
ar
X

iv
:1

40
4.

48
01

v1
  [

cs
.A

I]
  1

7 
A

pr
 2

01
4

Generalized Evidence Theory

Yong Denga,b,c,∗

aSchool of Computer and Information Science, Southwest University, Chongqing,

400715, China
bSchool of Engineering, Vanderbilt University, Nashville, TN, 37235, USA

cSchool of Electronics and Information Technology, Shanghai Jiao Tong University,

Shanghai 200240, China

Abstract

Conflict management is still an open issue in the application of Dempster

Shafer evidence theory. A lot of works have been presented to address this

issue. In this paper, a new theory, called as generalized evidence theory

(GET), is proposed. Compared with existing methods, GET assumes that

the general situation is in open world due to the uncertainty and incomplete

knowledge. The conflicting evidence is handled under the framework of GET.

It is shown that the new theory can explain and deal with the conflicting

evidence in a more reasonable way.
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1. Introduction

Handling uncertainty is heavily studied in many real applications such

as approximate reasoning and decision making. The first step to handle

uncertain information is reasonable description or modelling of the uncertain

information. One of the most used theory is Dempster Shafer evidence theory.

Since first proposed by Dempster[1] and then developed by Shafer[2], has

been paid much attentions for a long time and continually attracted growing

interests[3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22,

23, 24, 25, 26, 27, 28, 29, 30].

One open issue of evidence theory is the conflict management when ev-

idence highly conflicts with each other. A famous example is illustrated by

Zadeh[31]. Since then, hundred of methods are proposed to address this issue

[32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43].

The normalization step is questionable in Dempster combination rule and

is deleted to assign the conflict to the whole sets[44], under the closed-world

assumption that the frame of discernment is exhaustive. The transferable

belief model (TBM) is presented to represent quantified beliefs based on be-

lief functions[45, 46]. TBM was constructed by two levels, namely the credal

level where beliefs are entertained and quantified by belief functions and the

pignistic level where beliefs can be used to make decisions and are quan-

tified by probability functions. Dubois and Prade proposed a new rule of

combination which is better adapted and more specific than Yager’s rule of

combination concerning the assignment of the conflicting mass[47]. Lefevre
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et.al reviewed the previous works and made a unified model to handle conflict

evidence. The main idea of their method is to address that the conflict will

be assigned to which hypothesis and how to assign the conflict[33]. However,

to assign the conflict to different hypothesis is questioned by Haenni [48]. A

model X with method Y has an intuitive result Z. Haenni argued to modify

the method Y is not reasonable since that the intuitive result may be caused

by model X. Some methods are coincide with Haenni’s opinion. For exam-

ple, Murphy averages the conflict evidence and then combines the averaged

evidence itself several times[32]. A weighted average method is proposed by

Deng[34] with a better convergence ability. In the weighted average method,

the evidence distance function presented in [49], instead of the commonly

used conflict coefficient in evidence theory, is used to model the conflict de-

gree. Liu pointed out that the commonly used conflict coefficient in evidence

theory is not reasonable to represent the conflict degree between two pieces of

evidence[35]. To address this issue, a two dimension conflict measure, com-

bined with the classical conflict coefficient and pignistic betting distance, is

proposed. In addition, the adoptive is discussed. Three cases are proposed

according to the two dimension conflict measure.

Generally speaking, there are two main reasons to cause the evidence

conflicts with each other. One is the questionable sensor reliability caused

by any disturbance or the maintain condition of the equipment. The other

is that the system is in open world where our knowledge is not completed.

For example, target recognition is widely used in military application. We

know that the enemy has three types of jet fighter, namely A,B,C. As a
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result, one of the three types will be recognized, given by some collected

evidence from different radars. However, we do not know that a new type

of jet fighter, namely D is developed secretly. When the target D is flying

near the radars, one radar may sent the report that the target is A and the

one radar may sent the report that the target is C, which is very similar to

Zadeh’s count-intuitive example.

The rest of this paper is organized as follows. Section 2 the background

knowledge are brief introduced, including Dempster-Shafer theory, pignis-

tic probability transform and Jousselme’s evidence distance proposed. In

Section 3, the proposed generalized evidence theory is presented, mainly in-

cluding GET, generalized evidence distance, generalized combination rule

(GCR) and its application. The discuss of φ, generalized conflict model and

its application are presented in Section 4. Finally, conclusions are given in

Section 5.

2. Preliminaries

2.1. Dempster-Shafer theory

For completeness of the explanation, a few basic concepts about Dempster-

Shafer theory are introduced as follows.

