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Abstract: It is known that Barut’s equation could predict lepton and hadron mass
with remarkable precision. Recently some authors have extended this equation, resulting
in Barut-Dirac equation. In the present article we argue that it is possible to derive
a new wave equation as alternative to Barut-Dirac’s equation from the known exact
correspondence (isomorphism) between Dirac equation and Maxwell electromagnetic equations
via biquaternionic representation. Furthermore, in the present note we submit the viewpoint
that it would be more conceivable if we interpret the vierbein of this equation in terms of
superfluid velocity, which in turn brings us to the notion of topological electronic liquid. Some
implications of this proposition include quantization of celestial systems. We also argue that it
is possible to find some signatures of Bose-Einstein cosmology, which thus far is not explored
sufficiently in the literature. Further experimental observation to verify or refute this proposition
is recommended.
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1. Introduction

It is known that Barut’s equation could predict lepton and hadron mass with remark-

able precision [1]. A plausible extension of Barut’s equation is by using Barut-Dirac ’s

model via inclusion of electron self-field. Furthermore, a number of authors has extended
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this equation using non-linear field theory [2a][5][5a]. Barut’s equation is as follows [5a]:

[
iγν∂ν − a∂2

µ/m + κ
]
Ψ = 0 (1)

where ∂ν = ∂/∂xν and repeated indices imply a summation [5a]. The remaining param-

eters come from substitution of variables: m = κ/α1 and a/m = −α2/α1 [5a]. In the

meantime Barut-Dirac-Vigier’s equation could be written as:

[
cα.p− E + β(mc2+ ∈ e2/r)

]
Ψ = −[(∈ α~e2)/(4πmc2r2)]iβαΨ (2)

Despite this apparently remarkable result of Barut’s equation, nonetheless there is ques-

tion concerning the physical meaning of his equation, in particular from the viewpoint of

non-linear field theory [2a]. This question seems very interesting, in particular consider-

ing the unsolved question concerning the physical meaning of wavefunction in Quantum

Mechanics [4a]. It is known that some proponents of ‘realism’ interpretation of Quan-

tum Mechanics predict that there should be a complete ‘realism’ description of physical

model of electron, where non-local hidden variables could be included [4][1a]. We consider

that this question remains open for discussion, in particular in the context of plausible

analog between classical electrodynamics and non-local quantum interference effect, via

Aharonov-Casher effect [8].

In the present article we argue that it is possible to derive a new wave quantum

relativistic equation as an alternative to Barut-Dirac-Vigier’s equation. Our description

is based on the known exact correspondence (isomorphism) between Dirac equation and

Maxwell electromagnetic equations via biquaternionic representation. In fact, we will

discuss five approaches as alternative to Barut-Dirac equation. And we would argue that

the question of which of these approaches is the most consistent with experimental data

remains open. Our proposition of alternative to Barut(-Dirac) equation was based on

characteristics of Barut equation:

• it is a second-order differential equation (1);

• it shall include the physical meaning of vierbein in quantum mechanical equation;

• it has neat linkage with other known equations in Quantum Mechanics including

Dirac equation [5a], while its solution could be different from Dirac approach [11];

• our observation asserts that it shall also include a proper introduction of Lorentz

force, and acceleration from relativistic fluid dynamics.

Furthermore, in the present note we submit the viewpoint that it would be more conceiv-

able if we interpret the vierbein of this equation in terms of superfluid velocity [12][13],

which in turn brings us to the notion of topological electronic liquid [27]. Its impli-

cations to quantization of celestial systems lead us to argue in favor of signatures of

Bose-Einstein cosmology, which thus far has not been explored sufficiently yet in the

literature [49a][49b].

What we would argue in the present note is that one could expect to extend fur-

ther this quaternion representation into the form of unified wave equation, in particular

using Ulrych’s representation [7]. While such an attempt to interpret vierbein of Dirac

equation has been made by de Broglie (in terms of ‘Dirac fluid’ [41]), it seems that an
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exact representation in terms of superfluid velocity has never been made before. From

this viewpoint one could argue that the superfluid vierbein interpretation will make the

picture resembles superfluid bivacuum model of Kaivarainen [20][21]. Furthermore, this

proposition seems to support previous hypothetical argument by Prof. J-P. Vigier on the

further development of theoretical Quantum Mechanics [6]:

“..a revival, in modern covariant form, of the ether concept of the founding fathers

of the theory of light (Maxwell, Lorentz, Einstein, etc.). This is a crucial question, and

it now appears that the vacuum is a real physical medium, which presents surprising

properties (superfluid, i.e. negligible resistance to inertial motions) . . . “

Provided this proposition of unified wave equation in terms of superfluid velocity

vierbein corresponds to the observed facts, and then it could be used to predict some

new observations, in particular in the context of condensed-matter analog of astrophysics

[16][17][18]. Therefore in the last section we will extend this proposition to argue in

favor of signatures of Bose-Einstein cosmology, including some recent relevant observation

supporting this argument.

While quaternionic Quantum Mechanics has been studied before by Adler etc. [14c][28],

and also biquaternionic Quantum Mechanics [2][3], it seems that interpreting the right-

hand-side of the unified wave equation as superfluid 4-velocity has not been considered

before, at least not yet in the context of cylindrical relativistic fluid of Carter and Sklarz-

Horwitz.

In deriving these equations we will not rely on exactitude of the solutions, because

as we shall see the known properties, like fine structure constant of hydrogen, can be

derived from different approaches [11][15][19][22a]. Instead, we will use ‘correspondence

between physical theories’ as a guiding principle, i.e. we argue that it is possible to derive

some alternatives to Barut equation via generalization of various wave equations known

in Quantum Mechanics. More linkage between these equations implies consistency.

Further experimental observation to verify or refute this proposition is recommended.

2. Biquaternion, Imaginary algebra, Unified relativistic Wave

Equation

Before we discuss biquaternionic Maxwell equations from unified wave equation, first

we should review Ulrych’s method [7] by defining imaginary number representation as

follows [7]:

x = x0 + j.x1, j2 = −1 (3)

This leads to the multiplication and addition (or substraction) rules for any number,

which is composed of real part and imaginary number:

(x± y) = (x0 ± y0) + j.(x1 ± y1), (4)

(xy) = (x0y0 + x1y1) + j.(x0y1 + x1y0). (5)
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From these basic imaginary numbers, Ulrych [7] argues that it is possible to find a new

relativistic algebra, which could be regarded as modified form of standard quaternion

representation.

