5)

The plausibility function P l : 2Ω → [0, 1] is defined as

P l(A) = 1−Bel(Ā) =
∑

B∩A 6=∅

m(B) (6)

where Ā = Ω−A. These functions Bel and P l express the lower bound and

upper bound in which subset A has been supported, respectively.

Given two independent BPAsm1 andm2, Dempster’s rule of combination,

denoted by m = m1⊕m2, is used to combine them and it is defined as follows

m(A) =











1
1−K

∑

B∩C=A

m1(B)m2(C) , A 6= ∅;

0 , A = ∅.

(7)

with

K =
∑

B∩C=∅

m1(B)m2(C) (8)

Note that the Dempster’s rule of combination is only applicable to such two

BPAs which satisfy the condition K < 1.

3. D numbers theory

In the mathematical framework of Dempster-Shafer theory, there are sev-

eral strong hypotheses and constraints on the FOD and BPA. However, these

hypotheses and constraints limit the ability of Dempster-Shafer theory to

represent uncertain information.
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First, a FOD must be a mutually exclusive and collectively exhaustive

set, the elements of FOD are required to be mutually exclusive, as shown in

Eq.(1). In many situations, however, it is very difficult to be satisfied. Take

assessment as an example. In evaluating one object, it often uses linguistic

variables to express the assessment result, such as “Very Good”, “Good”,

“Fair”, “Bad” and “Very Bad”. Due to given by human, it inevitably ex-

ists intersections among these linguistic variables. Therefore, the exclusive-

ness hypothesis cannot be guaranteed precisely so that the application of

Dempster-Shafer theory is questionable for such situations. There are al-

ready some studies about FOD with non-exclusive hypotheses [54, 150].

Second, the sum of basic probabilities of a normal BPA must be equal to

1, as shown in Eq.(4). We call it as completeness constraint. But in some

cases, due to lack of knowledge and information, it is possible to obtain an

incomplete BPA whose sum of basic probabilities is less than 1. For example,

if an assessment is based on little partial information, the lack of information

may result in a complete BPA cannot be obtained. Furthermore, in an open

world [52], the incompleteness of FOD may also lead to the incompleteness

of BPA. Hence the completeness constraint is hard to completely meet in

some cases and it restricts the application of Dempster-Shafer theory.

To overcome these existing shortcomings in Dempster-Shafer theory and

enhance its capability of expressing uncertain information, a novel theory,

named as D numbers theory, is systematically proposed. D numbers theory

looses FOD’s exclusiveness hypothesis and BPA’s completeness constraint,

which is a generalization of Dempster-Shafer theory.
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Definition 1. Let Θ be a nonempty set Θ = {F1, F2, · · · , FN} satisfying

Fi 6= Fj if i 6= j, ∀i, j = {1, · · · , N} , D numbers is a mapping formulated by

D : 2Θ → [0, 1] (9)

with

∑

B⊆Θ

D(B) ≤ 1 and D(∅) = 0 (10)

where ∅ is the empty set and B is a subset of Θ.

It is found that the definition of D numbers is similar with the definition of

BPA. But note that, at first, differ from the definition of FOD in Dempster-

Shafer theory, the exclusiveness hypothesis is removed, i.e., the elements

in set Θ don’t require mutually exclusive in D numbers. At second, the

completeness constraint is released in D numbers. If
∑

B⊆Θ

D(B) = 1, the

information is said to be complete; if
∑

B⊆Θ

D(B) < 1, the information is said

to be incomplete. The degree of information’s completeness is defined as

below.

