Characterization of Pathos Adjacency Blict Graph of a Tree

Nagesh.H.M

(Department of Science and Humanities, PES Institute of Technology, Bangalore - 560 100, India)

R.Chandrasekhar

(Department of M.C.A, PES Institute of Technology, Bangalore - 560 085, India)

 $E\text{-mail: } nagesh_pesse@yahoo.com chandrasekharr@pes.edu$

Abstract: In this paper we introduce the concept of pathos adjacency blict graph PBn(T) of a tree T and present the characterization of graphs whose pathos adjacency blict graphs are planar, outerplanar, minimally non-outerplanar and Eulerian.

Key Words: Pathos, outerplanar, Smarandachely blict graph, crossing number cr(G), inner vertex number i(G), minimally non-outerplanar.

AMS(2010): 05C05, 05C45

§1. Introduction

All graphs considered in this paper are finite and simple. For standard terminology and notation in graph theory, not specifically defined in this paper, the reader is referred to Harary [3]. The operation of forming a graph valued function of a graph G is probably the most interesting operation by which one graph is obtained from another. The concept of *pathos* of a graph Gwas introduced by Harary [4], as a collection of minimum number of edge disjoint open paths whose union is G. The *path number* of a graph G is the number of paths in any pathos. The *path number* of a tree T is equal to k, where 2k is the number of odd degree vertices of T. Also, the end vertices of every path of any pathos of a tree T are of odd degree [2]. The *line graph* of a graph G, written L(G), is the graph whose vertices are the edges of G, with two vertices of L(G) adjacent whenever the corresponding edges of G are adjacent.

A pathos vertex is a vertex corresponding to a path P in any pathos and a block vertex is a vertex corresponding to a block (or an edge) of a tree T. The edge degree of an edge pq of a tree T is the sum of the degrees of p and q.

The lict graph (Here "lict" indicates "line cut vertex") of a graph G [6], written n(G), is the graph whose vertices are the edges and cut vertices of G, with two vertices of n(G) adjacent whenever the corresponding edges of G are adjacent or the corresponding members of G are incident, where the edges and cut vertices of G are called its members. Let C be a block set of G. A Smarandachely blict graph $B^{C}(G)$ is the graph whose vertices are the edges, cut vertices

¹Received July 19, 2013, Accepted February 20, 2014.

and blocks in C, with two vertices of Bn(G) adjacent whenever the corresponding members of G are adjacent or incident, where the edges, cut vertices and blocks in C are called its *members*. Particularly, if C is all blocks of G, such a $B^C(G)$ is called a *blict graph* (Here "*blict*" indicates "*block line cut vertex*") of a graph G [1], written by Bn(G).

The pathos line graph of a tree T [1], written PL(T), is the graph whose vertices are the edges and paths of pathos of T, with two vertices of PL(T) adjacent whenever the corresponding edges of T are adjacent and the edges that lie on the corresponding path P_i of pathos of T. The pathos lict graph of a tree T [1], written Pn(T), is the graph whose vertices are the edges, cut vertices and paths of pathos of T, with two vertices of Pn(T) adjacent whenever the corresponding edges of T are adjacent, edges that lie on the corresponding path P_i of pathos and the edges incident to the cut vertex of T.

A graph G is planar if it has a drawing without crossings. For a planar graph G, the *inner* vertex number i(G) is the minimum number of vertices not belonging to the boundary of the exterior region in any embedding of G in the plane. If a planar graph G is embeddable in the plane so that all the vertices are on the boundary of the exterior region, then G is said to be an *outerplanar*, *i.e.* i(G) = 0. An outerplanar graph G is maximal outerplanar if no edge can be added without losing its outer planarity. A graph G is said to be minimally non-outerplanar if i(G)=1 [5]. The least number of edge-crossings of a graph G, among all planar embeddings of G, is called the crossing number of G and is denoted by cr(G).

