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Abstract — This paper presents the dynamic method

for fault diagnosis based on the updating of Interval-valued
belief structures (IBSs). The classical Jeffrey’s updating

rule and the linear updating rule are extended to the
framework of IBSs. Both of them are recursively used to

generate global diagnosis evidence with the form of Interval

basic belief assignment (IBBA) by updating the previous
evidence with the incoming evidence. The diagnosis deci-

sion can be made by global diagnosis evidence. In the pro-
cess of evidence updating, the similarity factors of evidence

are used to determine switching between the extended Jef-

frey’s and linear updating rules, and to calculate the linear
combination weights. The diagnosis examples of machine

rotor show that the proposed method can provide more

reliable and accurate results than the diagnosis methods
based on Dempster-Shafer evidence theory.
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I. Introduction

Equipment fault diagnosis depends on monitoring infor-

mation collected by sensors. In generally, the monitoring in-

formation or data is inherently incomplete, uncertain, and

imprecise because of some unavoidable factors including the

random disturbances in environment and the system errors of

sensor instrument, etc[1−3] . Therefore, it is imperative to de-

vise a fusion mechanism for minimizing such imprecision and

uncertainty. Dempster-Shafer evidence theory (DST) can ro-

bustly deal with incomplete data and allows the representation

of both imprecision and uncertainty[4]. It also provides Demp-

ster’s rule of combination to fuse multi-source information so

as to reduce the uncertainty and yield more accurate diagnosis

results than any single-source information[1−3] .

When DST is used to diagnose faults, there are three

steps[1−3]. Step one is to construct the frame of discernment in-
cluding all possible fault modes. Step two is to obtain the Basic

belief assignment (BBA) describing the degree of uncertainty
that on-line monitoring information supports every fault mode
and the subset of fault modes. Such a BBA can be also named
as a piece of diagnosis evidence. Step three is to fuse these

BBAs coming from different information sources and make di-
agnosis decision according to the fused results. The researches

on this field mainly focus on the second and third steps. The
related results can be found in recent publications[1−3,5].

Although these researches have given a distinct impetus
to the application of DST in fault diagnosis, there are still
two practical and vital questions[1,5]: (1) the BBA is required
to have single-valued (crisp) belief degrees and belief struc-

ture, which may be too coarse and imperfect to measure un-

certainty of fault information. It will miss useful information

and even lead to incorrect diagnosis results; (2) The fused re-

sult is obtained by fusing the multiple local BBAs collected at

same time step. However, in order to ensure the reliability and

stability of decision-making, on-line diagnosis should consider

dynamical relationship between the current fused result and

those results at its adjacent historical time steps.

The first is about measure of uncertainty. Due to the un-

certainties in human being’s subjective knowledge and sensor

observations, maintenance engineers and sensors are not def-

initely sure about their own judgments. So it is inappropri-

ate for them to assign the precise single-valued belief degrees

to every fault mode and the subset of fault modes[5]. In this

case, Interval-valued belief structures (IBSs), as the extension

of DST, provide the Interval-valued basic belief assignment

(IBBA) and the corresponding combination rule to deal with

this question. Compared with single-valued BBA, IBBA can

contain more fault information and meets human’s general un-

derstandings and conceptions[5−7]. Xu et al.[5] presented a di-

agnosis method based on IBBA to show IBSs can enhance

accuracy of DST-based diagnosis system.
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The second is involved with the dynamic requirement of

real-time diagnosis. Actually, the fused result of the above

DST/IBSs-based diagnosis methods are all static, as it only

synthesizes several pieces of diagnosis evidence collected at the

same time step. However, running status of equipment usually

varies with time. There are two main variations which should

be considered[1]: (1) although equipment always keeps in nor-

mal status in operational cycle, some intermittent or abrupt

external disturbances are so strong that the DST/IBSs-based

system temporarily makes false judgments. Actually, these dis-

turbances never lead to the internal faults of equipment, so

right now, a diagnosis system should always make the cor-

rect judgments (no fault); (2) equipment may undergo a slow

change from the normal status to a certain fault, or may

abruptly jump from the normal status to a certain fault. In

this case, a diagnosis system should make prompt and stable

responses to these changes. A feasible way of solving the sec-

ond question is to introduce updating strategy of evidence[1],

based on which, the updated result at each time step can dy-

namically integrate the current static fused result with the

historical fused results so as to make the global and stable

judgment.

