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Abstract—This paper presents new absolute and relative con-
ditioning rules as possible solution of multi-level conditioning in
threat assessment problem.

An example of application of these rules with respect to target
observation threat model has been provided.

The paper also presents useful directions in order to manage
the implemented multiple rules of conditioning in the real system.

I. INTRODUCTION

Contemporary Command & Control systems operate with
multiple sensors in order to elaborate consistent and complete
information required for decision making [1]. These systems,
however, must face another very important requirement, which
is cooperation with other information systems. Dealing with
information of different processing levels is inevitable conse-
quence of the imposed demands, and requires specific tools for
fusion in order to take this diversity into account effectively.

Theory of Evidence by Dezert and Smarandache (DSmT)
[2] distinguishes two operations: combination and condition-
ing for fusion of uncertain information and integration of
uncertain pieces of information with confirmed i.e. certain
evidence respectively. Aware of this fact it is possible to deal
with the problem of multiple level fusion by usage of rules
of combination [3] and conditioning [4] as well. However, each
of these solutions has its drawbacks, and as it was presented
in [5], [6], in general neither is preferable over the other.
The main disadvantage of combination as multiple level fusion
operation is that it does not take into account the predominance
of the conditioning information from the external system over
the local sensor data, and in result it makes no distinction
between the information processing levels. On the other hand,
the main disadvantage of conditioning is that the condition is
treated, by definition, as an absolute and literate fact, which
is the assumption very hardly accepted in the real world.

For this reason another class of fusion rules, called relative
conditioning, has been invented. In this type of rules the pre-
dominance of the condition over the uncertain evidence is
stated explicitly, while the trust in the conditioning hypothesis
is not absolute by definition.

In this paper two of these rules will be presented as possible
solution of the multi-level conditioning [6] in threat assessment
problem.

II. NEW CONDITIONING RULES

Let Θ be a frame of discernment formed by n singletons
defined as:

Θ = {θ1, θ1, ..., θn}, n ≥ 2 (1)

and its Super-Power Set (or fusion space):

SΘ = (Θ,∪,∩, C) (2)

which means the set Θ is closed under union ∪, intersection
∩, and complement C respectively.

Let m(.) be a mass:

m(.) : SΘ → [0, 1] (3)

and a non-empty set A ⊆ It where It = θ1 ∪ θ2 ∪ ...θn is the
total ignorance.

Conditioning of m(.|.) becomes:

∀X ∈ SΘ,m(X|A) =
∑

Y ∈SΘ\∅
Y ∩A=X

m(Y ) +

+
∑

Y ∈SΘ\∅
Y ∩A=∅
X=A

m(Y ) · ωA + δAX ·m(X) · ω0 (4)

where:

δAX =

{
1, A = B

0, A 6= B
(5)

and ω0 and ωA are the weights for all sets which are com-
pletely outside of A, and respectively for all sets which are
inside or on the frontier of A.

ω0, ωA ∈ [0, 1], ω0 + ωA = 1 (6)

For a more refined/ optimistic redistribution, all masses of the
elements situated outside of A are redistributed, according to
the formula (7).

∀X ∈ SΘ,m(X|A) =
∑

Y ∈SΘ\∅
Y ∩A=X

m(Y ) +

+
m(X)∑

Y ∈SΘ\∅
Y⊆A

m(Y )6=0

m(Y )

∑
Y ∈SΘ\∅
Y ∩A=∅
X=A

m(Y ) · ωA + δAX ·m(X) · ω0 (7)



From the practitioner’s point of view these formulas provide
directions on how the mass of hypotheses not involved or
partially involved in condition should be redistributed. In order
to explain the idea of these rules it is suggested to consider a
simple example of a model consisting of three hypotheses: A,
B, and C, where A and B overlap each other, and C is disjoint.
Assume the condition is A.

For this example, application of the rule (4) will result in
the following action:

– mass of A and A∩B remain unchanged
– mass of B is transferred to A∩B
– mass of C is transferred to A
When applying the absolute version of the rule (4) all

masses are transferred totally as described above. Otherwise,
i.e. relative conditioning, the mass of C is weighted according
to the given ω0 and ωA.

Figure 1. Mass transfer in case of application of the rule (4)

Application of the rule (7) will result in the following action:
– mass of A and A∩B remain unchanged
– mass of B is transferred to A∩B
– mass of C is transferred to A and A∩B proportionally to

their masses

Figure 2. Mass transfer in case of application of the rule (7)

Similarly as for the rule (4) when applying the absolute
version of the rule (7) all masses are transferred totally as
described above. Otherwise, i.e. relative conditioning, the mass
C is weighted according to the given ω0 and ωA.

