A smarandache completely prime ideal with respect to an element of near ring

Kareem Abass Layith AL-Ghurabi

Department of Mathematics, College of Education for Pure Sciences, University of Babylon
E-mail: kareemalghurabi@yahoo.com

Abstract

In this paper we introduce the notion of a smarandache completely prime ideal with respect to an element belated to a near field of a near ring N (b-s-c.p.i) of N. We study some properties of this new concept and link it with some there types of ideals of a near ring.

Keywords: Smarandache Completely Prime, Near Ring.

1. Introduction

In 1905, L.E. Drckson began the study of a near ring and later in 1930; Wieland has investigated it [1]. In 1977, G.Pilz, introduced the notion of a prime ideal of near ring [1]. In 1988, N.G. Groenewald introduced of a completely prime ideal of a near ring [5]. In 2002, W.B. Vasanth Kandasamy study samaradache near ring, (samaradache ideal, of a near ring [7]. In 2012 H.H. Abbass and M.A.Mohommed introduced the notion of a completely prime ideal with respect to an element of a near ring [3].

In this work, we introduce a Samaradache completely prime ideal with respect to an element related to a near field of near ring as we mentioned in the abstract.

2. Preliminaries

In this section, we review some basic concepts about a near ring, and some types of fields of a near rind that We need in our work.

Definition 2.1 [1]: A left near ring is a set N together with two binary operations “+” and “.” such that
1. (N,+) is a group (not necessarily abelian),
2. (N,.) is a semi group?
3. \(n_1 \cdot (n_2 + n_3) = n_1 \cdot n_2 + n_1 \cdot n_3 \), for all \(n_1, n_2, n_3 \in N \).

Definition 2.2 [2]: The left near ring is called a zero symmetric if \(0 \cdot x = 0 \), for all \(x \in N \).

Definition 2.3[7]: Left \((N,+,\cdot) \) be a near-ring. A normal subgroup \(I \) of \((N,+) \) is called a left ideal of \(N \) if
1. \(N \cdot I \subseteq I \)
2. for all \(n, n_i \in N \) and for all \(i \in I \),
\(n + i.n - n_i.n \in I \)

Remark 2.4: If \(N \) is a left near ring, then \(x.0 = 0 \), for all \(x \in N \) (from the left distributire law). Also, we will refer that all near rings and ideals in this work are left.
Definition 2.5 [6]: Let \(I \) be an ideal of a near ring \(N \), then \(I \) is called a completely prime ideal of \(N \) if for all \(x, y \in N \), \(x, y \in I \) implies \(x \in I \) or \(y \in I \), denoted by c.p.I of \(N \).

The a b.c.s.p.I near ring \(N \) in example (1.3) is not.

Definition 2.6 [3]: Let \(N \) be a near ring, \(I \) be an ideal of \(N \) and let \(b \in N \), then \(I \) is called a completely ideal with respect to the element \(b \) denoted by \((b - c. p.I)\) of \(N \), if for all \(x, y \in N \), \(b.(x, y) \in I \) implies \(x \in I \) or \(y \in I \).

Definition 2.7 [7]: A near ring \(N \) is called an integral domain if \(N \) has non-zero divisors.

Definition 2.8 [7]: Let \(N \) be a near ring, \(M \) be an ideal of \(N \) and let \(f: N \rightarrow M \) then \(I \) is called a completely ideal with respect to the element \(b \) denoted by \((b - M.I) \) of \(N \), if for all \(x, y \in N \), \(f(x, y) \in I \) implies \(x \in I \) or \(y \in I \).

Definition 2.9 [7]: An empty set \(N \) is said to be a near field if \(N \) is defined by two binary operations ‘+’ and ‘.’ such that

1. \((N, +)\) is a group
2. \((N \setminus \{0\}, .)\) is a group
3. \(a.(b + c) = ab + ac\) for all \(a, b, c \in N \).

Definition 2.10 [7]: The near ring \((N, +, .)\) is said to be a smarandache near ring denoted by \((s\text{-}near\ ring)\) if it has a proper subset \(M \) such that \((M, +, .)\) is a near field.

Definition 2.11 [7]: Let \(N \) be \(s\text{-}near\ ring\). A normal subgroup \(M \) of \(N \) is called a smarandache ideal \((s\text{-}ideal)\) if,

i. For all \(x, y \in M \) and for all \(i \in \mathbb{N}x(y + i) - xy \in 1 \),
ii. \(M \subseteq 1 \).