Once we define this imaginary number, it is possible to define further some relations

as follows [14]. Given w = x0 + j.x1, then its D-conjugate of w could be written as:

w̄ = x0 − j.x1 (6)

Also for any given two imaginary numbers w1, w2 ∈ D, we get the following relations [14]:

w1 + w2 = w̄1 + w̄2 (7)

w1 • w2 = w̄1 • w̄2 (8)

|w|2 = w̄ • w = x2
0 − x2

1 (9)

|w1 • w2|2 = |w1|2 • |w2|2 (10)

All of these provide us nothing new. For extension of these imaginary numbers in Quan-

tum Mechanics, see [33]. Now we will review a few elementary definitions of quaternions

and biquaternions, which are proved to be useful.

It is known that biquaternions could describe Maxwell equations in its original form,

and some of the use of biquaternions was discussed in [2][34].

Quaternion number, Q is defined by [33][60]:

Q = a + b.i + c.j + d.k a, b, c, d ∈ R, (11a)

where

i2 = j2 = k2 = ijk = −1 (11b)

Alternatively, one could extend this quaternion number to Clifford algebra [3a][3][6][25][41],

because higher-dimensions Clifford algebra and analysis give the possibility to generalize

the factorisations into higher spatial dimensions and even to space-time domains [70a].

In this regard quaternions H ∼ C`0,2, while standard imaginary numbers C∼ C`0,1

[70a].

Biquaternion is an extension of this quaternion number, and it is described here using

Hodge-bracket operator, in lieu of known Hodge operator (∗∗ = −1) [5a]:

{Q}∗ = (a + iA) + (b + iB).i + (c + iC).j + (d + iD).k, (12a)

where the second part (A,B,C,D) is normally set to zero in standard quaternions [33].

For quaternion differential operator, we define quaternion Nabla operator:

∇q ≡ c−1.∂/∂t + (∂/∂x)i + (∂/∂y)j + (∂/∂z)k = c−1.∂/∂t +~i.~∇ (12b)

And for biquaternion differential operator, we define a quaternion Nabla-Hodge-

bracket operator:

{∇q}∗ ≡ (c−1.∂/∂t + c−1.i∂/∂t) + {~∇}∗ (12c)
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where Nabla-Hodge-bracket operator is defined as:

{~∇}∗ ≡ (∂/∂x + i∂/∂X).i + (∂/∂y + i∂/∂Y ).j + (∂/∂z + i∂/∂Z).k. (13a)

It is worthnoting here that equations (4)-(10) are also applicable for biquaternion number.

While equations (3)-(12a) are known in the existing literature [33][59], and sometimes

called ‘biparavector’ (Baylis), we prefer to call it ‘imaginary algebra’ with emphasis on

the use of Hodge-bracket operator. It is known that determinant and differentiation of

quaternionic equations are different from standard differential equations [59], therefore

solution for this problem has only been developed in recent years.

The Hodge-bracket operator proposed herein could become more useful if we introduce

quaternion number (11a) in the paravector form [70]:

~q =
3∑

k=0

qk.ek when {qk} ⊂ C, {ek |k = 1, 2, 3} (13b)

and e0 is the unit. Therefore, biquaternion number could be written in the same form

[70]:

{~q}∗ = ~q + i~q =
3∑

k=0

qk.ek + i{
3∑

k=0

qk.ek} (13c)

Now we are ready to discuss Ulrych’s method to describe unified wave equation [7], which

argues that it is possible to define a unified wave equation in the form [7]:

Dφ(x) = m2
φ.φ(x), (14)

where unified (wave) differential operator D is defined as:

D =
[
(P − qA)µ

(
P̄ − qA

)µ
]
. (15)

To derive Maxwell equations from this unified wave equation, he uses free photon fields

expression [7]:

DA(x) = 0, (16)

where potential A(x) is given by:

A(x) = A0(x) + jA1(x), (17)

and with electromagnetic fields:

Ei(x) = −∂0Ai(x)− ∂iA0(x), (18)

Bi(x) =∈ijk ∂jAk(x). (19)

Inserting these equations (17)-(19) into (16), one finds Maxwell electromagnetic equation

[7]:

−∇ • E(x)− ∂0C(x)

+ij∇ •B(x)

−j(∇xB(x)− ∂0E(x)−∇C(x))

−i(∇xE(x) + ∂0B(x)) = 0

(20)
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The gauge transformation of the vector potential A(x) is given by [7]:

A′(x) = A(x) +∇Λ(x)/e, (21)

where Λ(x) is a scalar field. As equations (17)-(18) only use simple definitions of imag-

inary numbers (3)-(5), then an extension from (20) and (21) to biquaternionic form of

Maxwell equations is possible [2][34].

In order to define biquaternionic representation of Maxwell equations, we could extend

Ulrych’s definition of unified differential operator [7] to its biquaternion counterpart, by

using equation (12a), to become:

{D}∗ ≡
[
({P} ∗ −q{A}∗)µ

({P̄} ∗ −q{A}∗)µ
]
, (22a)

or by definition P = −i~∇and (13a), equation (22a) could be written as:

{D}∗ ≡
[
(−~{∇} ∗ −q{A}∗)µ (−~{∇} ∗ −q{A}∗)µ

]
, (22b)

where each component is now defined in its biquaternionic representation. Therefore the

biquaternionic form of unified wave equation takes the form:

{D} ∗ φ(x) = m2
φ.φ(x), (23)

if we assume the wavefunction is not biquaternionic, and

{D} ∗ {φ(x)}∗ = m2
φ.{φ(x)} ∗ . (24)

if we suppose that the wavefunction also takes the same biquaternionic form.

Now, biquaternionic representation of free photon fields could be written in the same

way with (16), as follows:

{D} ∗ A(x) = 0 (25)

We will not explore here complete solution of this biquaternion equation, as it has been

discussed in various literatures aforementioned above, including [2][33][34][59]. However,

immediate implications of this biquaternion form of Ulrych’s unified equation can be

described as follows.

Ulrych’s fermion wave equation in the presence of electromagnetic field reads [7]:

[
(P − qA)µ

(
P̄ − qA

)µ
ψ

]
= −m2.ψ, (26)

which asserts c=1 (conventionally used to write wave equations). In accordance with

Ulrych [7] this equation implies that the differential operator of the quantum wave equa-

tion (LHS) is composed of the momentum operator P multiplied by its dual operator,

and taking into consideration electromagnetic field effect qA. And by using definition of

momentum operator:

P = −i~∇. (27)
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So we get three-dimensional relativistic wave equation [7]:

[(−i~∇µ − qAµ) (−i~∇µ − qAµ) ψ] = −m2.c2.ψ. (28)

which is Klein-Gordon equation. Its 1-dimensional version has also been derived by

Nottale [67, p,29]. A plausible extension of equation (28) using biquaternion differential

operator defined above (22a) yields:

[(−~{∇µ} ∗ −q{Aµ}∗) (−~{∇µ} ∗ −q{Aµ}∗) ψ] = −m2.c2.ψ, (29)

which could be called as ‘biquaternionic’ Klein-Gordon equation.