Some scholars have devoted to theoretical research on the

updating strategies in different ways. Shafer et al. [8] and Smets

et al.[9] respectively presented Jeffrey’s rule of conditioning and

Transferable belief model (TBM) on the assumption that the

current (incoming) evidence is certain. Dubois et al.[10] rein-

terpreted Jeffrey’s rule and gave the Jeffrey-like rule to update

the Basic belief assignment (BBA) function and the corre-

sponding belief function (Bel). Kulasekere et al.[11] gave the

linear updating rule of evidence to combine the current BBA

with the historical (original) BBA. However, these theoretical

methods can not completely fit for dynamic diagnosis. For ex-

amples, the updated results given by the Jeffrey-like rule are

excessively determined by the current diagnosis evidence. The

linear updating rule is available, but the skills for selecting

the linear combination weights seem impractical for dynamic

diagnosis[1].

In order to solve the above two questions, we present the

dynamic fault diagnosis method based on the updating of

IBSs. Firstly, the static fusion method in Ref.[5] is used to gen-

erate the fused IBBA (the static diagnosis evidence) at each

step. Secondly, the Jeffrey’s and linear updating rules are ex-

tended to the framework of IBSs. Both of them are recursively

used to generate the updated IBBA at kth step by updating

the updated IBBA at the (k − 1)th step with the incoming

fused IBBA at the kth step, and then, the diagnosis decision

can be made by the updated IBBA (the global diagnosis evi-

dence) at every step. In the process of updating, the similarity

factors of diagnosis evidence are used to determine switching

between the extended Jeffrey’s and linear updating rules, and

to calculate the linear combination weights. Finally, the diag-

nosis examples of machine rotor show that the new updating

strategy can provide more reliable and accurate results than

the static DST/IBSs-based diagnosis methods.

II. Basics of Interval Belief Structures

Let Θ = {θj |j = 1, 2, . . ., n} be a finite nonempty set

of mutually exclusive elements (propositions). It is called the

frame of discernment. According to Denoeux’s published work

in Ref.[7], interval-valued belief structure, i.e. IBBA is defined

as Definition 1.

Definition 1 Interval-valued belief structure[5−6]

Let A1, . . . , AN be N subsets of Θ and [ai, bi] be n inter-

vals with 0 ≤ ai ≤ bi ≤ 1, i = 1, . . . , N , an interval-valued

belief structure, i.e. An IBBA is defined as a function Im

Im(Ai) = [ai, bi] (1)

such that the following hold:

1© ai ≤ m(Ai) ≤ bi, m(Ai) ∈ Im(Ai), 0 ≤ ai ≤ bi ≤ 1;

2©
N

X

i=1

ai ≤ 1 and

N
X

i=1

bi ≥ 1;

3© m(H) = 0, ∀H /∈ {A1, . . . , AN};
According to the above definition, each subset Ai such that

ai > 0 is called a focal element of an IBBA. If ai = bi = m(Ai),

then an IBBA reduced to a BBA. Hence IBSs generalizes the

concept of BBA. If

N
X

i=1

ai > 1 or

N
X

i=1

bi > 1, then Im is empty

and invalid. Invalid IBBA cannot be interpreted as belief struc-

ture and thus need to be revised or adjusted[7].

Definition 2 Normalization of IBBA[6]

For a valid IBBA Im, if ai and bi satisfy respectively
N

X

j=1

bj − (bi − ai) ≥ 1,

N
X

j=1

aj + (bi − ai) ≤ 1, i = 1, 2, . . . , N ,

j = 1, 2, . . . , N , then Im is called to be normalized.

In the following, whenever we use the IBBA, we always

suppose that it is valid and normalized, unless it is explicitly

stated otherwise.

Definition 3 Combination rule of IBBAs[6]

Let Im1 and Im2 be two IBBAs with the intervals of belief

masses [ai, bi] (ai ≤ m1(Ai) ≤ bi, i = 1, . . . , N1) and [cj , dj ]

(cj ≤ m2(Aj) ≤ dj , j = 1, . . . , N2) respectively. Their combi-

nation, denoted as Im1 ⊕ Im2, is also an IBBA defined by

[Im1⊕Im2](C)=

(

0, C = ∅

[(m1 ⊕ m2)
−(C), (m1 ⊕ m2)

+(C)], C �= ∅

(2)

where (m1⊕m2)
−(C) and (m1⊕m2)

+(C) are respectively the

minimum and maximum of the following pair of optimization

problems:

max / min [Im1 ⊕ Im2](C) =

X

Ai∩Aj=C

m1(Ai)m2(Aj)

1 −
X

Ai∩Aj=∅

m1(Ai)m2(Aj)

s.t.
N

X

i=1

m1(Ai) = 1, ai ≤ m1(Ai) ≤ bi, i = 1, 2, . . . , N1

N
X

j=1

m2(Aj) = 1, cj ≤ m2(Aj) ≤ dj , j = 1, 2, . . . , N2

(3)

Referring to Ref.[6], the combination of two IBBAs in Defini-

tion 3 can also be extended to the situation of multiple IBBAs.