Remark 2.12 [7]: Let \([I_i]_{i \in I}\) be a chain of \(s\text{-}ideal\)s related to a near field \(M \) of a near ring \(N \), then \([I_i]_{i \in I}\) is a \(s\text{-}ideal\)s related to near field \(M \).

Remark 2.13 [6]: Let \((N_1, +, .)\) and \((N_2, +, .)\) be two \(s\text{-}near\ ring\)s and let \(f: N_1 \rightarrow N_2 \) be an epimorphism and \(N_1 \) has \(M_1 \) as near field. Then \(f(M_1) = f(M_2) \) is a near field of \(N_2 \).

Proposition 2.14 [4]: Let \((N_1, +, .)\) and \((N_2, +, .)\) be two \(s\text{-}near\ ring\)s and \(f: N_1 \rightarrow N_2 \) be an epimorphism and let \(I \) be a \(S\text{-}ideal\) related to a near field \(M_1 \) of a near ring \(N_1 \), and then \(f(I) \) is \(s\text{-}ideal\)s related to a near field \(f(M_1) \).

Proposition 2.15 [4]: Let \((N_1, +, .)\) be a \(s\text{-}near\ ring\) has a near field \(M_1 \), \(N_2 \) be a \(s\text{-}near\ ring\) and \(f: N_1 \rightarrow N_2 \) be an epimorphism and let \(J \) be \(s\text{-}ideal\)s related to a near field \(M_2 \) of \(N_2 \), where \(f(M_1) = M_2 \) of \(N_2 \), then \(f^{-1}(J) \) is \(s\text{-}ideal\)s related to a near field \(M_1 \) of \(N_1 \).

Definition 2.16 [7]: Let \(N \) be an \(s\text{-}near\ ring\). The \(s\text{-}ideal\) \(I \) related to a near field \(M \) is called completely prime related to a near field \(M \) of \(N \) if, for all \(x, y \in M \), \(x, y \in I \) implies \(x \in I \) or \(y \in I \) denoted by \((s\text{-}c.p.I)\) of \(N \).

3. The main results

In this section, we define the notion of smarandache completely ideal with respect to an element \(b \) \((b - s\text{-}c.p.I)\) and study some properties of this notion, we will discuss the image and pre image of \(b - s\text{-}c.p.I \) under near rings epimorphism and explain the relationships between it and \(b - s\text{-}c.p.I \) of a near ring.

Definition 3.1: A \(s\text{-}ideal\) related to a near field \(M \) of a \(s\text{-}near\ ring \(N \) is called a smarandache completely ideal with respect to an element \(b \) of \(N \) \((b - s\text{-}c.p.I)\) if \(b \in (x, y) \in I \) implies \(x \in I \) or \(y \in I \) for all \(x, y \in M \).

Example 3.2: The left \(s\text{-}near\ ring\) with addition and multiplication defined by the following tables.

<table>
<thead>
<tr>
<th></th>
<th>+</th>
<th>0</th>
<th>a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td></td>
</tr>
<tr>
<td>a</td>
<td>a</td>
<td>0</td>
<td>c</td>
<td>b</td>
<td></td>
</tr>
<tr>
<td>b</td>
<td>b</td>
<td>c</td>
<td>0</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>c</td>
<td>c</td>
<td>b</td>
<td>a</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>
The s-ideal $I = [0,a]$ related to the near field $M = [0,c]$ is b – s.c.p.I of N since 0. (c.c) = 0 $\in I, but c \not\in I$.

Proposition 3.3: Let I be a s-ideal related to a near field M of a s-near ring $N,$ then I is a s.c.p.I of N if and only if I is 1 – s.c.p.I, where 1 is the multiplicative identity element of M.

Proof: Suppose I is a s.c.p.I ideal of N and let $x, y \in M$ such that $1. (x.y) \in I$.

Then we have $1. (x.y) = x.y \in I$

$\Rightarrow x \in I$ or $y \in I$ [Since I is a s.c.p.I of N].

$\Rightarrow I$ is 1 – s.c.p.I of N.

Conversely,

Let $x, y \in M$ such that $x, y \in I$

$\Rightarrow x.y = 1. (x.y) \in I \Rightarrow x \in I$ or $y \in I$ [Since I is 1. (x.y) of N].