Therefore we conclude that there is neat correspondence between Ulrych’s fermion

wave equation and Klein Gordon equation, in particular via biquaternionic representa-

tion. It is also worthnoting that it could be shown that Schrodinger equation could be

derived from Klein-Gordon equation [11], and Klein-Gordon equation also neatly corre-

sponds to Duffin-Kemmer-Petiau equation. Furthermore it could be proved that modified

(quaternion) Klein-Gordon equation could be related to Dirac equation [7]. All of these

linkages seem to support argument by Gursey and Hestenes who find plenty of interest-

ing features using quaternionic Dirac equation. In this regard, Meessen has proposed a

method to describe elementary particle from Klein-Gordon equation [30].

By assigning imaginary numbers to each component [7, p.26], equation (26) could be

rewritten as follows (by writing c=1):

[
(P − qA)µ (P − qA)µ − eEiijσi − eBiσi + m2

]
ψ = 0, (30)

where Pauli matrices σi are written explicitly. Now it is possible to rewrite equation

(30) in complete tensor formalism [7], if Pauli matrices and electromagnetic fields are

expressed with antisymmetric tensor, so we get:

[
(P − qA)µ

(
P̄ − qA

)µ − eσµνF
µν + m2

]
ψ = 0, (31)

where

Fµν = (∂µAν − ∂νAµ). (32)

Note that equation (31) is formal identical to quadratic form of Dirac equation [7], which

supports argument suggesting that modified (quaternion) Klein-Gordon equation could

be related to Dirac equation. Interestingly, equation (31) is also known in the literature

as Feynman-Gell-Mann’s equation, and its implications will be discussed in subsequent

section [5]. Interestingly, if we neglect contribution of the electromagnetic field (q and e)

component, and using only 1-dimensional of the partial differentiation, one gets a wave

equation from Feynman rules [56, p.6]:

(
∂µ∂

µ + m2
)
Ψ = 0, (33)

which has been used to describe quantum-electrodynamics without renormalization [56].
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Further extension of equation (28) could be made by expressing it in terms of 4-

velocity:

[(−i~∇µ − qAµ) (−i~∇µ − qAµ) ψ] = −pµp
µ.ψ. (34)

In the context of relativistic fluid [10][11], one could argue that this 4-velocity corresponds

to superfluid vierbein [13][16][17]. Therefore we could use Carter-Langlois’ equation [12]:

µρ.µ
ρ = −c2.µ2, (35)

by replacing m with the effective mass variable µ. This equation has the meaning of

cylindrically symmetric superfluid with known metric [12]:

gρσ.dxρ.dxσ = −c2.dt2 + dz2 + r2.dφ2 + dr2. (36)

Further extension of equation (35) is possible, as discussed by Fischer [13], where the

effective mass variable term also appears in the LHS of velocity equation, by defining

momentum of the continuum as:

pα = µ.uα. (37)

Therefore equation (35) now becomes:

µ2.uα.uα = −c2.µ2, (38)

where the effective mass variable now acquires the meaning of chemical potential [13]:

µ = ∂ ∈ /∂ρ, (39)

and

ρ.pα/µ =
(
K/~2

)
pα = jα, (40)

K = ~2 (ρ/µ) . (41a)

The quantity K is defined as the stiffness coefficient against variations of the order pa-

rameter phase. Alternatively, from macroscopic dynamics of Bose-Einstein condensate

containing vortex lattice, one could write the chemical potential in the form [57]:

µ = µ0.
[
1− (Ω0/ω⊥)2]2/5

(41b)

where the quantity Ω corresponds to the angular frequency of the sample and is assumed

to be uniform, ω is the oscillator frequency, and chemical potential in the absence of

rotation is given by [57]:

µ0 = (~ωho/2) (Na/0.0667aho)
2/5 (41c)

and N represents the number of atoms and a is the corresponding oscillator length [57]:

aho =
√
~/Mωho (41d)
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Now the sound speed cs could be related to the equations above, for a barotropic fluid

[13], as:

cs = d (ln µ) /d (ln ρ) =
(
K/~2

)
d2 ∈ /dρ2. (42)

Using this definition, then equation (42) could be rewritten as follows:

pα =
(
K−1~2

)
jα = (jα/cs).d

2 ∈ /dρ2, (43)

Introducing this result (43) into equation (34), we get:

[(−i~∇µ − qAµ) (−i~∇µ − qAµ) ψ] = − (
(jα/cs).d

2 ∈ /dρ2
)2

.ψ (44)

which is an alternative expression of relativistic wavefunction in terms of superfluid sound

speed, cs. Note that this equation could appear only if we interpret 4-velocity in terms

of superfluid vierbein [11][12]. Therefore this equation is Klein-Gordon equation, where

vierbein is defined in terms of superfluid velocity. Alternatively, in condition without

electromagnetic charge, then we can rewrite equation (44) in the known form of standard

Klein-Gordon equation [36]:

[DµD
µψ] = − (

(jα/cs).d
2 ∈ /dρ2

)2
.ψ. (45)

Therefore, this alternative representation of Klein-Gordon equation (45) has the physical

meaning of relativistic wave equation for superfluid phonon [37][38].

A plausible extension of (44) is also possible using our definition of biquaternionic

differential operator (22a):

{D} ∗ ψ = − (
(jα/cs).d2 ∈ /dρ2

)2
ψ (46)

which is an alternative expression from Ulrych’s [7] unified relativistic wave equation,

where the vierbein is defined in terms of superfluid sound speed, cs. This is the main

result of this section. As alternative, equation (46) could be written in compact form:

[{D} ∗+Γ]Ψ = 0, (47)

where the operator Γ is defined according to the quadratic of equation (43):

Γ =
(
(jα/cs).d

2 ∈ /dρ2
)2

. (48a)

For the solution of equation (44)-(47), one could refer for instance to alternative descrip-

tion of quarks and leptons via SU(4) symmetry [28][58]. As we note above, equation

(31) is also known in the literature as Feynman-Gell-Mann’s equation, and it has been

argued that it has neat linkage with Barut equation [5]. This assertion could made more

conceivable by noting that equation (31) is quadratic form of Dirac equation. In this

regard, recently Kruglov has considered a plausible generalization of Barut equation via

third-order differential extension of Dirac equation [60]:

(γµ∂µ + m1) (γν∂ν + m2) (γα∂α + m3) ψ = 0. (48b)
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It is also interesting to note that in his previous work, Kruglov [60a] has argued in favor

of Dirac-Kahler equation:

(d− δ + m) ψ = 0, (48c)

where the operator (d− δ) is the analog of Dirac operator γµ∂
µ. It seems plausible,

therefore, in the context of Kruglov’s recent attempt to generalize Barut equation [60] to

argue that further generalization to biquaternionic form is possible by rewriting equation

(47) in the third-order equation, by using our definition (12c):

[{~∇q
µ} ∗+pµ][{~∇q

ν} ∗+pν ][{~∇q
α} ∗+pα]Ψ = 0. (48d)

Therefore, we could consider this equation as the first alternative to (generalized) Barut

equation. Note that we use here equation (12c) instead of (22a), in accordance with

Kruglov [60] definition:

∂ν = ∂/∂xν = (∂/∂xm, ∂/∂(it)) (48e)

In subsequent sections, we will consider a number of other plausible alternatives to Barut-

Dirac’s equation, in particular from the viewpoint of superfluid vierbein.