Figure 1 Tree T

Figure 2 Pathos adjacency blict graph PBn(T) of T

Definition 1.1 The pathos adjacency blict graph of a tree T, written PBn(T), is the graph whose vertices are the edges, paths of pathos, cut vertices and blocks of T, with two vertices of PBn(T) adjacent whenever the corresponding edges of T are adjacent, edges that lie on the corresponding path P_i of pathos, edges incident to cut vertex and edges that lie on the blocks of T. Two distinct pathos vertices P_m and P_n are adjacent in PBn(T) whenever the corresponding paths of pathos $P_m(v_i, v_j)$ and $P_n(v_k, v_l)$ have a common vertex, say v_c in T.

Since the pattern of pathos for a tree is not unique, the corresponding pathos adjacency blict graph is also not unique. Figure 1 shows a tree T and Figure 2 is its corresponding PBn(T).

The following existing results are required to prove further results.

Theorem A([1]) The pathos line graph PL(T) of a tree T is planar if and only if $\Delta(T) \leq 4$.

Theorem B([1]) Let T be a tree on p vertices and q = p - 1 edges such that d_i and C_j are the degrees of vertices and cut vertices C of T, respectively. Then the pathos lict graph Pn(T) has (q+k+C) vertices and $\frac{1}{2}\sum_{i=1}^{p} d_i^2 + \sum_{i=1}^{C} C_j$ edges, where k is the path number of T.

Theorem C([1]) The blict graph Bn(G) of a graph G is planar if and only if $\Delta(T) \leq 3$ and every vertex of degree three is a cut vertex.

Theorem D([3]) If G is a graph on p vertices and q edges, then L(G) has q vertices and $-q + \frac{1}{2} \sum_{i=1}^{p} d_i^2$ edges, where d_i is the degree of vertices of G.

Theorem E([6]) The lict graph n(G) of a graph G is planar if and only if G is planar and the degree of each vertex is at most three.

§2. Preliminary Results

Remark 2.1 For any tree T with $p \ge 3$ vertices, $L(T) \subseteq PL(T) \subseteq PBn(T), L(T) \subseteq Bn(T) \subseteq PBn(T)$ and $L(T) \subseteq Pn(T) \subseteq PBn(T)$. Here \subseteq is the subgraph notation.

Remark 2.2 If the edge degree of an edge pq in a tree T is even(odd) and p and q are the cut vertices, then the degree of the corresponding vertex pq in PBn(T) is even(odd).

Remark 2.3 If the degree of an end edge(or pendant edge) in a tree T is even(odd), then the degree of the corresponding vertex in PBn(T) is odd(even).

Remark 2.4 For any tree T (except star graph), the number of edges in PBn(T) whose end vertices are the pathos vertices is given by (k - 1), where k is the path number of T.

Remark 2.5 If T is a star graph $K_{1,n}$ on $n \ge 3$ vertices, then the number of edges in PBn(T) whose end vertices are the pathos vertices is given by $\frac{k(k-1)}{2}$, where k is the path number of T. For example, edge P_1P_2 in Figure 2.

Remark 2.6 Since every block vertex of PBn(T) is an end vertex (For example, the block vertices B_1, B_2 and B_3 in Figure 2), PBn(T) does not contain a spanning cycle. Hence it is always non-Hamiltonian.

§3. Lemmas

Here we present two simple lemmas on the graph PBn(T).

Lemma 3.1 Let T be a tree (except star graph) on p vertices and q edges such that d_i and C_j are the degrees of vertices and cut vertices C of T, respectively. Then PBn(T) contains (2q + k + C) vertices and

$$\frac{1}{2}\sum_{i=1}^{p} d_i^2 + \sum_{j=1}^{C} C_j + q + (k-1)$$

edges, where k is the path number of T.

Proof Let T be a tree (except star graph) on p vertices and q edges. By definition, the number of vertices in PBn(T) equals the sum of number of edges, paths of pathos, cut vertices and the blocks of T. Since every edge of T is a block, PBn(T) contains (2q + k + C) vertices.