Definition 2. Let D be a D number on a finite nonempty set Θ, the degree

of information’s completeness in D is quantified by

Q =
∑

B⊆Θ

D(B) (11)

In Dempster-Shafer theory, Dempster’s rule of combination has played a

central role to synthesize all the knowledge of the initial BPAs. Correspond-

ingly, in D numbers theory which is treat as a generalization of Dempster-

Shafer theory, a D numbers combination rule is proposed to combine the

information indicated by D numbers.
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Definition 3. Let D1 and D2 be two D numbers, the combination of D1

and D2, indicated by D = D1 ⊙D2, is defined by










D(∅) = 0

D(B) = 1
1−KD

∑

B1∩B2=B

D1(B1)D2(B2), B 6= ∅
(12)

with

KD =
1

Q1Q2

∑

B1∩B2=∅

D1(B1)D2(B2) (13)

Q1 =
∑

B1⊆Θ

D1(B1) (14)

Q2 =
∑

B2⊆Θ

D2(B2) (15)

The proposed D numbers combination rule is a generalization of Demp-

ster’s rule of combination. If D1, D2 are defined on a FOD and Q1 = 1,

Q2 = 1, the D numbers combination rule will degenerate to the Dempster’s

rule of combination. This combination rule provides a practical and feasible

scheme to synthesize the uncertain information modeled by D numbers.

So far, D numbers theory has been proposed. In summary, it includes two

main aspects. On the one hand, with respect to representation of uncertain

information, D numbers provide a useful model. On the other hand, with

respect to knowledge and uncertainty reasoning, D numbers combination rule

can be employed to synthesize uncertain information.

4. Numerical Examples

In this section, some numerical examples are given to show the applica-

tions of proposed D numbers theory.
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Example 1. Assume a local government plans to build a hydropower sta-

tion nearby a river. Before to implement this project, environmental impact

assessment (EIA) is carried out, which is to identify and assess the conse-

quences or potential impacts of human activities to the environment. Two

groups of experts are employed to execute the task, independently. Assume

the evaluation result is expressed by linguistic variables High, Medium and

Low. One group evaluates that the damage of this project to the environment

is High. The other group’s is Medium.

If these results are modeled by using Dempster-Shafer theory, two BPAs

can be obtained that m1(High) = 1, m2(Medium) = 1. The Dempster’s

rule of combination is then used to combine the evaluations given by these

two groups. However, due to m1 and m2 are completely conflicting, i.e.,

K = 1, the Dempster’s rule of combination is unable to handle this situation.

Actually, in Dempster-Shafer theory there is a hypothesis that High and

Medium are mutually exclusive, i.e., High ∩ Medium = ∅, as shown in

Figure 1.

O x

Figure 1: The linguistic variables of High and Medium in Dempster-Shafer theory

But in the real situation, it inevitably exists intersections among linguistic

variables given by human beings. D numbers theory abandons the exclusive-
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ness hypothesis that elements must be mutually exclusive, as shown in Figure

2. In D numbers theory, these evaluation results can be indicated by two D

numbers that D1(High) = 1, D2(Medium) = 1. The combination of D1 and

D2 is expressed by D(High∩Medium) = 1. Therefore, D numbers theory is

more reasonable and capable to model the imprecise, ambiguous, and vague

information.

O x

Figure 2: The linguistic variables of High and Medium in D numbers theory

Example 2. Medical diagnosis is a typical field that involves various types

of uncertainties. Assume a patient is with the symptoms of fever, polypnea,

cough. According to previous cases, it is likely caused by flu (F), Bacterial or

fungal pneumonia (B), and upper respiratory infection (U). Two independent

diagnostic reports are submitted by two doctors. One doctor diagnoses that

the patient got F with a possibility of 0.7, and got B or U with a possibility

of 0.2, the reminder 0.1 is unknown. The other doctor’s diagnostic report

shows that it is 0.5 sure that the patient got F and 0.3 sure that the patient

got B, the reminder 0.2 is also unknown. The problem is what disease the

patient got.

Let’s consider this problem in the framework of Dempster-Shafer theory

first. According to these two diagnostic reports, two BPAs can be obtained
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m1(F ) = 0.7, m1(B,U) = 0.2, m1(F,B, U) = 0.1;

m2(F ) = 0.5, m2(B) = 0.3, m2(F,B, U) = 0.2.