Actually, for an IBBA Im, if it’s any m(Ai) satisfies the

constraint

N
X

i=1

m(Ai) = 1, then m is the crisp BBA of this
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IBBA. So, the main idea of the combination rule in Eq.(3) can

be interpreted as: the crisp BBAs selected respectively from

the two IBBAs are combined by using the classical Demp-

ster combination rule. Thus, the fused IBBA can be obtained

from maximizing/minimizing the crisp fused BBAs. Each of

the above pair of models (max/min) simultaneously considers

the combination and normalization of two IBBAs and opti-

mizes them together rather than separately. The reason for

doing so is to capture the true belief mass intervals of the

combined focal elements[6]. This optimality approach for com-

bining and normalizing IBBAs is more effective and efficient

than the existing approaches given in Ref.[7]. Related numer-

ical examples can be found in Ref.[10].

III. The Updating Strategies of IBSs

So far, the Jeffrey-like rule and the linear updating rule

of evidence are the most popular updating strategies in

DST[10−11]. In this section, both of them are introduced and

extended to IBSs for dynamical diagnosis.

1. The extended Jeffrey-like rule in the framework

of IBSs

Let m1 and m2 be two BBA on Θ with the sets X1 =

{Bi|i = 1, . . . , N1} and X2 = {Aj |j = 1, . . . , N2}, Bi and Aj

are the focal elements of m1 and m2 respectively. Assume that

m1 and m2 are the original and incoming BBAs respectively.

The Jeffrey-like rule in DST is defined as[10]

m(C|m2) =
X

Aj∈X2

m2(Aj)m1(C|Aj) (4)

m1(C|Aj) =
X

∅ �=C=Bi∩Aj

m1(Bi)/P l1(Aj) (5)

where C ∈ X1∩X2, Pl is Plausibility function corresponding to

BBA. By updating m1 with m2, Eq.(4) gives the updated be-

lief masses of C, the intersections between Bi andAj . Actually,

this rule re-distributes the belief masses to those propositions

simultaneously supported by m1 and m2. It can be seen that

m(C|m2) is the weighted sums of the belief masses of those

focal elements related to C in X2. So, the updated BBA is

largely determined by the incoming BBA. Specially, when the

focal elements of m2 make a partition of Θ , the updated BBA

is equal to m2, namely, the current updated result has nothing

to do with the historical information. Obviously, this rule only

applies to the case that current updated result and historical

result have the similar opinion about running status of equip-

ment. However, in most cases, the running status of equipment

usually varies with time[1−2], so the Jeffrey-like rule cannot be

completely suitable for dynamic fault diagnosis.

Following the spirit of optimization in Definition 3, we

present the extended Jeffrey-like rule in the framework of IBSs

shown in Definition 4.

Definition 4 The extended Jeffrey-like rule of IB-

BAs

Let Im1 and Im2 be two IBBAs with the intervals of be-

lief masses [ai, bi] (ai ≤ m1(Ai) ≤ bi, i = 1, . . . , N1) and

[cj , dj ] (cj ≤ m2(Aj) ≤ dj , j = 1, . . . , N2) respectively. X1 =

{Bi|i = 1, . . . , N1} and X2 = {Aj |j = 1, . . . , N2} are the sets

of the focal elements of Im1 and Im2 respectively. Assume

that Im1 and Im2 are the original and incoming IBBAs re-

spectively. The extended Jeffrey-like rule of IBBAs is defined

as

Im1
↼⊗Im2(C)=

8

>

<

>

:

0, C /∈ X1 ∩ X2

[(m1
↼⊗m2)

−(C), (m1
↼⊗m2)

+(C)],

C ∈ X1 ∩ X2

(6)

where (m1
↼⊗m2)

−(C) and (m1
↼⊗m2)

+(C) are respectively the

minimum and maximum of the pair of optimization problems:

max / min [Im1
←⊗Im2](C) =

X

Aj∈X2

m2(Aj)m1(C|Aj)

=
X

Aj∈X2

m2(Aj)

„

X

∅ �=C=Bi∩Aj

m1(Bi)/P l1(Aj)

«

s.t.