By Theorem B, the number of edges in Pn(T) is $\frac{1}{2}\sum_{i=1}^{p}d_{i}^{2} + \sum_{j=1}^{C}C_{j}$. The number of edges in PBn(T) equals the sum of edges of Pn(T), edges that lie on the corresponding path P_{i} of pathos of T and the number of edges whose end vertices are the pathos vertices. By Remark 2.4, the number of edges in PBn(T) is given by

$$\frac{1}{2}\sum_{i=1}^{p}d_{i}^{2} + \sum_{j=1}^{C}C_{j} + q + (k-1).$$

Lemma 3.2 Let T be a star graph $K_{1,n}$ on $n \ge 3$ vertices and m edges such that d_i and C_j are the degrees of vertices and cut vertex C of T, respectively. Then PBn(T) contains (2m+k+1) vertices and $\frac{1}{2}\sum_{i=1}^{n} d_i^2 + 2m + \frac{k(k-1)}{2}$ edges, where k is the path number of T.

Proof Let T be a star graph $K_{1,n}$ on $n \ge 3$ vertices and m edges. Since T has exactly one cut vertex C, PBn(T) contains (2m + k + 1) vertices. For a star graph T, the number of edges in PBn(T) equals the sum of number of edges of L(T), thrice the number of edges of T and the number of edges whose end vertices are the pathos vertices.

By Theorem D and Remark 2.5, we know that

$$-m + \frac{1}{2}\sum_{i=1}^{n} d_i^2 + 3m + \frac{k(k-1)}{2} = \frac{1}{2}\sum_{i=1}^{n} d_i^2 + 2m + \frac{k(k-1)}{2}.$$

Whence, we get the conclusion.

§4. Main Results

Theorem 4.1 The pathos adjacency blict graph PBn(T) of a tree T is planar if and only if $\Delta(T) \leq 3$, for every vertex $v \in T$.

Proof Suppose PBn(T) is planar. Assume that $\Delta(T) > 3$. If there exists a vertex p of degree 4 in T, by Theorem[A], PL(T) is planar and contains K_4 as an induced subgraph. In Pn(T), the vertex p is adjacent to every vertex of K_4 . This gives K_5 as subgraph in PBn(T). Clearly, PBn(T) is nonplanar, a contradiction.

For sufficiency, we consider the following two cases.

Case 1 If T is a path P_n on $n \ge 3$ vertices, then each block of n(T) is K_3 and it has exactly (n-2) blocks. The path number of T is exactly one and the corresponding pathos vertex is adjacent to at most two vertices of each block of n(T). The pathos vertex together with each block of of n(T) gives (n-2) number of $\langle K_4 - e \rangle$ subgraphs in Pn(T). Furthermore, every edge of T is a block. Hence the adjacency of block vertices and the vertices of L(T) gives (n-2) number of $\langle K_4 - e \rangle$ subgraphs in PBn(T). Clearly, the crossing number of PBn(T) is zero, *i.e.* cr(PBn(T))=0. Hence PBn(T) is planar.

Case 2 Suppose that T is not a path such that $\Delta(T) \leq 3$. By Theorem E, n(T) is planar. Moreover, each block of n(T) is either K_3 or K_4 . The path number of T is at least one and the corresponding pathos vertices are adjacent to at most two vertices of each block of n(T). Hence Pn(T) contains at least one copy of K_3 and K_4 as its subgraphs. Finally, on embedding PBn(T) in any plane for the adjacency of pathos vertices corresponding to paths of pathos in T, the crossing number of PBn(T) becomes zero, *i.e.*, cr(PBn(T))=0. Hence PBn(T) is planar. This completes the proof.

Theorem 4.2 The pathos adjacency blict graph PBn(T) of a tree T is an outerplanar if and only if T is a path on P_n on $n \ge 3$ vertices.

Proof Suppose PBn(T) is an outerplanar. Assume that T has a vertex p of degree three. The edges incident to p and the cut vertex p gives K_4 as subgraph in Pn(T). By Remark 2.1, the inner vertex number of PBn(T) is non-zero, *i.e.* $i(PBn(T)) \neq 0$, a contradiction.