For a finite nonempty set Ω = {H1, H2, · · · , HN}, Ω is called a frame of

discernment (FOD) when satisfying

Hi ∩Hj = ∅, ∀i, j = {1, · · · , N}. (1)
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Let 2Ω be the set of all subsets of Ω, namely

2Ω = {A | A ⊆ Ω}. (2)

2Ω is called the power set of Ω. For a FOD Ω, a mass function is a mapping

m from 2Ω to [0, 1], formally defined by:

m : 2Ω → [0, 1] (3)

which satisfies the following condition:

∑

A∈2Ω

m(A) = 1 (4)

m(∅) = 0 (5)

In Dempster-Shafer theory, a mass function is also called a basic proba-

bility assignment (BPA). Given a BPA, the belief function Bel : 2Ω → [0, 1]

is defined as

Bel(A) =
∑

B⊆A

m(B) (6)

The plausibility function P l : 2Ω → [0, 1] is defined as

P l(A) = 1−Bel(Ā) =
∑

B∩A 6=∅

m(B) (7)

where Ā = Ω−A. These functions Bel and P l express the lower bound and

upper bound in which subset A has been supported, respectively.

Given two independent BPAsm1 andm2, Dempster’s rule of combination,

denoted by m = m1⊕m2, is used to combine them and it is defined as follows

m(A) =











1
1−K

∑

B∩C=A

m1(B)m2(C) , A 6= ∅;

0 , A = ∅.

(8)
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with

K =
∑

B∩C=∅

m1(B)m2(C) (9)

Note that the Dempster’s rule of combination is only applicable to such two

BPAs which satisfy the condition K < 1.

2.2. Pignistic Probability Transform

In the transferable belief model(TBM)[46], pignistic probabilities are used

for decision making.

Let m be a BPA on the frame of discernment Θ. Its associated pignistic

probability function BetPm : Θ → [0, 1] is defined as

BetPm(ω) =
∑

A⊆P (Θ),ω∈A

1

|A|

m(A)

1−m(∅)
, m(∅) 6= 1 (10)

Where |A| is the cardinality of subset A. The process of pignistic prob-

ability transform (PPT) is that basic probability assignment transferred to

probability distribution. Therefore, the pignistic betting distance[50] can

be easily obtained by PPT. Let m1 and m2 be two BPAs on the frame of

discernment Θ, the pignistic probability functions are BetPm1 and BetPm2,

respectively. The pignistic betting distance difBetPm2

m1
(difBetP , for short)

between BetPm1
and BetPm2

are given as follows.

difBetP = max
A⊆θ

(|BetPm1
(A)−BetPm2

(A)|) (11)

|BetPm1
(A)− BetPm2

(A)| indicates that the support degree by BPAs.
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2.3. Jousselme’s evidence distance

Jousselme et al.[49] proposed a new distance of measure the conflicting

of two bodies of evidence. That is evidence distance.

Let m1 and m2 be two BPAs defined on the same frame of discern-

ment Θ, containing N mutually exclusive and exhaustive hypotheses. Let

dBPA(m1, m2) represents the distance of two bodies of evidence.

dBPA(m1, m2) =

√

1

2
(m1 −m2)

T D (m1 −m2) (12)

Wherem1 andm2 are respective two BPAs. D is an 2N×2N matrix whose

elements D(A,B) = |A∩B|
|A∪B|

with A,B ∈ P (Θ) from m1 and m2, respectively.

2.4. Liu’s evidence conflict model

In traditional Dempster-Shafer evidence, the conflict coefficient K repre-

sents the degree of conflicting between two bodies of evidence. Liu pointed

out that the traditional conflict coefficient K can not efficiently measure

the disagreement between two bodies of evidence[35]. The conflict model

proposed by Liu in [35] indicates that the pignistic betting distance and

coefficient K are united to represent the degree of conflict.

Let two BPAs m1 and m2 are on the same frame of discernment Ω, the

conflict model proposed by Liu is shown as follow.

cf(m1, m2) = 〈K, difBetP 〉 (13)

Where K is the classic conflict coefficient of Dempster combination rule, and

the difBetP is the pignistic betting distance in Eq.(11). When both K > ε
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and difBetP > ε, m1 and m2 are regard as conflict, where ε ∈ [0, 1] is the

threshold of conflict tolerance. Because there does not exist an ”absolute

meaningful threshold” of conflict tolerance satisfying all pairs of BPAs[51],

the value of ε is subjective and not fixed in different applications. Generally

speaking, the value of ε more closer to 1, the greater the conflict tolerance

is.