N1
X

i=1

m1(Bi) = 1, ai ≤ m1(Bi) ≤ bi, i = 1, 2, . . . , N1

N2
X

j=1

m2(Aj) = 1, cj ≤ m2(Aj) ≤ dj , j = 1, 2, . . . , N2

(7)

For m2 and m1(·|A) are normalized in Eq.(7)[10], the crisp

BBA m(·|m2) calculated by Eq.(4) is also normalized. The

updated IBBA can be obtained from maximizing/ minimizing

the crisp updated BBAs.

2. The extended linear updating rule in the frame-

work of IBSs

Fagin et al.[12] defined the notions of conditional belief and

plausibility functions. For any two focal elements A ∈ 2Θ ,

B ∈ 2Θ , the conditional belief and plausibility functions are

defined respectively as

Bel(B|A) =
Bel(A ∩ B)

Bel(A ∩ B) + P l(A − B)

P l(B|A) =
P l(A ∩ B)

P l(A ∩ B) + Bel(A − B)
(8)

Based on which, Kulasekere et al.[11] directly deduced con-

ditional BBA on the assumption B ⊆ A

m(B|A) =

X

C:C⊆B

m(C)

P l(A) −
X

E:E∈�(B)

m(E)
−

X

C:C⊆B

m(C|A) (9)

where, �(B) = {E ⊆ Θ : E = D ∪ C s.t. ∅ �= D ⊆ Ā,

∅ �= C ⊆ B ⊆ A} and when Ā
T

B �= ∅, m(B|A) = 0. Es-

pecially, for all B ⊆ A, s.t. m(B) = Bel(B), then Eq.(10) is

reduced to

m(B|A) =
m(B)

P l(A) −
X

E:E∈�(B)

m(E)
=

m(B)

m(B) + P l(A − B)

(10)

For example, assume that the belief mass distribution

of the original BBA m is m({θ1}) = 0.1, m({θ2}) = 0.3,

m({θ3}) = 0.4, m({θ2, θ3}) = 0.2. There is an incoming

piece of evidence with focal element A = {θ2, θ3}. When

B ∈ {{θ1}, {θ2}, {θ3}, {θ2, θ3}}, the corresponding conditional

Bel, Pl and m given the conditioning proposition A can be

calculated by Eq.(9) or (10), as shown in Table 1. It can be
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seen that the belief masses of those propositions included in the

complement of the conditioning proposition A are be annulled,

on the other hand, the belief masses of the remaining propo-

sitions related to A are be re-distributed by the conditioning

operation. It implied that when one attempts to make deci-

sions by the conditional BBA, the conditioning proposition A

derived from the incoming evidence should have the maximal

mass, or definitely m(A) = 1, i.e., the new evidence completely

supports the proposition A, which can be confirmed in the ex-

ample of a distributed decision-making network illustrated in

Ref.[11].

Table 1. The conditional Bel, Pl and m

B Bel(B) Pl(B) m(B) Bel(B|A) Pl(B|A) m(B|A)

θ1 0.1 0.1 0.1 0 0 0

θ2 0.3 0.5 0.3 0.3/0.9 0.5/0.9 0.3/0.9

θ3 0.4 0.6 0.4 0.4/0.9 0.6/0.9 0.4/0.9

{θ2, θ3} 0.9 0.9 0.2 1 1 0.2/0.9

Kulasekere et al.[11] defined the linear updating rule of ev-

idence, i.e. a linear combination of the original BBA and the

incoming conditional BBA, as follow:

mA(B) = αAm(B) + βAm(B|A) (11)

m(B) is the original belief mass to B ∈ 2Θ , m(B|A) quanti-

fies the degree that an incoming BBA with the definite mass

“m(A) = 1” supports the focal element B. mA(B) is the up-

dated belief mass of B conditional to A. The linear combina-

tion weights {αA, βA} can be interpreted as the measures indi-

cating the flexibility or inertia of the original evidence (BBA)

to updating when presented with the incoming conditioning

proposition A. Some basic strategies for selecting {αA, βA}
were introduced in Ref.[11]:

(1) The choice {αA, βA} = {1, 0} is called the infinite in-

ertia based updating strategy. The original evidence has com-

plete inflexibility towards changes. For example, the original

evidence is derived from a vast collection of reliable data, but

the incoming evidence is completely unreliable, which leads to

a high inertia, etc.