Conversely, suppose that T is a path P_n on $n \ge 3$ vertices. By Case 1 of Theorem 4.1, PBn(T) contains (n-2) number of $\langle K_4 - e \rangle$ as its subgraphs. Clearly, *i.e.* i(PBn(T))=0. Hence PBn(T) is an outerplanar. This completes the proof.

Theorem 4.3 For any tree T, PBn(T) is not maximal outerplanar.

Proof By Theorem 4.2, PBn(T) is an outerplanar if and only if T is a path P_n on $n \geq 3$ vertices. Suppose that T is a path P_n on $n \geq 3$ vertices with the edge set $E(T) = \{e_1, e_2, \ldots, e_{n-1}\}$. By Case 1 of Theorem 4.1, Pn(T) contains (n-2) number of $\langle K_4 - e \rangle$ as its subgraphs. Moreover, each edge of T is a block. Hence by definition, block vertices and the vertices of L(T) are adjacent in PBn(T), which in turn forms (n-1) number of edges in PBn(T). Finally, since the addition of an edge between the block vertices increases the inner

vertex number of PBn(T) by at least one, PBn(T) is not maximal outerplanar. This completes the proof.

Theorem 4.4 For any tree T, PBn(T) is not minimally non-outerplanar.

Proof Proof by contradiction. Suppose that PBn(T) of a tree T is minimally nonouterplanar. We consider the following cases.

Case 1 Suppose that $\Delta(T) \leq 2$. By Theorem 4.2, PBn(T) is an outerplanar, a contradiction. **Case 2** Suppose that $\Delta(T) \geq 3$.

We consider the following subcases of Case 2.

Subcase 2.1 Suppose that $\Delta(T) > 3$. By Theorem 4.1, PBn(T) is nonplanar, a contradiction. Subcase 2.2 Suppose that $\Delta(T) = 3$. Let p be a vertex of degree 3 in T. By Case 2 of Theorem 4.1, cr(PBn(T))=0, but it is easy to observe that (For example, the graph PBn(T) in Figure 2) on embedding PBn(T) in any plane for the adjacency of pathos vertices corresponding to paths of pathos in T, the inner vertex number of PBn(T) is at least two, *i.e.* $i(PBn(T)) \ge 2$. Hence PBn(T) is not minimally non-outerplanar. This completes the proof.

Theorem 4.5 For any tree T with $p \ge 3$ vertices, PBn(T) is non-Eulerian.

Proof Suppose that T is a tree with $p \ge 3$ vertices. Then there exists at least one cut vertex C of T which is incident to at least one end edge q or at least one block B. We consider the following two cases.

Case 1 If the degree of cut vertex C is odd, then the edge degree of q in T is even. By Remark 2.3, PBn(T) contains odd degree vertex. Hence PBn(T) is non-Eulerian.

Case 2 If the degree of cutvertex C is even, then the edge degree of q in T is odd. By Remark 2.3, PBn(T) contains even degree vertex. But, since every edge of T is a block, degree of the corresponding block vertex in PBn(T) is exactly one. Hence PBn(T) is non-Eulerian. This completes the proof.

References

- [1] R.Chandrasekhar, *Some Recent Studies in Graph Theory*, Ph.D. Thesis, Bangalore University, Bangalore, Karnataka State, India (2004).
- [2] B.R.Gudagudi, Some Topics in Graph Theory, Doctoral Thesis, Karnatak University, Dharwad, Karnataka State, India (1975).
- [3] F.Harary, Graph Theory, Addison-Wesley, Reading, Mass (1969).
- [4] F.Harary, Converging and packing in graphs-I, Annals of New York Academy of Science, 175(1970), pp-198-205.
- [5] V.R.Kulli, On minimally non-outerplanar graphs, Proc.Indian Nat.Sci.Acad., 41(1975), pp 276-280.
- [6] M.H.Muddebihal, Some Results in the Theory of Graphs, Ph.D. Thesis, Gulbarga University, Gulbarga, Karnataka State, India (1990).