3. The Generalized Theory

Dempster-Shafer theory has many merits in information fusion, which is

a big improvement, it is relative to the Bayesian theory. However, there are

still some drawbacks in Dempster-Shafer theory, including but not only as

follows. Computational complexity is heavy with the increasing elements in

the set, which limits the application in the area of high real-time. In ad-

dition, while the evidence are high conflicting, the counter-intuitive results

will present. In the frame of discernment, the follow two may be the main

reasons that lead to highly conflicting. One is the incomplete of the frame of

discernment. For example, for military applications, if there are three targets

a, b and c on the frame of discernment. Then the sensors can only recognize

the different unions of this three targets. However, if there existing a new

unknown target d, the sensors can not distinguish whether it is one of the

previous three targets. In this situation, the recognition results will be mul-

tifarious, after combination, the incorrect results will present. Another is the

reliability of sensors itself. Work condition, disturbance, etc. will influence

the judgment result. There are some alternatives to overcome these short-
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comings. Preprocessing the information or approximation algorithm[52, 53]

are used to solve the computational complexity. Researchers have paid great

effort to solve the high conflicting problem in recent years. The two typi-

cal solution is transferable belief model (TBM)[45] and Dezert-Smarandache

theory (DSmT)[54]. The characteristic of TBM model is that the interesting

concepts of close world and open world. However, to our best knowledge, the

application of TBM is still under the close world. DSmT provides a new idea

of solution the high conflicting problem, but the computation complexity is

heavier, and when under the condition of low conflicting, the result inferior

to Dempster-Shafer theory. In summary, the solution for high conflicting still

needs a more reasonable theory model. The new model should be capable of

the incomplete of the fame of discernment, and the computation complex-

ity should not larger than traditional Dempster-Shafer theory. Taking these

into consideration, a new evidence theory, called generalized evidence theory

(GET) is proposed in this paper.

It should be point out that traditional Dempster-Shafer evidence is based

on the frame of discernment, and constraint the BPA m(φ) must equal to

0. That is the classic Dempster-Shafer theory can only function in a close

world. In this paper, close world means that the elements in the frame of

discernment is exhaustive and complete. There are many cases in real-life.

For example, the points of a dice only contain the six possibility: 1, 2, 3, 4,

5 and 6. However, in some application, due to lack of complete knowledge,

it is possible to obtain a partial frame of discernment, but not a complete

frame of discernment. As mentioned above, we know that enemy’s targets
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are ”a”, ”b” and ”c”, whereas there may exist a secret undeclared target

”d”. And none of the sensors can recognize the target ”d”, efficiently. In this

situation, the discernment {a, b, c} is incomplete. This is the situation of

open world. Along with the enriched knowledge, open world is absolute and

close world is relative. Another example of SARS, before its appearances,

the frame of discernment of pneumonia is sure not complete. Obviously,

the traditional Dempster-Shafer evidence can only represent and function

uncertain information in the close world, which limits the application of

Dempster-Shafer evidence.

3.1. Basic Concepts of GET

Definition 1. Supposed U is a frame of discernment of open world, the

power set, denoted 2UG, is composed with the 2U propositions, ∀A ⊂ U . A

mass function is a mapping, m : 2UG → [0, 1], which satisfies the following

conditions:
∑

A∈2U
G

mG(A) = 1 (14)

Then, m is the generalized basic probability assignment (GBPA) of the frame

of discernment U . The different between GBPA and traditional BPA is the

Eq.(5). Notice that the m(φ) = 0 is not necessary in GBPA. In other words,

the empty set can also be a focal element. Ifm(φ) = 0, the GBPA degenerates

as a traditional BPA.

The φ is used to model open world in GET. It should be emphasized that

the φ in GET is not a common empty set, which means that a focal element
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or the unions of focal elements that out of the given frame of discernment.

The m : 2UG in Definition 1 indicates that the φ is the focal elements outside

of the frame of discernment, not the empty set in traditional BPA. Likewise,

mG in Eq.(14) means GBPA assign some probability to the propositions,

beyond the frame of discernment. For simplicity, the following of this paper

without special explanation, BPA on behalf of GBPA, and the mass function

mG simplifies as m.

Similar to Dempster-Shafer theory, the generalized belief function (GBF)

and generalized plausible function (GPL) in GET are defined as follows.