3. Alternative #2: Barut-Dirac-Feynman-Gell-Mann Equation

It is argued [5, p. 4] that Barut equation is the sum of Dirac equation and Feynman-

Gell-Mann’s equation (31). But from the aforementioned argument, it should be clear

that the Feynman-Gell-Mann’s equation is nothing more than Ulrych’s fermion wave

equation, which is indeed a quadratic of Dirac equation. Therefore, it seems that there

should be other route to derive Barut-Dirac type equation. In this regard, we submit

the viewpoint that the introduction of electron self-field would lead to an alternative of

Barut equation.

First, let us rewrite equation (31) with assigning the real c in lieu of c=1:
[
(P − qA)µ

(
P̄ − qA

)µ − eσµνF
µν + m2c2

]
ψ = 0, (49)

By using equation (34), then Feynman-Gell-Mann’s equation becomes:

[(−i~∇µ − qAµ) (−i~∇µ − qAµ)− eσµνF
µν + pµp

µ] Ψ = 0, (50)

or

[(−i~∇µ − qAµ) (−i~∇µ − qAµ) + pµp
µ] Ψ = (eσµνF

µν)Ψ, (51)

which can be called Feynman-Gell-Mann’s equation with superfluid vierbein interpreta-

tion, in particular if we then introduce equation (43) into the LHS.

In this regard, we can introduce Ibison’s description of electron self-energy from ZPE

[38]:

eσµνF
µν = m0a

µ −m0τ0

[
daλ/dτ + aλaλu

µ/c2
]

(52)

where

τ0 = e2/6πε0m0c
3 (53)
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The first term in the right hand side of equation (52) could be written in the Lorentz

form [42] [24a, p.12]:

m0a
µ = m[dv/dt] = e[E + vxB] (54)

where:

E = −∇φ, (55)

B = ∇xA. (56)

Therefore, by defining a new parameter [24a, p.12]:

∀ = e[E + vxB]µ −m0(e
2/6πε0m0c

3)
[
daλ/dτ + aλaλu

µ/c2
]
, (57)

one could rewrite equation (51) in term of equation (43):

[
(−i~∇µ − qAµ) (−i~∇µ − qAµ) +

(
(jα/cs).d

2 ∈ /dρ2
)2

]
Ψ = ∀Ψ, (58)

which could be regarded as a second alternative expression of Barut equation. Therefore

we propose to call it Barut-Dirac-Feynman-Gell-Mann equation. Implications of this

equation should be verified via experiments, in particular with condensed-matter physics.

4. Alternative #3: Second Order Differential Form of Schrödinger-

Type Equation

It is known that Barut equation is a typical second-order differential equation, which

is therefore non-linear. Therefore a good alternative to Barut equation could be derived

from similar approach with Schrödinger’s original equation, but this time it should be

differentiated twice.

In this regard, it seems worthnoting here that it is more proper to use Noether’s expres-

sion of total energy in lieu of standard derivation of Schrödinger’s equation (E = ~p2/2m).

According to Noether’s theorem [39], the total energy of the system corresponding to the

time translation invariance is given by:

E = mc2 + (cw/2).

∫ ∞

0

(
γ2.4πr2.dr

)
= kµc2 (59)

where k is dimensionless function. It could be shown, that for low-energy state the total

energy could be far less than E = mc2. Interestingly Bakhoum [22] has also argued in

favor of using E = mv2 for expression of total energy, which expression could be traced

back to Leibniz. Therefore it seems possible to argue that expression E = mv2 is more

generalized than the standard expression of special relativity, in particular because the

total energy now depends on actual velocity [39].

From this new expression, it is plausible to rederive quantum relativistic wave equation

in second-order differential expression, and it turns out the new equation should also

include a Lorentz-force term in the same way of equation (57). This feature is seemingly

interesting, because these equations are derived from different approach from (57).
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We start with Bakhoum’s assertion that it is more appropriate to use E = mv2,

instead of more convenient form E = mc2. This assertion would imply [22]:

H2 = p2.c2 −m2
o.c

2.v2. (60)

Therefore, for phonon speed (cs) in the limit p → 0, we write [37]:

E(p) ≡ cs. |p| . (61)

A bit remark concerning Bakhoum’s expression, it does not mean to imply or to interpret

E = mv2 as an assertion that it implies zero energy for a rest mass. Actually the problem

comes from ’mixed’ interpretation of what we mean with ’velocity’. In original Einstein’s

paper (1905) it is defined as ’kinetic velocity’, which can be measured when standard

’steel rod’ has velocity approximates the speed of light. But in quantum mechanics,

we are accustomed to make use it deliberately to express ’photon speed’=c. According

to Bakhoum, to get a consistent interpretation between special relativity and quantum

mechanics, we should treat this definition of velocity according to its context, in particular

to its linkage with electromagnetic field. Therefore, in special relativity 1905 paper, it

should be better to interpret it as ’speed of free electron’, which approximates c. For

muon, Spohn [42] has obtained v=0.9997c which is very near to c, but not exactly =c.

For hydrogen atom with 1 electron, the electron occupies the first excitation (quantum

number n=1), which implies that their speed also approximate c, which then it is quite

safe to assume E ∼ mc2. But for atoms with large amount of electrons occupying large

quantum numbers, as Bakhoum showed that electron speed could be far less than c,

therefore it will be more exact to use E = mv2, where here v should be defined as

’average electron speed’. Furthermore, in the context of relativistic fluid, we could use

Eα = µ.uαuα from equation (37).

In the first approximation of relativistic wave equation, we could derive Klein-Gordon-

type relativistic equation from equation (60), as follows. By introducing a new parameter:

ζ = i(v/c), (62)

then we can rewrite equation (60) in the known procedure of Klein-Gordon equation:

E2 = p2.c2 + ζ2m2
o.c

4, (63)

where E = mv2. [22] By using known substitution:

E = i~.∂/∂t, p = ~∇/i, (64)

and dividing by (~c)2, we get Klein-Gordon-type relativistic equation:

−c−2∂Ψ/∂t +∇2Ψ = k
′
o

2
Ψ, (65)

where

k
′
o = ζmoc/~. (66)
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One could derive Dirac-type equation using similar method. But the use of new parameter

(62) seems to be indirect, albeit it simplifies the solution because here we can use the

same solution from Klein-Gordon equation [30].