Remark 3.4: In general an S.C.P.I related to a near field M of an s-near ring N may not be b-S.C.P.I related to M of N as in the following example.

Example 3.5: Consider the s-near ring of integers mod 6 (\mathbb{Z}_6, t_6, i_6); the s-ideal $I = \{0,2,4\}$ is S.C.P.I related to the near field $M = \{0,3\}$, but it is not 2-S.C.P.I of N, since 3 $\in M$ and $2.(3.3)=0 \in I$ but 3 $\not\in T$.

Proposition 3.6: Let I be a b-C.P.I related to a near field M of a s-near ring N. then I is a b-S.C.P.I of N.

Proof: Let $x, y \in M$ such that $b. (x.y) \in I$

$\Rightarrow b. (x.y) \in I$ [Since I is b-C.P.I of N]

$\Rightarrow b$ is a b-S.C.P.I of N.

Remark (3.7): The converse of proposition (3.6) may not be true as in the following example.

Example 3.8: Consider the s-near ring of integers mod 12 ($\mathbb{Z}_{12}, t_{12}, i_{12}$); s-ideal $I = \{0,2,4,6,8,10\}$ is S.C.P.I related to the near field $M = \{0,4,8\}$, but it is not 2-S.C.P.I of N, since $3,5 \not\in N$ and $2.(3.5)=6 \in I$, but 3 and 5 $\not\in I$.

Proposition 3.9: Let N be a s-near ring and let I be a s-ideal related to a near field M of N, then I is a b-S.C.P.I of N if and only if M is a subset of I, for all $b \in I$.

Proof: Suppose I is a b-S.C.P.I, $b \in I$ and $X \in M$.

Now,

$X^2 = x.x \in I, 0 \in I and 0, x^2 = 0, (x.x) =0 \in I$

$x \in I$ [since I is b-S.C.P.I],

$\Rightarrow M$ is a subset of I

Conversely,

Let $b \in I$ and $x, y \in M$ such that $b. (x.y) \in I$

$\Rightarrow x \text{ or } y \in I$ [since $M \subseteq I$]

$\Rightarrow I$ is b-S.C.P.I of N.

Proposition 3.10: Let N be a s-near integral domain. then $I = \{0\}$ is b-S.C.P.I related to a near field M of N, for all $n \in N \setminus \{0\}$.

Proof: Let $b \in N \setminus \{0\}$ and $x, y \in M$, such that $b. (x.y) \in I$

$b. (x.y) =0$

$\Rightarrow x, y =0$ [since $b \neq 0$ and N is a near integral domain]

$x=0$ or $y=0 \Rightarrow x \in I$ or $y \in I$

$\Rightarrow x \in I$ or $y \in I$.

$\Rightarrow I$ is a b-S.C.P.I of N.

<table>
<thead>
<tr>
<th>.</th>
<th>0</th>
<th>a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>a</td>
<td>0</td>
<td>a</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>b</td>
<td>0</td>
<td>a</td>
<td>b</td>
<td>c</td>
</tr>
<tr>
<td>c</td>
<td>0</td>
<td>0</td>
<td>c</td>
<td>c</td>
</tr>
</tbody>
</table>
Proposition 3.11: Let N be a zero symmetric s-near ring and let $I=[0]$. Then I is not o-S.C.P.I of N related to all near fields of N.

Proof: Suppose I is o-S.C.P.I related to a near field M of N.
Since M is a near field $\Rightarrow M \neq [0]$
$\Rightarrow \exists X \in M$, such that $x \neq 0$.
Now, 0x = 0, (x,x) = 0 $\in I$
$\Rightarrow x \in I$ $\Rightarrow x=0$ and this contradiction [since $x \neq 0$]
$\Rightarrow I$ is not o-S.C.P.I related to M of N.

Proposition 2.12: Let N be a s-near ring and let $[li]_i\in I$ be a chain of b-S.C.P.I related to a near field M of N, for all $i \in I$. Then $V_i \in I$ is a b-S.C.P.I related to M of N.