Definition 2. Suppose a GBPA, the generalized belief function (GBF) is

that GBel: 2U → [0, 1], satisfied these conditions:

GBel(A) =
∑

B⊆A

m(B) (15)

GBel(φ) = m(φ) (16)

Definition 3. Suppose a GBPA, the generalized belief function (GPF) is

that GPl: 2U → [0, 1], satisfied these conditions:

GPl(A) =
∑

B∩A 6=φ

m(B) (17)

GPl(φ) = m(φ) (18)

Note that in Definition 2 and Definition 3, the values of GBel(φ) and

GPl(φ) equal to m(φ), this is logical. Because φ is a proposition, beyond the

fame of discernment, can not be supported by these propositions within the

frame of discernment, and also unknown whether agreed with these propo-

sitions beyond the frame of discernment. GBF and GPF can be regarded
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as generalized lower bound and upper bound in which subset A has been

supported, respectively. It is obviously that

GBel(A) ≤ GPl(A) (19)

Example 1. Suppose there is a frame of discernment of {a, b, c}, the GBPA

is given as follows.

m{a} = 0.6;m{c} = 0.2;m{b, c} = 0.2

In this example, the GBPA assign just to these nonempty sets, that is

m(φ)=0. In this case, GBPA is the same to BPA.

GBel{a} = 0.6;GBel{b} = 0;GBel{c} = 0.2;GBel{b, c} = 0.2

GPl{a} = 0.6;Gpl{b} = 0.2;GPl{c} = 0.4;GPl{b, c} = 0.4

These results show that while m(φ)=0, the values of GBF and GPL in GBPA

is the same to Bel and Pl in traditional BPA.

Example 2. Suppose there is a frame of discernment of {a, b, c}, the GBPA

is given as follows.

m{a} = 0.6;m{b} = 0.1;m{b, c} = 0.2;m{φ} = 0.1

In this example, the GBPA assign some value to the focal element φ. The

GBF and GPL are as follows.

GBel{a} = 0.6;GBel{b} = 0.1;GBel{c} = 0;GBel{b, c} = 0.2;GBel{φ} = 0.1

GPl{a} = 0.6;GPl{b} = 0.3;GPl{c} = 0.2;GPl{b, c} = 0.3;GPl{φ} = 0.1
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3.2. Generalized combination rule (GCR)

The classic Dempster’s combination rule can combine two BPAs m1 and

m2 yield to a new BPA m. Based on the classic Dempster’s combination

rule, the generalized combination rule (GCR) is defined as follws.

Definition 4. In generalized evidence theory, φ1 ∩ φ2 = φ means that the

intersection between empty set and empty set is still an empty set. Given

two GBPA m1 and m2, the generalized combination rule (GCR) are defined

as follows.

m(A) =

(1−m(φ))
∑

B∩C=A

m1(B)m2(C)

1−K
(20)

K =
∑

B∩C=φ

m1(B)m2(C) (21)

m(φ) = m1(φ)m2(φ) (22)

m(φ) = 1 If and only if K = 1. (23)

The Characteristics of GCR, composed of Eqs.(20) -(23), are summarized

as follows.

(1) When m(φ) = 0, the GCR degenerate to Dempster’s combination rule.

(2) The combination result of two empty sets can be obtained by multiplied

their GBPAs values.

(3) The factor 1/(1−K) in Eq.(20) is a normalized process that reassigned

the GBPA values after deducting the m(φ) obtained from Eq.(22). In other

words, the process is to multiply these GBPA, which intersections are not

empty, and accumulate, at last amplify 1/(1−K) times.
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(4) Because of φ1∩φ2 = φ, the GBPA of conflicting coefficient K is obtained

after superposing Eq.(9) and Eq.(22).

There partial properties of generalized evidence theory (GET) are shown

as follows.

Property 1. When m(φ) = 0, GBPA degenerates to traditional BPA. More

generally, if GBPA just assigns in the single elements, GBPA degenerates to

the probability of probability theory.

Property 2. For the GCR of GET, if m(φ) = 0, then GCR degenerates

to classic Dempster’s combination rule. More generally, when GBPA just

assigns in the single elements, the results of GCR is the same to Bayesian

probability.

Property 3. The same as Dempster’s combination rule, GCR satisfies com-

mutativity and associativity. This is that the combination results by GCR

is unrelated to the orders of combination.

3.3. Generalized evidence distance

The generalize evidence distance in GET is defined as follows.

Definition 5. Let m1 and m2 are two GBPAs on the frame discernment Θ,

the generalized evidence distance between GBPA m1 and m2 is defined as

dGBPA(m1, m2) =

√

1

2
(−→m1 −−→m2)

TD (−→m1 −−→m2) (24)

where D is a 2N × 2N matrix, the elements of D is that

D(A,B) =
|A ∩ B|

|A ∪ B|
;A,B ∈ P (θ) (25)
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The detail calculation process is that

dGBPA(m1, m2) =

√

1

2

(

‖−→m1‖
2 + ‖−→m2‖

2 − 2 〈−→m1,−→m2〉
)

and ‖−→m‖2 = 〈−→m,−→m〉, 〈−→m,−→m〉 is the inner product of the two vectors:

〈−→m1,
−→m2〉 =

2N
∑

i=1

2N
∑

j=1

m1(Ai)m2(Aj)
|Ai ∩Bi|

|Ai ∪Bi|
;Ai, Bj ∈ P (θ)

3.4. Application of GCR

In this subsection, numerical examples are used to show the applications

of GCR.