Table 1: Intersection table to combine m1 and m2

m1 ⊕m2 m2(F ) = 0.5 m2(B) = 0.3 m1(F,B, U) = 0.2

m1(F ) = 0.7 {F}(0.35) ∅(0.21) {F}(0.14)

m1(B,U) = 0.2 ∅(0.10) {B}(0.06) {B,U}(0.04)

m1(F,B, U) = 0.1 {F}(0.05) {B}(0.03) {F,B, U}(0.02)

The intersection table of m1 ⊕ m2 is shown in Table 1. Then, we can

obtain that

K = m1(B,U)m2(F ) +m1(F )m2(B) = 0.31;

m(F ) = 1
1−K

(m1(F )m2(F ) +m1(F,B, U)m2(F ) +m1(F )m2(F,B, U)) =

0.7826;

m(B) = 1
1−K

(m1(B,U)m2(B) +m1(F,B, U)m2(B)) = 0.1304;

m(B,U) = 1
1−K

m1(B,U)m2(F,B, U) = 0.0580;

m(F,B, U) = 1
1−K

m1(F,B, U)m2(F,B, U) = 0.0290;

In the above calculating process, there is an invisible hypothesis that the

possibility of unknown is equal to that of {F,B, U}. In other words, the set

of all diseases causing the symptoms of fever, polypnea and cough, is seen as

equivalent to the set {F,B, U} which only contains three types of diseases.

However, it can not be obtained according to the doctors’ diagnostic reports.

This invisible hypothesis obviously is not reasonable. In the real world, there

may be other reasons resulting in these symptoms, but they are unknown due
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to the limitation of human beings’ current knowledge and cognitive level. For

example, until 2003, SARS (Severe Acute Respiratory Syndrome) is found

and then the knowledge about disease whose symptoms are fever, polypnea

and cough is updated.

Maybe there are some debate about the above discussion. Someone would

argue that a set X which includes all unknown factors can be imported in

the construction of BPAs. For example, the first BPA can be constructed

as m1(F ) = 0.7, m1(B,U) = 0.2, m1(F,B, U,X) = 0.1. By this means,

the invisible hypothesis is removed. However, the situation is not as good

as thought. At first, the complexity of this problem has greatly increased if

introduce X . At second, actually the invisible hypothesis is almost ignored

by people in the applications of Dempster-Shafer theory in order to reduce

the complexity. At third, the proposed D numbers theory is congenitally able

to well handle the situation of information incompleteness. In the following,

we will investigate this example using D numbers theory.

Now let us consider this problem by using D numbers theory. Accord-

ing to the two pieces of information given by the diagnostic reports, two D

numbers can be derived that

D1(F ) = 0.7, D1(B,U) = 0.2;

D2(F ) = 0.5, D2(B) = 0.3.

It is noted that the unknown information is not assigned to any set. The

constructed two D numbers are in the forms of information incompleteness.

Q1 = D1(F ) +D1(B,U) = 0.9;

Q2 = D2(F ) +D2(B) = 0.8.
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Table 2: Intersection table to combine Dw and Ds

D1 ⊙D2 D2(F ) = 0.5 D2(B) = 0.3

D1(F ) = 0.7 {F}(0.35) ∅(0.21)

D1(B,U) = 0.2 ∅(0.10) {B}(0.06)

The intersection table of D1⊙D2 is shown in Table 2. According to Table

2, we can calculate that

KD = 1
Q1Q2

(D1(B,U)D2(F ) +D1(F )D2(B)) = 0.4306;

D(F ) = 1
1−KD

D1(F )D2(F ) = 0.6147;

D(B) = 1
1−KD

D1(B,U)D2(B) = 0.1054.

with Q = D(F ) +D(B) = 0.72.

The result also shows the flu is the most probable disease the patient

got. By comparison with Dempster-Shafer theory, however, in the proposed

D numbers theory the unknown is inherited during the reasoning. D num-

bers theory has inherent advantage to handle the situation of information

incompleteness, which is more natural and reasonable.