Alternatively, one could derive a new quantum relativistic equation, by noting that

expression of total energy E = mv2 is already relativistic equation. We will derive here

two approaches to get relativistic wave equation from this expression of total energy.

The first approach, is using Ulrych’s [7] method as follows:

E = mv2 = p.v (67)

Taking square of this expression, we get:

E2 = p2.v2 (68)

or

p2 = E2/v2 (69)

Now we use Ulrych’s substitution [7]:
[
(P − qA)µ

(
P̄ − qA

)µ
]

= p2, (70)

and introducing standard substitution in Quantum Mechanics (64), one gets:
[
(P − qA)µ

(
P̄ − qA

)µ
]
Ψ = v−2.(i~.∂/∂t)2Ψ, (71)

or [
(−i~∇µ − qAµ) (−i~∇µ − qAµ)− (i~/v.∂/∂t)2

]
Ψ = 0. (72a)

which can be called as Noether-Ulrych-Feynman-Gell-Mann’s (NUFG) equation. This is

the third alternative to Barut-Dirac equation.

Alternatively, by using standard definition p=m.v, we can rewrite equation (71) in

form of equation (43):
[
(P − qA)µ

(
P̄ − qA

)µ
]
Ψ = m2

(
(jα/cs).d

2 ∈ /dρ2
)−2

.(i~.∂/∂t)2Ψ. (72b)

In order to verify that we can use the same method with Schrödinger equation to derive

nonlinear wave equation, let us consider Oleinik’s nonlinear wave equation. It is argued

that the proper equation of motion is not the Dirac or Schrödinger equation, but an equa-

tion with a new self-energy term [24]. This would mean that there is a pair wavefunction

to include electron interaction with its surrounding medium. Therefore, the standard

Schrödinger equation becomes nonlinear equations of motion [24]:

[
i∂/∂t + ∇̄2/2m− U(x)

] (
Ψ(x)

Ψ̄(x)

)
= 0 (73)

where we use ~ = 1 for convenience.

From this equation, one can get the relativistic version corresponding to Dirac equa-

tion [24]. Interestingly, Froelich [66] has considered equation of motion for the few-body
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systems associated with the hydrogen-antihydrogen pairs using radial Schrödinger-type

equation. Therefore, it seems interesting to consider equation (73) also in the context of

hydrogen-antihydrogen molecule.

And because equation (73) is derived from the standard definition of total energy

E = ~p2/2m, then our method to use equation (60) seems to be a logical extension

of Oleinik’s method. To get nonlinear version similar to equation (73), then we could

rewrite equation (72a) as:

[
(−i~∇µ − qAµ) (−i~∇µ − qAµ)− (i~/v.∂/∂t)2

] (
Ψ(x)

Ψ̄(x)

)
= 0. (74)

What’s more interesting here, is that Oleinik [24a, p.12] has shown that equation (73)

could lead to an expression of Newtonian-Lorentz force similar to equation (54):

m0a
µ = m[d2r/dt2] = e[E + v ×B] (75)

This verifies our aforementioned proposition that a good alternative to Barut’s equation

should include a Lorentz-force term in wave equation. In other words, from equation

(73) we find neat linkage between Schrödinger equation, nonlinear wave, and Lorentz-

force. We will use this linkage in the following section. It turns out that we can find

a proper generalization of Barut’s equation via introduction of Newtonian-acceleration

from velocity of the relativistic fluid in similar form of Lorentz force.

5. Alternative #4: Lorentz-force & Newtonian Acceleration

Method

For the fourth method, we will introduce Leibniz rule [40] into equation (67) via

differentiation with respect to time, which yields:

dE/dt = d[p.v]/dt = v.[dp/dt] + p.[dv/dt] (76)

The next step is taking derivation of the known substitution in QM:

dE/dt = i~.∂2/∂t2, (77)

dp/dt = d(−i~∇)/dt = −i~∇̇
Now, substituting back equation (77) and (64) into equation (76), we get:

(i~.∂2/∂t2)Ψ = (v.[−i~∇̇]− [dv/dt].i~∇)Ψ. (78)

At this point, we note that the second term in the right hand side of equation (78) could

be written in the Lorentz force form [42], and following equation (54):

[dv/dt] = e/m.(E + vxB) (79)

where:

E = −∇φ, (80)
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B = ∇xA. (81)

Therefore, we can rewrite equation (78) in the form:

(i~.∂2/∂t2)Ψ = (v.[−i~∇̇]− e/m.[E + vxB].i~∇)Ψ, (82)

which is a new wave relativistic quantum equation as alternative to Barut equation.

To our present knowledge, this alternative wave equation (82) has never been derived

elsewhere.

As an alternative to equation (79), we can rewrite Lorentz form in term of Newto-

nian acceleration. In this regard, it is worthnoting that the definition of acceleration of

relativistic fluid is not widely accepted yet [10]. Therefore we will use here result from

relativistic field equations from Poisson process [46], from which we get an expression of

acceleration [46]:

dv/dt = ~/2m.(∂2u/∂x2)− v.∂u/∂x + u.∂v/∂x−m−1.∂V/∂x = ∃ (83)

Therefore, by substituting this equation into (78), we get:

(i~.∂2/∂t2)Ψ = (v.[−i~∇̇]− ∃.i~∇)Ψ, (84)

which can be considered as a better alternative to equation (82).

6. Alternative #5: Schrödinger-Ginzburg-Landau Equation and

Quantization of Celestial Systems

In the preceding section (#4), we have found the neat linkage between Schrödinger

equation, nonlinear wave, and Lorentz-force, which indicates a possibility to be considered

as alternative to Barut equation. Now, as the fifth alternative method, it will be shown

that we can expect to generalize Schrödinger equation to describe quantization of celestial

sytems. While this notion of macro-quantization is not widely accepted yet, as we will

see the logarithmic nature of Schrödinger equation is sufficient to ensure its applicability

to larger systems. As alternative, we will also discuss an outline for deriving Schrödinger

equation from simplification of Ginzburg-Landau equation. It is known that Ginzburg-

Landau equation exhibits fractal character.