Example 3. Assume a frame of discernment Ω = (a, b, c), two GBPAs are

given as:

m1(a) = 0.5;m1(a, b) = 0.5

m2(a) = 0.5;m2(b) = 0.3;m2(θ) = 0.2

The process of calculation is that:

m(φ) = m1(φ)m2(φ) = 0× 0 = 0

and

K = m1(a)m2(b) = 0.5× 0.3 = 0.15

then

m(a) =
1−m(φ)

1−K
× (m1(a)(m2(a) +m2(θ)) +m2(a)m1(a, b))

=
(1− 0)× (0.5× (0.5 + 0.2) + 0.5× 0.5)

1− 0.15
= 0.706

m(b) =
1−m(φ)

1−K
×m1(a, b)m2(b) =

(1− 0)× 0.5× 0.3

1− 0.15
= 0.176

m(a, b) =
1−m(φ)

1−K
×m1(a, b)m2(θ) =

(1− 0)× 0.5× 0.2

1− 0.15
= 0.118

m(θ) = 0
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In this example, m(φ) = 0, the GCR is the same to the classic Dempster’s

combination rule.

Example 4. Suppose the frame of discernment Ω = (a, b, c), two GBPAs

are given as:

m1(a) = 0.2;m1(b) = 0.2;m1(φ) = 0.6

m2(a) = 0.2;m2(b, c) = 0.1;m2(φ) = 0.7

The conflicting coefficient K in GET is calculated as:

K = m1(a)(m2(b, c) +m2(φ)) +m1(b)(m2(a) +m2(φ)) +m1(φ)(m2(a) +m2(b, c) +m2(φ))

= 0.2× (0.1 + 0.7) + 0.2× (0.2 + 0.7) + 0.6× (0.2 + 0.1 + 0.7)

= 0.94

and

m(φ) = m1(φ)m2(φ) = 0.6× 0.7 = 0.42

then

m(a) = 1−m(φ)
1−K

×m1(a)m2(a) =
(1−0.42)×0.2×0.2

1−0.94
= 0.387

m(b) = 1−m(φ)
1−K

×m1(b)m2(b, c) =
(1−0.42)×0.2×0.1

1−0.94
= 0.193

m(c) = 0

Thus, the final results are as follows

m(a) = 0.347;m(b) = 0.193;m(c) = 0;m(φ) = 0.42

It is sure that, traditional Dempster’s combination rule is not suitable

for this situation, because of m(φ) 6= 0. It is clearly that, after ascertained

the value of m(φ), the rest probability is redistributed to other nonempty

sets, in GCR. In this example, the probability of m(c) is zero, because the
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single set {c} is not supported by any one of the two BPAs, in the frame of

discernment. That is to say, the probability of single sets {a} and {b} are

raised, owing to both of them are more or less supported by the two GBPAs.

Example 5. Suppose the frame of discernment Ω = (a, b, c), two GBPAs

are given as follows:

m1(a) = 0.2;m1(φ) = 0.8

m2(b) = 0.5;m2(φ) = 0.5

The conflicting coefficient K in GET is calculated as:

K = m1(a)(m2(b) +m2(φ)) +m1(φ)(m2(b) +m2(φ))

= 0.2× (0.5 + 0.5) + 0.8× (0.5 + 0.5)

= 1

thus,

m(φ) = 1

From the view of GCR, we can first obtained the m(φ) = m1(φ)×m2(φ)

= 0.56. However, since the rest two propositions are not supported by each

other, thus the rest probability can not assign to any one of them, and

reassigned to m(φ). Therefore, the m(φ) gets the twice assigned values, and

m(φ) = 0.56 + 0.44 = 1. We believe that this is reasonable. While the two

GBPAs are highly conflicting and not supported by each others, the frame

of discernment should be considered as an incomplete.

Example 6. Suppose the frame of discernment Ω = (a, b, c), two GBPAs
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are given as follows:

m1(a) = 0.65;m1(b) = 0.35

m2(φ) = 0.1

The result is that

m(φ) = 1

This example is similar to Example 5. Colloquially, m(φ) can be viewed as

a number 0, and any numbers multiply 0 is still 0. If a GBPA assigns the

total probability to the set φ, the frame of discernment is incomplete.