(2) The choice {αA, βA} = {0, 1} is called the zero in-

ertia based updating strategy. The original evidence has the

complete flexibility towards changes. For instance, the original

evidence is derived from little or no credible knowledge, but

the incoming evidence is completely reliable, etc.

(3) The choice {αA, βA} = {N/(N +1), 1/(N +1)} is called

the proportional inertia based updating strategy. N refers to

the number of “pieces” of evidence that the original evidence

is based upon. In this case, the gathered evidence and the

incoming evidence have equal inertia.

In practical application of fault diagnosis, many pieces of

diagnosis evidence are commonly gathered at each step. The

updated result is recursively calculated by Eq.(11) at each

step, which is related to the current incoming evidence and

the previous original evidence. Considering the uncertainty

of information or knowledge used to generate evidence and

the variability of equipment running status, the above three

method are static and seem less flexible and changeable.

Following the spirit of optimization in Definition 3, we

present the extended linear updating rule in the framework

of IBSs shown in Definition 5.

Definition 5 The extended linear updating rule of

IBBAs

For Im1 and Im2 given in Definition 4, the extended linear

updating rule of IBBAs is defined as

Im1
←⊕Im2(C) =

(

0, C = ∅

[(m1
←⊕m2)

−(C), (m1
←⊕m2)

−(C)], C �= ∅

(12)

here, (m1
←⊕m2)

−(C) and (m1
←⊕m2)

−(C) are respectively the

minimum and maximum of the following pair of optimization

problems:

max / min [Im1/Im2](C) = αAm1(C) + βAm(C|A)

= αAm1(C) + βA

„„

X

Bi⊆C

m1(Bi)/

„

P l1(A)

−
X

Bi∈�(C)

m1(Bi)

««

−
X

Bi⊆C

m1(Bi|A)

«

s.t.

N1
X

i=1

m1(Bi) = 1 (ai ≤ m1(Bi) ≤ bi, i = 1, 2, . . . , N1)

N2
X

j=1

m2(Aj) = 1 (cj ≤ m2(Aj) ≤ dj , j = 1, 2, . . . , N2)

(13)

where, �(B) = {E ⊆ Θ : E = D ∪ C s.t. ∅ �= D ⊆ Ā,

∅ �= C ⊆ B ⊆ A}, A is given by Pignistic transformation

(BetP)[1,9]

A = arg max
Aj

(BetPm2(Aj)) (14)

BetPm2(A) =
X

θ∈A

BetPm2(θ) (15)

BetPm2(θ) =
X

Aj∈X2,θ∈Aj

1

|Aj |
m2(Aj)

1 − m(∅)
, m(∅) �= 1 (16)

where |Aj | is the cardinality of focal element Aj . BetPm(θ)

in Eq.(16) is defined as the Pignistic probability function on

Θ [9]. The transformation from m to BetPm is called the pignis-

tic transformation. BetPm(A) in Eq.(15) is the extended form

of Eq.(16) on 2Θ .

Since the above basic strategies for selecting {αA, βA}
given in Ref.[11] are not suitable for dynamic diagnosis fault,

so, in our following applications, we present the new method

for selecting {αA, βA} based on the similarity measure of IB-

BAs introduced in next section.

IV. The Similarity Measure of IBSs

In our early work[13], we have given the similarity measure

of IBSs based on the extended Pignistic probability function

(IBetP) and the normalized Euclidean distance.

Let Im be an IBBA with the intervals of belief masses

Im(Ai) = [ai, bi] (0 ≤ ai ≤ bi ≤ 1), Ai ∈ {Ai|i = 1, 2, . . . , N},
the extended Pignistic probability function of IBSs is defined

as

IBetPIm(θ) = [BetP−
m(θ), BetP+

m(θ)] (17)

BetP−
m(θ) and BetP+

m(θ) are respectively the minimum and

maximum of the following pair of optimization problems:

max/min BetPm(θ) =
X

Ai⊆Θ,θ∈Ai

1

|Ai|
m(Ai)

1 − m(∅)
, m(∅) �= 1
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s.t.
N

X

i=1

m(Ai) = 1, ai ≤ m(Ai) ≤ bi, i = 1, 2, . . . , N (18)

Actually, the extended Pignistic transformation projects

the mass intervals of subsets of Θ into a new orthogonal space

about the singleton elements of Θ . Each dimension of this new

space is defined as IBetPIm(θi), i = 1, 2, . . . , n. In this orthog-

onal space, we use normalized Euclidean distance to measure

the degree of similarity between both IBetPs so as to indirectly

measure the degree of similarity between their corresponding

IBBAs.