Proof: Since $[li]_i\in I$ is a chain a b-S.C.P.I related to M of N.
$\Rightarrow li$ is a s-ideal of N for all $i \in I$.
$\Rightarrow V_i \in I$ is a s-deal of I [By remark (2.12)]
Now, Let $x, y \in M$, such that $b.(x,y) \in V_i \in I_i$
\Rightarrow There exists b-S.C.P.I related M $I_k \in [li]_i \in I$ of N, such that $b.(x,y) \in I_k$
$\Rightarrow x \in I_k$ or $y \in I_k$ [since I_k is a b-S.C.P.I of N]
$\Rightarrow x \in V_i \in I_i$ or $y \in V_i \in I_i$ $\Rightarrow V_i \in I_i$ is a b-S.C.P.I of N.

Remark 3.13: In general, if $[li]_i \in I$ is a family of b-S.C.P.I related to a near field M of as near ring N, then $\cap_{i \in I}$ and $V_i \in I_i$ may not be b-S.C.P.I
Related to M of N, as in the following example

Example 3.13: Consider the s-near ring of integer's mod12. (Z12,t12, 12), the s-ideals $I=[0,6]$ and $J=[0,4,8]$ are 3-S.C.P.I related to the near field $M= [0,4,8]$ of Z12, but the s-ideal $I=[0]$ is not 3-S.C.P.I related to M of $Z12$, since 3.(3.8)=0 $\in I$, but and $8 \notin I$. Also, the subset $I \cup J= [0,4,6,8]$ is s-ideal of $Z12$ and this implies $I \cup J$ is not 3-S.C.P.I related to M of $Z12$.

Theorem 3.15: Let $(N1, *, 0)$ and $(N2, t, 0)$ be two s-near rings, $F: N1 \rightarrow N2$ be an epimorphism and let I be a b-S.C.P.I related to near field M of N, then $f(I)$ is $f(b)$-S.C.P.I related to the near field $f(M)$ of $N2$.

Proof: By remark (2.13), we have $f(I)$ is a s-ideal related to a near field $f(M)$
Now Let $f(m1), f(m2) \in f(m)$, such that
$f(b) + (f(m1)) \in f(m2) \in f(I)$
$\Rightarrow f(b(m1)).f(m2) \in f(I)$
$\Rightarrow f(b(m1)).f(m2) \in f(I)$
\Rightarrow either $m1 \in I$ or $m2 \in I$ or $m2$ [since I is b-S.C.P.I related to M of $N1$]
$\Rightarrow f(m1) \in f(I)$ or $f(m2) \in f(I)$
$\Rightarrow f(I)$ is a $f(b)$-S.C.P.I related to $f(M)$ of $N2$.

Theorem 3.16: Let $(N1, +, .)$ be as s-near ring has a near field $M1$, $(N2, t, 0)$ be S-near ring, $f: N1 \rightarrow N2$ be an epimorphism, and let J be a b-S.C.P.I related to the near field $f(M)$ of $N2$, then $f^{-1}(I)$ is a s-ideal related to a near field of $M1$, where $f(b(a))$.

Proof: By proposition (2.15), we have $f^{-1}(J)$ is a s-ideal related to M of $N1$. Now, Let $x, y \in M$, such that a. $(x,y) \in f^{-1}(J)$
$\Rightarrow f(x), f(y) \in f(M)$ and $f(a) + (x,y) \in J$
$\Rightarrow f(x), f(y) \in f(M)$ and $f(a) + (x,y) \in f(J)$
\Rightarrow either $x \in f^{-1}(J)$ or $y \in f^{-1}(J)$ [since J is b-S.C.P.I related to $f(M)$ of $N2$]
$\Rightarrow e \in f^{-1}(J)$ or $y \in f^{-1}(J)$
$\Rightarrow f^{-1}(J)$ is a b-S.C.P.I related to $f(M)$ of $N2$.

Corollary 3.17: Let $(N1, +, 0)$ be a s-near ring has a near field M, $(N2, +, .)$ be a S-near ring, $f: N1 \rightarrow N2$ be an epimorphism, and if $f(0)$ be a b-S.C.P.I related to the near field $f(M)$ of $N2$ The $\ker(f)$ is b-S.C.P.I related to a near field M of $N1$, where
Ker \(f = \{ x \in N1 : f(x) = 0 \} \) and \(b=f(a) \)

Proof: Since \(f^{-1}([0^1]) = \ker(f) \), then where \(\text{Rer}(f) \) is a S.C.P. I related to \(M \) of \(N1 \)
[By theorem (3-16)]

References