4. Application and Discussion

4.1. The m(φ) in Dempster-Shafer evidence and GET

In classic Dempster-Shafer theory, m(φ) = 0 is indispensable. In view

of the Dempster-Shafer theory, φ is a proposition without any supported

by other propositions. That is non physical meaning of φ in Dempster-

Shafer. The first observes φ and assigns the value to m(φ) is the TBM

by Smets[45]. In TBM, if the conflict between two bodies of evidence is

highly, the conflicting BPAs are assigned to m(φ). Basic belief assignment

(BBA) in TBM is used to distinguish the traditional BPA in Dempster-Shafer

theory. However, the BBA and BPA are both assigned on these nonempty

sets, essentially. In other words, the restriction condition of m(φ) = 0 is

still necessary. Such an approach is questionable in logic. Now that the

problem is in open world, TBM why not assign the value to m(φ) at the

step of generate BBAs? In addition, the approach of dealing with conflict
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is humble. Yager proposed a method that when the evidences are highly

conflicting, the conflicting values are assigned to the whole set Ω[44]. Yager’s

method is contentious in the following research. In GET, while the GBPAs

are generated, m(φ) 6= 0 is permissible. And this is easy to understand, that

is there may exist some hypothesises or propositions beyond the fixed frame

of discernment. The value of m(φ) indicates the open world degree of frame

of discernment. Classic Dempster-Shafer theory is an extension of Bayes

probability, and Dempster-Shafer theory can express and deal with uncertain

information than Bayes probability, efficiently. And GET proposed in this

paper, is an extension of classic Dempster-Shafer theory, and can express

and deal with more uncertain information in the open world than Dempster-

Shafer theroy in the close world.

4.2. Modified Liu’s conflict model

As mentioned in Subsection 2.4, Liu analysed the shortage of classic con-

flict coefficient K, and proposed a conflict model. The main idea is that

construct a two tuples by pignistic betting distance difBetP in TBM[50]

and the classic conflict coefficient K in Dempster-Shafer theory[1, 2], and

the union value to represent the conflict degree. That is when the value of

difBetP is large, the two evidence can not be regarded as conflicting. While

the value of K is large, the two evidence can not be viewed as conflicting,

also. Whether the evidences is conflict just ascertained by union difBetP

with K. The conflict model proposed is very interesting, since it provides a

new thought of how to express the conflict between two bodies of evidence.
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There are some numerical examples by Liu’s conflict model.

Example 7. Let a frame of discernment of θ = {ω1, ω2, ω3, ω4, ω5}, and the

two sensors m1 and m2 report that:

m1(ω1) = 0.8, m1({ω2, ω3, ω4, ω5}) = 0.2

m2(θ) = 1

The classic conflict coefficient is that K = 0. The pignistic betting distance

between this two evidence is that difBetP = 0.6. The two couples values of

Liu’s conflict model is that cf12(K, difBetP ) = 〈0, 0.6〉, and can be regard

as non conflict. This result is the same to Dempster-Shafer theory. However,

it is clearly that the information of m1 is richer than m2. And the difference

between the two evidence is given by difBetP = 0.6. That is the weights of

two evidence is different.

Example 8. Let a frame of discernment of θ = {a, b, c}, there are two BPAs

as m1 and m2,

m1(a) =
1
3
;m1(b) =

1
3
;m1(c) =

1
3

m2(a, b, c) = 1

Since K = 0 and difBetP = 0, cf12(K, difBetP ) = 〈0, 0〉, and the two

BPAs are regarded as not conflict. This is irrational obvious, because the

two BPAs provide different information, and the m1 is more definite, and m2

is total ignorance.

From the above two examples, we know that ”the same probability of

occurrence” is the same to ”the total ignorance of system” in Liu’s conflict
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model. However, the real situation is not so simple. When we known nothing

about the system, that is m(Ω) = 1. It indicates that m(a) = m(b) = 0.5,

m(a) = 0.7;m(b) = 0.3, m(a) = 1;m(b) = 0 and so forth are possible, and

the probability of uncertainty of system is the biggest. Thus pignistic betting

distance can not distinguish the same probability and total ignorance, and

not be a well represent model of conflict. Based on Jousselme’s evidence

distance[49], we propose a modified evidence model of conflict.

Definition 6. Suppose there are two different BPAs on the same frame of

discernment Θ, the modified evidence conflict model is defined as follws

cf(m1, m2) = 〈K, dis〉 (26)

where K is the classic conflict coefficient in Dempster-Shafer evidence by

Eq.(9), and dis is the evidence distance by Eq.(12)

4.3. Conflict model of GET

In the previous subsection, we modify Liu’s conflict model by Eq.(26),

and it is more reasonable. However, the conflict model is still in the close

world, and can not be applied to the open world, which frame of discernment

may be incomplete. In view of this, based on GET, the new conflict model

of GET is proposed.