First, let us rewrite Schrödinger equation (73) in its common form:

[
i∂/∂t + ∇̄2/2m− U(x)

]
Ψ = 0 (85)

where we use ~ = 1for convenience, or

(i∂/∂t)Ψ = H.Ψ (86)

Now, it is worthnoting here that Englman & Yahalom [4a] argue that this equation

exhibits logarithmic character:

ln Ψ(x, t) = ln (|Ψ(x, t)|) + i. arg(Ψ(x, t)) (87)
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Schrödinger already knew this expression in 1926, which then he used it to propose

his equation called ‘eigentliche Wellengleichung’ [4a]. Therefore equation (85) can be

rewritten as follows:

2m(∂ ln |Ψ| /∂t) + 2∇̄ ln |Ψ| .∇̄ arg[Ψ] + ∇̄.∇̄ arg[Ψ] = 0 (88)

Interestingly, Nottale’s scale-relativistic method [43][44] was also based on generalization

of Schrödinger equation to describe quantization of celestial systems. It is known that

Nottale-Schumacher’s method [45] could predict new exoplanets in good agreement with

observed data. Nottale’s scale-relativistic method is essentially based on the use of first-

order scale-differentiation method defined as follows [43][44]:

∂V/∂(ln δt) = β(V ) = a + bV + ... (89)

Now it seems clear that the logarithmic derivation, which is essential in scale-relativity

approach, also has been described properly in Schrödinger’s original equation [4a]. In

other word, its logarithmic form ensures applicability of Schrödinger equation to describe

macroquantization of celestial systems.

To emphasize this assertion of the possibility to describe quantization of celestial

systems, let us return for a while to the preceding section where we use Fischer’ description

[13] of relativistic momentum of 4-velocity (37)-(38). Interestingly Fischer [13] argues that

the circulation leading to equation (37)-(38) is in the relativistic dense superfluid, defined

as the integral of the momentum:

γs =

∮
pµdxµ = 2π.Nv~, (90)

and is quantized into multiples of Planck’s quantum of action. This equation is the co-

variant Bohr-Sommerfeld quantization of γs. And then Fischer [13] concludes that the

Maxwell equations of ordinary electromagnetism can be cast into the form of conservation

equations of relativistic perfect fluid hydrodynamics [10], in good agreement with Vigier’s

guess as mentioned above. Furthermore, the topological character of equation (90) corre-

sponds to the notion of topological electronic liquid, where compressible electronic liquid

represents superfluidity [27].

It is worthnoting here, because here vortices are defined as elementary objects in the

form of stable topological excitations [13], then equation (90) could be interpreted as

signatures of Bohr-Sommerfeld quantization from topological quantized vortices. Fischer

[13] also remarks that equation (90) is quite interesting for the study of superfluid rotation

in the context of gravitation. Interestingly, application of Bohr-Sommerfeld quantization

to celestial systems is known in literature [47][48], which here in the context of Fischer’s

arguments it seems plausible to suggest that quantization of celestial systems actually

corresponds to superfluid-quantized vortices at large-scale [27]. In our opinion, this result

supports known experiments suggesting neat correspondence between condensed matter

physics and various cosmology phenomena [16]-[19].
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To make the conclusion that quantization of celestial systems actually corresponds to

superfluid-quantized vortices at large-scale a bit conceivable, let us consider an illustration

of quantization of celestial orbit in solar system.

In order to obtain planetary orbit prediction from this hypothesis we could begin with

the Bohr-Sommerfeld’s conjecture of quantization of angular momentum. This conjecture

may originate from the fact that according to BCS theory, superconductivity can exhibit

macroquantum phenomena [16][65]. In principle, this hypothesis starts with observation

that in quantum fluid systems like superfluidity, it is known that such vortexes are subject

to quantization condition of integer multiples of 2π, or
∮

vs.dl = 2π.n~/m4. As we know,

for the wavefunction to be well defined and unique, the momenta must satisfy Bohr-

Sommerfeld’s quantization condition:
∮

Γ

p.dx = 2π.n~ (91)

for any closed classical orbit Γ. For the free particle of unit mass on the unit sphere the

left-hand side is [49]:
T∫

0

v2.dτ = ω2.T = 2π.ω (92)

where T=2π/ω is the period of the orbit. Hence the quantization rule amounts to quan-

tization of the rotation frequency (the angular momentum):ω = n~. Then we can write

the force balance relation of Newton’s equation of motion [49]:

GMm/r2 = mv2/r (93)

Using Bohr-Sommerfeld’s hypothesis of quantization of angular momentum, a new con-

stant g was introduced:

mvr = ng/2π (94)

Just like in the elementary Bohr theory (before Schrödinger), this pair of equations yields

a known simple solution for the orbit radius for any quantum number of the form [49]:

r = n2.g2/(4π2.GM.m2) (95)

which can be rewritten in the known form [43][44]:

r = n2.GM/v2
o (96)

where r, n, G, M, vo represents orbit radii, quantum number (n=1,2,3,. . . ), Newton

gravitation constant, and mass of the nucleus of orbit, and specific velocity, respectively.

In this equation (96), we denote:

vo = (2π/g).GMm (97)

The value of m is an adjustable parameter (similar to g). [43][44]
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Using this equation (96), we could predict quantization of celestial orbits in the solar

system, where for Jovian planets we use least-square method and define M in terms of

reduced mass µ = (M1.M2)/(M1 +M2). From this viewpoint the result is shown in Table

1 below [49]:

Table 1. Comparison of prediction and observed orbit distance of

planets in Solar system (in 0.1 AU unit) [49]

Object No. Bode Nottale CSV Observed ∆(%)

1 0.4 0.428

2 1.7 1.71

Mercury 3 4 3.9 3.85 3.87 0.52

Venus 4 7 6.8 6.84 7.32 6.50

Earth 5 10 10.7 10.70 10.00 -6.95

Mars 6 16 15.4 15.4 15.24 -1.05

Hungarias 7 21.0 20.96 20.99 0.14

Asteroid 8 27.4 27.38 27.0 1.40

Camilla 9 34.7 34.6 31.5 -10.00

Object No. Bode Nottale CSV Observed ∆(%)

Jupiter 2 52 45.52 52.03 12.51

Saturn 3 100 102.4 95.39 -7.38

Uranus 4 196 182.1 191.9 5.11

Neptune 5 284.5 301 5.48

Pluto 6 388 409.7 395 -3.72

2003EL61 7 557.7 520 -7.24

Sedna 8 722 728.4 760 4.16

2003UB31 9 921.8 970 4.96

Unobserved 10 1138.1

Unobserved 11 1377.1

For comparison purpose, we also include some recent observation by M. Brown et

al. from Caltech [50][51][52][53]. It is known that Brown et al. have reported not less

than four new planetoids in the outer side of Pluto orbit, including 2003EL61 (at 52AU),

2005FY9 (at 52AU), 2003VB12 (at 76AU, dubbed as Sedna.) And recently Brown and his

team reported a new planetoid finding, called 2003UB31 (97AU). This is not to include

Quaoar (42AU), which has orbit distance more or less near Pluto (39.5AU), therefore this

object is excluded from our discussion. It is interesting to remark here that all of those
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new ‘planetoids’ are within 8% bound from our prediction of celestial quantization based

on the above Bohr-Sommerfeld quantization hypothesis (Table 1). While this prediction

is not so precise compared to the observed data, one could argue that the 8% bound limit

also corresponds to the remaining planets, including inner planets. Therefore this 8%

uncertainty could be attributed to macroquantum uncertainty and other local factors.