Let Im1, Im2 are two IBBAs on Θ = {θi|i =

1, 2, . . . , n}. Their corresponding IBetPs are denoted as

IBetPIm1 and IBetPIm2 respectively. The normalized Eu-

clidean distance can be defined as

d(IBetPIm1 , IBetPIm2) =

v

u

u

t

1

2n

n
X

i=1

(I−
i )2 + (I+

i )2 (19)

where, I−
i = BetP−

m1(θi) − BetP−
m2(θi), I+

i = BetP+
m1(θi) −

BetP+
m2(θi), and

IBetPm1(θi) = [BetP−
m1(θi), BetP+

m1(θi)]

IBetPm2(θi) = [BetP−
m2(θi), BetP+

m2(θi)]

The smaller d(IBetPIm1 , IBetPIm2) is, the more similar

Im1 and Im2 are, and vice versa. The degree of similarity

between Im1 and Im2 can be defined as[13]

Sim(Im1, Im2) = 1 − d(IBetPIm1 , IBetPIm2) (20)

Sim(Im1, Im2) ∈ [0, 1], Sim(Im1, Im2) = 0 means that Im1

and Im2 are totally different; Sim(Im1, Im2) = 1 means that

Im1 and Im2 are completely identical.

If there are N IBBAs on Θ , as Im1, Im2, . . . , ImN , then

the degree that Imi is supported by the other N − 1 IBBAs

can be defined as

Sup(Imi) =
N

X

j=1,j �=i

Sim(Imi, Imj) (21)

The credibility degree of Imi is defined as

Crd(Imi) = Sup(Imi)

ffi N
X

i=1

Sup(Imi) (22)

N
X

i=1

Crd(Imi) = 1, thus, the credibility degree is a weight

showing the relative importance of the collected evidence.

V. Dynamical Fault Diagnosis Using the
Updating Strategy of IBSs

In this section, we propose a new updating procedure of

IBSs to solve the uncertainty question (the first two steps) and

dynamic question (the third step) in fault diagnosis.

Step 1 Acquire multiple pieces of diagnosis evidence at

every time step

This step is to deal with the uncertainty question in fault

diagnosis. At every time step, we need to obtain the degree

of uncertainty that on-line monitoring information supports

every fault mode and the subset of fault modes. In the frame-

work of IBSs, this degree is described as an IBBA. Here, the

method in Ref.[8] is used to get multiple pieces of diagnosis

evidence from multi-source information.

Step 2 Obtain the incoming fused IBBA by combining

the multiple IBBAs at kth step

In this step, the multiple pieces of diagnosis evidence (IB-

BAs) are fused by using the optimal combination rule in Defi-

nition 3. The fused IBBA is the incoming evidence at kth step

(k = 1, 2, 3, . . .). The function of combination rule is to reduce

the uncertainty of local diagnosis evidence such that the fused

IBBA is more certain and precise than any local IBBA.

Step 3 Obtain the updated IBBA at the kth step by

updating the updated IBBA at the (k − 1)th step with the

incoming fused IBBA

This step presents the new switching updating strategy

based on similarity measure of IBSs. Suppose the updated IB-

BAs Im1:k−2 and Im1:k−1 at the (k−2)th and (k−1)th steps

have been recursively obtained respectively and the incoming

fused IBBA Imk at the kth step have been calculated from

Step 2. The degrees of similarity between Imk and Im1:k−2,

Im1:k−1 can be got respectively by Eq.(20)

Sim(Imk, Im1:k−1) = 1 − d(IBetPImk , IBetPIm1:k−1)

= Simk,1:k−1 (23)

Sim(Imk, Im1:k−2) = 1 − d(IBetPImk , IBetPIm1:k−2)

= Simk,1:k−2 (24)

Set the switching threshold as δ, δ ∈ [0.5, 1]. If

min(Simk,1:k−2, Simk,1:k−1) ≥ δ, then the extend Jeffery-

like rule given in Definition 4 is used to calculate the updated

IBBA Im1:k by updating Im1:k−1 with Imk. It means that the

current fused result and the previous global results have the

similar opinion about the running status of equipment. In this

case, in large measure, the current updated IBBA can be de-

termined by the incoming fused IBBA, as analyzed in Section

III.1. Therefore, generally speaking, δ should be greater than

or equal to 0.5 and can be adjusted according to application

environments. Specially, when k = 1, we set Im1:k = Imk,

when k = 2, min(Simk,1:k−2, Simk,1:k−1) becomes Simk,1:k−1

directly.