Definition 7. Assume there are two GBPAs m1 and m2 on the frame of

discernment Θ, then the generalized conflict model is given as

cfG(m1, m2) = 〈K, dis〉 (27)

21



Where K is the generalized conflict coefficient by Eq.(21), and dis is the

generalized evidence distance by Eq.(24).

Compared with these existing methods, this new proposed generalized

conflict model can handle with the information on the incomplete frame

of discernment. When the frame of discernment is complete, the general-

ized conflict coefficient K degenerates to classical coefficient K in Dempster-

Shafer theoryEq.(9), and the Eq.(27) degenerates to Eq.(26)

The below examples are used to show the application of generalized con-

flict coefficient and generalized conflict model.

Example 9. There are to GBPAs m1 and m2 on the frame of discernment.

The first group GBPAs is varied, begin with m1(a) = 1 and m1(φ) = 0, and

m1(a) decreases progressively 0.1 each step ,m(φ)0 progressively increases 0.1

each step . The second group GBPAs is also varied, begin with m2(a) = 1

and m2(φ) = 0, and m2(a) decreases progressively 0.1 each step , m1(φ)0

progressively increases 0.1 each step . Then the generalized conflict coefficient

K between the two GBPAs is shown in Fig.1.

Fig.1 indicates that, when m1(a) = 1; m1(φ) = 0 and m2(a) = 1;

m2(φ) = 0, the generalized conflict coefficient is the smallest, and the propo-

sition {a} is absolutely supported by the system and the frame of discernment

is complete. While m2(a) decreases progressively 0.1 each step, m1(φ)0 pro-

gressively increases 0.1 each step, the generalized conflict coefficient is also

gradually increased, and this situation indicates the incomplete degree of

the frame of discernment is bigger and bigger. According to GCR, when
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Figure 1: Generalized conflict coefficient between two GBPAs.

m(φ) = 1 appeared in anyone of these GBPAs, the generalized conflict coef-

ficient achieves the maximum value 1.

Example 10. Suppose there are two GBPAs on the frame of discernment.

The first group GBPAs is varied, begin with m1(a) = 0 and m1(φ) = 1, and

m1(a) progressively increases 0.1 each step, m(φ)0 decreases progressively 0.1

each step. The second group GBPAs is also varied, begin with m2(a) = 0 and

m2(φ) = 1, and m2(a) progressively increases 0.1 each step , m2(φ) decreases

progressively 0.1 each step. Then the generalized evidence distance between

the two GBPAs is shown in Fig.2. From Fig.2, we can see that the generalized

evidence distance on axis keeps 0, because the two GBPs are the same.

Example 11. Let two GBPAs on the same discernment, and the two GBPAs
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Figure 2: Generalized evidence distance between two GBPAs.

are given as

mx1(b) = 0.1;mx1(φ) = 0.9

mx2(b) = 0.1;mx2(φ) = 0.9

The value of conflict model of GET can be obtained as follows

cfG(m1, m2) = 〈0.81, 0〉

and can be seen in Fig.3 Fig.3 indicates that there is just one class b on the

frame of discernment. The two dotted triangles represent the classes a and

c, respectively, and both of them do not appeared on this frame of discern-

ment. In fact, the sensors x1 and x2 belong to classes a and c, respectively.

If generalized evidence distance is considered merely, the error result will

be obtained. This example points out that generalized conflict coefficient

to measure the conflict is better than generalized evidence distance on the

incomplete frame of discernment.
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Figure 3: Two samples with different classes.

The two below examples are applied to the complete frame of discernment

with m(φ) = 0.

Example 12. Suppose a frame of discernment θ = {a, b}, the first fixed

BPA is that: m1(a, b) = 1. The second varied BPA begin with m2(a) =

0;m2(b) = 1. And m2(a) progressively increases 0.1 each step , m2(b) de-

creases progressively 0.1 each step. Then the evidence distance and pignistic

betting distance between m1 and m2 are shown in Fig.4. From Fig.4, When

m2(a) = 0.5;m2(b) = 0.5, the pignistic betting distance between two BPAs

is 0, which indicates no conflict between BPAs. However, at this time step,

the value of evidence distance is 0.5, which indicates that there exists con-

flict between BPAs. It is obviously that, when the frame of discernment is

complete, the measure of conflict model should be evidence distance but not

the pignistic betting distance.