While our previous prediction only limits new planet finding until n=9 of Jovian

planets (outer solar system), it seems that there are enough reasons to suppose that

more planetoids are to be found in the near future. Therefore it is recommended to

extend further the same quantization method to larger n values. For prediction purpose,

we include in Table 1 new expected orbits based on the same quantization procedure we

outlined before. For Jovian planets corresponding to quantum number n=10 and n=11,

our method suggests that it is likely to find new orbits around 113.81 AU and 137.71 AU,

respectively. It is recommended therefore, to find new planetoids around these predicted

orbits.

As an interesting alternative method supporting this proposition of quantization from

superfluid-quantized vortices (90), it is worthnoting here that Kiehn has argued in favor

of re-interpreting the square of the wavefunction of Schrödinger equation as the vorticity

distribution (including topological vorticity defects) in the fluid [61]. From this viewpoint,

Kiehn suggests that there is exact mapping from Schrödinger equation to Navier-Stokes

equation, using the notion of quantum vorticity [61]. Interestingly, de Andrade & Sivaram

[62] also suggest that there exists formal analogy between Schrödinger equation and the

Navier-Stokes viscous dissipation equation:

∂V/∂t = ν.∇2V (98)

where ν is the kinematic viscosity. Their argument was based on propagation torsion

model for quantized vortices [62]. While Kiehn’s argument was intended for ordinary fluid,

nonetheless the neat linkage between Navier-Stokes equation and superfluid turbulence

is known in literature [63][64][21].

Therefore, it seems interesting to consider a plausible generalization of Schrödinger

equation in particular in the context of viscous dissipation method. First, we could write

Schrödinger equation for a charged particle interacting with an external electromagnetic

field [61] in the form of equation (28) and (85):

[(−i~∇µ − qAµ) (−i~∇µ − qAµ) Ψ] = [−i2m.∂/∂t + 2mU(x)] Ψ. (99)

In the presence of electromagnetic potential [69], one could include another term into the

LHS of equation (99):

[(−i~∇µ − qAµ) (−i~∇µ − qAµ) + eAo] Ψ = 2m [−i∂/∂t + U(x)] Ψ. (100)

This equation has the physical meaning of Schrödinger equation for a charged particle in-

teracting with an external electromagnetic field, which takes into consideration Aharonov

effect [69]. Topological phase shift becomes its immediate implication, as already consid-

ered by Kiehn [61].
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Therefore, in the context of quaternionic representation of Schrödinger equation [70],

one could write equation (100) in terms of equation [22a]:

[{D} ∗+eAo] Ψ = 2m [−i∂/∂t + U(x)] Ψ. (101)

In the context of topological phase shift [69], it would be interesting therefore to find the

scalar part of equation (101) in experiments [8].

As described above, one could also derive equation (96) from scale- relativistic Schrödinger

equation [43][44]. It should be noted here, however, that Nottale’s method [43][44] dif-

fers appreciably from the viscous dissipative Navier-Stokes approach of Kiehn, because

Nottale only considers his equation in the Euler-Newton limit [67][68]. Nonetheless, as

we shall see, it is possible to find a generalization of Schrödinger equation from Nottale’s

approach in similar form with equation (101). In order to do so, first we could rewrite

Nottale’s generalized Schrödinger equation via diffusion method [67][71]:

i2mγ
[− (iγ + a(t)/2) (∂ψ/∂x)2 ψ−2 + ∂ ln ψ/∂t

]

+iγa(t). (∂2ψ/∂x2) /ψ = Φ + a(x)
(102)

where ψ,a(x), Φ, γ each represents classical wave function, an arbitrary constant, scalar

potential, and a constant, respectively. If the function f(t) is such that

a(t) = −i2γ, α(x) = 0, (103)

γ = ~/2m (104)

then one recovers the original Schrödinger equation (85).

Further generalization is possible if we rewrite equation (102) in quaternion form

similar to equation (101):

i2mγ [− (iγ + a(t)/2) ({∇}∗)2ψ−2 + ∂ ln ψ/∂t]

+iγ.a(t). ({∇′}∗) /ψ = Φ + a(x)
(105)

Alternatively, with respect to our superfluid dynamics interpretation [13], one could also

get Schrödinger equation from simplification of Ginzburg-Landau equation. This method

will be discussed subsequently. It is known that Ginzburg-Landau equation can be used

to explain various aspects of superfluid dynamics [16][17][18].

According to Gross, Pitaevskii, Ginzburg, wavefunction of N bosons of a reduced mass

m* can be described as [55]:

−(~2/2m∗).∇2ψ + κ |ψ|2 ψ = i~.∂ψ/∂t (106)

For some conditions (where the temperature dependence of the density of Cooper pairs,

ns, is just the square of order parameter. Or |ψ|2 ≈ ns = A(Tc − T )), then it is possible
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to replace the potential energy term in equation (106) with Hulthen potential. This

substitution yields:

−(~2/2m∗).∇2ψ + VHulthen.ψ = i~.∂ψ/∂t (107)

where

VHulthen(r) = κ |ψ|2 ≈ −Ze2.δ.e−δr/(1− e−δr) (108)

This equation (108) has a pair of exact solutions. It could be shown that for small

values of δ, the Hulthen potential (108) approximates the effective Coulomb potential, in

particular for large radius [14b]:

V eff
Coulomb = −e2/r + `(` + 1).~2/(2mr2) (109)

Therefore equation (109) could be rewritten as:

−~2∇2ψ/2m ∗+
[−e2/r + `(` + 1).~2/(2mr2)

]
.ψ = i~.∂ψ/∂t (110)

For large radii, second term in the square bracket of LHS of equation (110) reduces to

zero [54],

`(` + 1).~2/(2mr2) → 0 (111)

so we can write equation (110) as:

(−~2∇2ψ/2m ∗+U).ψ = i~.∂ψ/∂t (112)

where Coulomb potential can be written as:

U = −e2/r (113)

This equation (112) is nothing but Schrödinger equation (85). Therefore we have re-

derived Schrödinger equation from simplification of Ginzburg-Landau equation, in the

limit of small screening parameter. Calculation shows that introducing this Hulthen

effect (108) into equation (107) will yield different result only at the order of 10−39 m

compared to prediction using equation (110), which is of course negligible. Therefore, we

conclude that for most celestial quantization problems the result of TDGL-Hulthen (110)

is essentially the same with the result derived from equation (85). Now, to derive equation

(96) from Schrödinger equation, the reader is advised to see Nottale’s scale-relativistic

method [43][44].