On the other hand, if min(Simk,1:k−2, Simk,1:k−1) <

δ, then the extend linear updating rule given in Defini-

tion 5 is used to get Im1:k. It means that the current

fused result and the previous global results are conflict with

each other. So, the extend Jeffery-like rule is not applica-

ble any longer. On the contrary, the extended linear updat-

ing rule can give the reasonable updated result by adjust-

ing the linear combination weights {αk, βk}. But the origi-

nal methods for choosing {αk, βk} are not available for dy-

namic fault diagnosis, so we give the new method based on

the similarity measure of IBSs. At the kth step, we calcu-

late Sup(Im1:k−2), Sup(Im1:k−1), Sup(Imk) by Eq.(21), and

Crd(Im1:k−2), Crd(Im1:k−1), Crd(Imk) by Eq.(22) respec-

tively and set

αk = Crd(Im1:k−2) + Crd(Im1:k−1) (25)

βk = Crd(Imk) (26)
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Especially, when k = 1, we set Im1:k = Imk, when k = 2,

αk = βk = 0.5 directly.

Step 4 Make diagnosis decision according to the updated

(global) IBBA at the kth step

At every time step, a diagnosis decision can be made ac-

cording to the updated results[5]. There are two popular crite-

rions in diagnosis decision:

(1) For the determined fault proposition, the left and right

endpoints of its belief mass are respectively greater than those

of belief mass of other fault propositions;

(2) The right endpoint of Im(Θ) must be smaller than a

certain threshold, where, we will use 0.3 experientially.

VI. Fault Diagnosis Experiments of
Machine Rotor System

The proposed updating strategy is verified by ZHS-2 ma-

chine rotor system used in Ref.[5]. A vibration displacement

sensor and a vibration acceleration sensor are respectively in-

stalled on the bracket of rotor to collect vibration signals in

both vertical and horizontal directions. These signals are in-

putted into HG-8902 data collector, and then processed by

signal conditioning circuits. Finally, the processed signals are

inputted into laptop. The fault features can be extracted from

these signals by HG-8902 data analysis software (under envi-

ronment of Labview). The typical faults seeded in the system

are rotor unbalance, rotor misalignment and motor bracket

loosening, thus, the frame of discernment is Θ = {F0, F1, F2,

F3}, where, F0 = normal condition, F1 = rotor unbalance,

F2 = rotor misalignment, and F3 = motor bracket loosen-

ing. The amplitudes of fundamental, double, triple vibration

acceleration frequencies (denoted as f×1–f×3 respectively) and

average amplitude of vibration displacement (denoted as da)

are selected as the fault feature parameters[5].

We give four typical fault experiments, in which, the pro-

posed updating strategy are compared with other methods to

show its advantages.

Experiment 1 The rotor system always keeps in normal

condition (F0) at the kth step, k = 1, 2, . . . , 10.

At every time step, the method in Ref.[5] is used to get

the four local IBBAs respectively from the monitoring data

of f×1, f×1, f×3 and da, and then, the optimal combination

rule in Definition 3 is used to calculate the incoming fused

IBBA mk by fusing the local IBBAs. In Fig.1, the belief

masses of mk are denoted as Incoming belief mass (IBM).

Imk({F0}), Imk({F1}), Imk({F2}) and Imk({F3}) are shown

except Imk(Θ), because Imk(Θ) usually becomes so small by

optimal combination that it rarely influences the decision mak-

ing. For example, the interval value of belief masses of Im8

illustrated in Fig.1. The updated IBBAs obtained recursively

using four updating or combination rules can be respectively

shown in Fig.1, including the Combination rule (CR) in Defi-

nition 3, the Extended Jeffery-like rule (EJLR), the Extended

linear updating rule (ELUR) and the proposed New updating

strategy (NUS).