Example 3. Pattern recognition is a key technology in machine learning and

many other fields. Supposing there is an object X which certainly belongs to

one of three classes indicated by {A,B,C}. The weight sensor reports that

X belongs to class A with a certainty of 0.6, and belongs to class C with a

certainty of 0.4. The shape sensor reports that it is 0.7 sure that X belongs

to classes A, B and the reminder 0.3 is with completely ignorance.

Dempster-Shafer theory can be used in this case. Due to the object
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certainly belongs to one of these three classes, the FOD can be determined

that Ω = {A,B,C}. According to the reports of weight sensor and shape

sensor, two BPAs are obtained that:

mw(A) = 0.6, mw(C) = 0.4;

ms(A,B) = 0.7, ms(A,B,C) = 0.3.

Table 3: Intersection table to combine mw and ms

mw ⊕ms ms(A,B) = 0.7 ms(A,B,C) = 0.3

mw(A) = 0.6 {A}(0.42) {A}(0.18)

mw(C) = 0.4 ∅(0.28) {C}(0.12)

The intersection table of mw ⊕ ms is shown in Table 3. Then, we can

obtain that

K = mw(C)ms(A,B) = 0.28;

m(A) = 1
1−K

(mw(A)ms(A,B) +mw(A)ms(A,B,C)) = 0.8333;

m(C) = 1
1−K

mw(C)ms(A,B,C) = 0.1667.

Namely, the object X is with 0.8333 certainty belonging to class A, and

with 0.1667 certainty belonging to class C by using Dempster-Shafer theory

to combine the reports of weight sensor and shape sensor.

Now let’s consider this problem using D numbers theory. At first, two D

numbers can be derived to express the reports of weight sensor and shape

sensor, respectively.

Dw(A) = 0.6, Dw(C) = 0.4;

Ds(A,B) = 0.7, Ds(A,B,C) = 0.3.
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Table 4: Intersection table to combine Dw and Ds

Dw ⊙Ds Ds(A,B) = 0.7 Ds(A,B,C) = 0.3

Dw(A) = 0.6 {A}(0.42) {A}(0.18)

Dw(C) = 0.4 ∅(0.28) {C}(0.12)

Note that due to X belongs to one of {A,B,C} with 100% certainty, for

the shape sensor’s report, the remaining possibility 0.3 can be assigned to

set {A,B,C}, namely Ds(A,B,C) = 0.3. It is reasonable. The intersection

table of Dw ⊙Ds is shown in Table 4. So, we can calculate that

Qw = Dw(A) +Dw(C) = 1.0;

Qs = Ds(A,B) +Ds(A,B,C) = 1.0;

KD = 1
QwQs

Dw(C)Ds(A,B) = 0.28;

D(A) = 1
1−KD

(Dw(A)Ds(A,B) +Dw(A)Ds(A,B,C)) = 0.8333;

D(C) = 1
1−KD

Dw(C)Ds(A,B,C) = 0.1667.

The result derived from D numbers theory is identical with that of Dempster-

Shafer theory. In this example, the set {A,B,C} is mutually exclusive and

collectively exhaustive for this problem, and the two pieces of information are

complete, therefore, both Dempster-Shafer theory and D numbers theory can

handle this case, and D numbers theory has degenerated to Dempster-Shafer

theory.
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5. Conclusions

In this paper, a novel theory called D numbers theory is systematically

proposed. The proposed D numbers theory is an generalization of Dempster-

Shafer theory, which releases the FOD’s exclusiveness hypothesis and BPA’s

completeness constraint in Dempster-Shafer theory. In the D numbers the-

ory, D number is an extension of BPA, D numbers combination rule is an

extension of Dempster’s rule of combination. Some numerical examples have

been given to show the application of the proposed theory. In the future

research direction, one the one hand, the properties of D numbers theory

will be further studied. On the other hand, this theory will be applied to

many real applications.
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