What we would emphasize here is that this derivation of Schrödinger equation from

Ginzburg-Landau equation is in good agreement with our previous conjecture that equa-

tion (90) implies macroquantization corresponding to superfluid-quantized vortices. This

conclusion is the main result of this section. It is also worthnoting here that there is

recent attempt to introduce Ginzburg-Landau equation in the context of microtubule

dynamics [72], which implies wide applicability of this equation.

In the following section, we would extend this argument by noting that macroquan-

tization of celestial systems implies the topological character of superfluid-quantized vor-

tices, and cosmic microwave background radiation is also an indication of such topological

superfluid vortices.
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7. Further Note: Signatures of Bose-Einstein Cosmology

It is known that CMBR temperature (2.73K) is conventionally assumed to come from

the hot early Universe, which then cools adiabatically to the present epoch. Nonetheless

this description is not without problems, such as how to consider the small temperature

fluctuations of CMBR as the seeds that give rise to large-scale structure such as galaxy

formation [73]. Furthermore it is known that CMBR follows Planck radiation law with

high precision, so one could argue whether it also indicates that large-scale structures

obey quantum-mechanical principles. Therefore we will consider here some alternative

hypothesis, which support the idea of low-energy quantum mechanics corresponding to

superfluid vortices described in the preceding section.

In recent years, there are alternative arguments suggesting that the Universe indeed

resembles the dynamics of N number of Planckian oscillators. Using similar assumption,

for instance Antoniadis et al. [74] argue that CMBR temperature could be derived using

conformal invariance symmetry, instead of using Harrison-Zel’dovich spectrum. Other

has derived CMBR temperature from Weyl framework [74a]. Furthermore, if the CMBR

temperature 2.73K could be interpreted as low-energy part of the Planck distribution

law, then it seems to indicate that the Universe resembles Bose-Einstein condensate [75].

Pervushin et al. also argued that CMBR temperature could be derived from conformal

cosmology with relative units [76]. These arguments seem to support Winterberg’s hy-

pothesis that superfluid phonon-roton aether could explain the origin of cosmic microwave

background radiation [18][19].

Of course, it does not mean that CMBR data fits perfectly with Planck distribution

law. It has been argued that CMBR data more corresponds to q-deformed Planck radia-

tion distribution [77]. However, this argument requires further analysis. What interests

us here is that there are reasons to believe that a quantum universe based on Planck

scale is not merely a pure hypothetical notion, in particular if we consider known analogy

between superfluidity and various cosmology phenomena [16][17].

Another argument comes from fractality argument. It has been discovered by Feyn-

man that the typical quantum mechanical paths are non-differentiable and fractal [67].

In this regard, it has been argued that the Universe is embedded in Cantorian fractal

spacetime having non-integer Hausdorff dimension [78], and from this viewpoint it could

be inferred that the correlated fluctuations of the fractal spacetime is analogous to the

Bose-Einstein condensate phenomenon. Interestingly, there is also hypothesis suggesting

that Hausdorff dimension could be related to temperature of ideal Bose gas [79].

From these aforementioned arguments, it seems plausible to suppose that that CMBR

temperature 2.73K could be interpreted as a signature of Bose-Einstein condensate cos-

mology. In particular, one could consider [22b] that “this relationship comes directly from

Boltzmann’s law N= B.k.T, where N is the background noise power; T is the background

temperature in degrees Kelvin; and B is the bandwidth of the background radiation. It

follows that the ratio (N/kB) for the cosmic background radiation is approximately equal

to ”e”, because we usually convert the equation to decibels by taking natural logarithm.
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The relationship is a solid one in fact.” From this viewpoint, it seems quite conceivable to

explain why CMBR temperature 2.73K is near enough to known number e= 2.71828. . . ,

which seems to suggest that the logarithmic form of Schrödinger equation (‘eigentliche

Wellengleichung’) [4a] may have a deep linkage with this number e= 2.71828. . .

Nonetheless, we recognize that this proposition requires further analysis before we

could regard it as conclusive. But we can describe here some arguments to support the

new interpretation supporting this Bose-Einstein cosmology argument:

• From Fischer’s argument [13] we know that Bohr-Sommerfeld quantization from

superfluid vortice could exhibit at all scales, including celestial quantization. This

proposition comes directly from his assertion of the topological character of superfluid

vortices, because superfluid is topological electronic liquid [27].

• Extending further the aforementioned hypothesis of topological superfluid vortices,

then it seems interesting to compare it with topological analysis of COBE-DMR

data. G. Rocha et al. [80] argue using wavelet approach with Mexican Hat potential

that it is possible to interpret the data as clue for a finite torus Universe, albeit not

conclusive enough.

• Interestingly, this conjecture could be related to Bulgadaev’s argument [81] suggest-

ing that topological quantum number could be related to torus structure as stable

soliton [81a]. In effect, this seems to imply that the basic structure of physical

phenomena throughout all scales could take the form of topological torus.

In other words, the topological character of superfluid vortices implies that it is possible to

generalize superfluid vortices to large scales. And the topological character of CMBR data

seems to support our proposition that the universe indeed exhibits topological structures.

It follows then that CMBR temperature is topological [80] in the sense that the superfluid

nature of background temperature [18][19] could be explained from topological superfluid

vortices.

Interestingly, similar argument has been pointed out by a number of authors by

mentioning non-Gaussian part of CMBR spectrum. However, further discussion on this

issue requires another note.

8. Concluding Remarks

It is known that Barut equation could predict lepton mass (and also hadron mass)

with remarkable precision. Therefore, in the present article, we attempt to find plausible

linkage between Dirac-Maxwell’s isomorphism and Barut-Dirac-Vigier equation. From

this proposition we could find a unified wave equation in terms of superfluid velocity

(vierbein), which then could be used as basis to derive some alternative descriptions of

Barut equation. Further experiment is required to verify which equation is the most

reliable.

In the present note we submit the viewpoint that it would be more conceivable if we

interpret the vierbein of the unified wave equation in terms of superfluid velocity, which

in turn brings us to the notion of topological electronic liquid. Nonetheless, the proposed
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imaginary algebra discussed herein is only at its elementary form, and it requires further

analysis in particular in the context of [5a][7][14][28]. It is likely that this subject will

become the subject of subsequent paper.

Furthermore, the notion of topological electronic liquid could lead to topological su-

perfluid vortices, which may explain the origin of macroquantization of celestial systems

and perhaps also topological character of Cosmic Microwave Background Radiations.

Nonetheless, such a proposition requires further analysis before it can be considered as

conclusive.

Provided the aforementioned propositions of using superfluid velocity (vierbein) to

describe unified wave equation correspond to the observed facts, and then in principle it

seems to support arguments in favor of possibility to observe condensed-matter hadronic

reaction.
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