The system is always normal, so at every time step,

Imk({F0}) is always larger than Imk({F1}), Imk({F2}),
Imk({F3}) and Imk(Θ). In NUS, the switching threshold

δ is taken as 0.75. When k = 1, 2, 3, min(Simk,1:k−2,

Simk,1:k−1) ≥ δ, then EJLR is chosen as the updating rule,

so both NUS and EJLR have same updated results; When

k = 4, 5, . . . , 10, min(Simk,1:k−2, Simk,1:k−1) < δ, NUS

is switched to ELUR with the linear combination weights

{αk, βk} given by Eqs.(25) and (26). In ELUR, according to

the proportional inertia based updating strategy, when k = 1,

{αk, βk} = {0, 1}, otherwise, {αk, βk} = {(k − 1)/k, 1/k} (in

the following experiments, the strategy is always used). In CR,

the updated IBBA at the kth step is obtained by directly fus-

ing all incoming fused IBBAs from the first step to the kth

step. From Fig.1, it can be seen, the updated results of NUS,

ELUR and CR are better than the incoming fused results. For

the incoming fused IBBAs all support F0, so CR and ELUR

make belief masses focus to F0. At every time step, the up-

dated IBBA of EJLR is similar with the incoming fused IBBA,

because the former are overly determined by the latter. Al-

though NUS does not give better results than CR and ELUR,

it is available in accordance with the decision criterions.

Fig. 1. The updated IBBAs of CR, EJLR, ELUR and NUS in

Experiment 1

Experiment 2 The rotor system keeps in normal condi-

tion, but encounters the abrupt external disturbances at the

certain time steps, and then, returns to normal when the dis-

turbances disappear. There are two detailed cases.

Case 1 The system only encounters the disturbance at

the sixth step. It causes the false fault “F1”.

Case 2 The system continuously encounters the distur-

bances at the sixth and seventh steps. They cause the false

faults “F1” and “F3” respectively.

The updated results in two cases are shown in Fig.2

and Fig.3 respectively. It can be concluded that, the distur-

bances are so strong that the incoming fused IBBAs incor-

rectly support false faults. However, by evidence updating,

ELUR and NUS make the correct judgment according to the

decision criterions. EJLR makes mistake because its updated

results overly depend on the incoming fused IBBA. Because of

the conflicts between the incoming fused IBBAs, the interval

widths of belief masses given by CR become too large to make

decisions. Obviously, NUS still give satisfactory results.

Experiment 3 The rotor system is normal from the first

step to the fifth step, but the fault “rotor unbalance (F1)” sud-
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denly happens at the sixth step and goes on until the tenth

step.

Fig. 2. The updated IBBAs of CR, EJLR, ELUR and NUS in
Case 1 of Experiment 2

Fig. 3. The updated IBBAs of CR, EJLR, ELUR and NUS in

Case 2 of Experiment 2

The updated results are shown in Fig.4. Because adopt-

ing the proportional inertia based updating strategy, ELUR

becomes insensitive to the sudden changes of running status

of the system. Consequently, it always makes incorrect judg-

ments when the fault exists. Although EJLR can make correct

judgments, but its updated IBBAs are similar with the incom-

ing fused IBBAs, so the effects of updating are weak. CR is

also inapplicable because of the same reason as in Experiment

2. On the contrary, NUS is the tradeoff between EJLR and

ELUR. When the system is normal, NUS is consistent with

EJLR; when F1 happens, NUS is switched to ELUR. Although

it makes mistake when F1 just happens at sixth step, the be-

lief masses of NUS can quickly and stably focus to F1 and

the interval widths of belief masses become less than those of

EJLR at the following steps, which are advantageous to assure

convincing and accurate decision-makings.

Experiment 4 The rotor system goes through the in-

termediate stage between normal and fault. More specifically,

the system is normal from the first step to the third step, from

the fourth step to the seventh step, the running status of the

system gradually degrades to F1, and then, F1 really happens

at remaining three steps.

Fig. 4. The updated IBBAs of CR, EJLR, ELUR and NUS in
Experiment 3

Fig.5 shows the updated results. Obviously, compared with

other methods, NUS has the best performance. Moreover, it

can predict fault timely and accurately when the running sta-

tus of the system just begins to deteriorate.

Fig. 5. The updated IBBAs of CR, EJLR, ELUR and NUS in

Experiment 4

VII. Conclusion

This paper presents a new updating strategy for dynamic

diagnosis based on IBSs. The main contribution includes: (1)

The classical Jeffrey’s updating rule and the linear updating

rule are extended to the framework of IBSs; (2) NUS can adap-

tively choose appropriate updating rules according to real-time

change of incoming fused diagnosis evidence; (3) NUS can

adaptively adjust the linear combination weights of ELUR in
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terms of similarity relationship between the incoming diagno-

sis evidence and the previous diagnosis evidence. The fault

experiments show that NUS has better comprehensive perfor-

mance than other updating strategies. It is applicable to some

typical cases of dynamic diagnosis in the real word.
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