Example 13. Let a frame of discernment of Ω = {1, 2, 3 · · ·20}, and the
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Figure 4: Comparisons with evidence distance and pignistic betting distance.

two BPAs are defined as follows

m1({7}) = 0.6;m1(A) = 0.4

m2({1, 2, 3}) = 1

where A is a varied subset of Ω, which increments one more element at a

time, and begins with A={1}, ending with Case 20 when A = {1, 2, 3 · · ·20}.

The evidence distance and classic conflict coefficient K between two BPAs

are given in Table 1 and Fig.5.

From Table 1 and Fig.5, we can see that, no matter how the subset

A changed, the classic conflict coefficient K keeps the value 0.6. This is

irrational. The generalized evidence distance is changed along with subset

A, and it can measure the conflict efficiently. That is the the generalized

evidence distance to measure the conflict is better than generalized conflict

coefficient in the case of complete frame of discernment.
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Table 1: Comparison of new proposed conflict coefficient with classic conflict coefficient.

Cases dBPA K

A={1} 0.7916 0.6

A={1,2} 0.7024 0.6

A={1,2,3} 0.6 0.6

A={1,...,4} 0.6782 0.6

A={1,...,5} 0.7211 0.6

A={1,...,6} 0.7483 0.6

A={1,...,7} 0.7982 0.6

A={1,...,8} 0.8 0.6

A={1,...,9} 0.8083 0.6

A={1,...,10} 0.8149 0.6

A={1,...,11} 0.8202 0.6

A={1,...,12} 0.8246 0.6

A={1,...,13} 0.8283 0.6

A={1,...,14} 0.8315 0.6

A={1,...,15} 0.8343 0.6

A={1,...,16} 0.8367 0.6

A={1,...,17} 0.8388 0.6

A={1,...,18} 0.8406 0.6

A={1,...,19} 0.8423 0.6

A={1,...,20} 0.8438 0.6
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Figure 5: Comparison of new proposed conflict coefficient with classic conflict coefficient.

These numerical examples indicate the applications of the new conflict

model. When the frame of discernment is incomplete and m(φ) 6= 0, the two-

tuples of conflict model to measure the conflict should depend on generalized

conflict coefficient mainly. On the other hand, when the frame of discernment

is complete and m(φ) = 0, the two-tuples of conflict model to measure the

conflict should depend on generalized evidence distance mainly.

5. Conclusions

In this paper, a novel theory called generalized evidence theory is system-

atically proposed. Some key points can be concluded as follows.

First, evidence theory is an efficient tool to handle the information fusion

under uncertain environment.Under the condition that we definitely know

that we are in close world, the Dempster combination rule is enough to

combine the evidence from different sources. If the evidence conflicts with

each other, with more and more evidence are collected, the conflict evidence
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combination can be well addressed by taking the reliability of each evidence

into consideration.

Second, generalized evidence theory (GET)is an extension of Dempster-

Shafer theory, since the strict restriction condition ofm(φ) = 0 is abandoned.

In GET, φ is regards as a element, which means unknown but not just empty,

with all of the property of other elements. That is GET can deal with

more uncertain information fusion in the open world than Dempster-Shafer

theory. GET inherits all the merits of Dempster-Shafer theory, and expands

the application of Dempster-Shafer theory, from close world to open world.

When the frame of discernment is complete, and m(φ) = 0, GET degenerates

to Dempster-Shafer theory. And the generalized combination rule (GCR) is

provided in GET, the distinction between GCR and Dempster combination

rule is m(φ).

Third, the generalized conflict model is given based on GET. Compared

with these existing conflict model, the new conflict model is generalized.

Under different conditions, how to apply the generalized conflict model is

provided. That is when the frame of discernment is incomplete, the measure

of generalized conflict should take advantage of generalized conflict coeffi-

cient in main. When the frame of discernment is complete, the measure of

generalized conflict should take advantage of evidence distance in main.

It should be pointed out that, besides the conflict management in open

world, the exclusive condition in Dempster Shafer evidence theory should

also be paid great attention. One of the ongoing works is a new theory called

D numbers theory which focuses on the mutual exclusion in evidence theory.
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In classical evidence theory, it is assumed that each hypothesis is exclusive

to each other. However, it is not reasonable in real world. For example,

given two linguistic values Good and Very Good, the mG, V G = 0.8 is not

accepted under the framework of Dempster Shafer evidence theory since that

the two linguistic values are not exclusive with each other. To address this

limitation, a novel theory called D numbers theory is proposed [55]. Both the

D numbers theory and the proposed GET in this paper are generalization of

the evidence theory, providing a more flexible and reasonable way to handle

the uncertainty in our real world [56, 57, 58].
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