III. THREAT ASSESSMENT EXAMPLE

In order to illustrate application of the introduced rules it
is suggested to consider the following conditioning example
referring to the threat assessment problem. Assume the frame
of discernment is defined as:

Θ = {F,H,U,N} (8)

where:
– F denotes FRIEND,
– H denotes HOSTILE,
– U denotes UNKNOWN,
– N denotes NEUTRAL.

Additionally assume:

S = H ∩ U (9)
A = F ∩ U (10)
K = F ∩H (11)

J = F ∩H ∩ U (12)

where:
– S denotes SUSPECT,
– A denotes ASSUMED FRIEND,
– K denotes FAKER i.e. FRIEND acting as HOSTILE for

training purposes, [7], [8], [9], and [10]
– J denotes JOKER i.e. FRIEND acting as SUSPECT for

training purposes, [7], [8], [9], and [10].
Consider a scenario, where a local system, equipped with

sensors and performing target threat observation and infor-
mation fusion, gets informed by an external system about
its decision, referring to the observed target. The decision
transferred to the local system is that the target is FRIEND,
which performs a conditioning information.

Figure 3. Venn’s diagram of the observed target threat



Figure 3. shows a Venn’s diagram describing the tar-
get threat observation model, where information obtained
from the external system has been colored in gray. Notice
that the model refers to observation of the target threat
(not to the target threat in itself), which means it describes
what the target looks like (not what the target really is). This is
significant for justification why FAKER may be defined as
the intersection of FRIEND and HOSTILE, not as a subset
of FRIEND, which is by definition of FAKER in [7], [8], [9],
and [10].

Consider that the local system has already performed sensor
fusion and its results are summarized in basic belief assign-
ment (bba) below:

m(F ) = 0.2, m(H) = 0.1, m(U) = 0.1
m(A) = 0.1, m(S) = 0.1, m(K) = 0.1
m(J) = 0.2, m(N) = 0.1

Application of (4) leads to the following updated bba for
absolute (ω0 = 0 and ωA = 1) conditioning:

m(F |F ) = 0.3, m(H|F ) = 0, m(U |F ) = 0
m(A|F ) = 0.2, m(S|F ) = 0, m(K|F ) = 0.2
m(J |F ) = 0.3, m(N |F ) = 0

For the relative conditioning with the following weights
ω0 = 0.3 and ωA = 0.7 one should get:

m(F |F ) = 0.27, m(H|F ) = 0, m(U |F ) = 0
m(A|F ) = 0.2, m(S|F ) = 0, m(K|F ) = 0.2
m(J |F ) = 0.3, m(N |F ) = 0.03

For the absolute opposite (ω0 = 1 and ωA = 0) conditioning
one should get:

m(F |F ) = 0.2, m(H|F ) = 0, m(U |F ) = 0
m(A|F ) = 0.2, m(S|F ) = 0, m(K|F ) = 0.2
m(J |F ) = 0.3, m(N |F ) = 0.1

Application of (7) leads to the following updated bba for
absolute conditioning:

m(F |F ) = 0.233, m(H|F ) = 0, m(U |F ) = 0
m(A|F ) = 0.217, m(S|F ) = 0, m(K|F ) = 0.217
m(J |F ) = 0.333, m(N |F ) = 0

For the relative conditioning with the following weights
ω0 = 0.3 and ωA = 0.7 one should get

m(F |F ) = 0.223, m(H|F ) = 0, m(U |F ) = 0
m(A|F ) = 0.212, m(S|F ) = 0, m(K|F ) = 0.212
m(J |F ) = 0.323, m(N |F ) = 0.03

For the absolute opposite conditioning one should get:

m(F |F ) = 0.2, m(H|F ) = 0, m(U |F ) = 0
m(A|F ) = 0.2, m(S|F ) = 0, m(K|F ) = 0.2
m(J |F ) = 0.3, m(N |F ) = 0.1

Analysis of the obtained results shows that there are sub-
stantial differences in results between conditioning rules (4)
and (7) for the considered case. Depending on the particular

rate of belief (values of ω0 and ωA) in condition the mass
of the condition (FRIEND), as well as subsequent masses
of hypotheses contained in the hypothesis of the condition
(FAKER, JOKER, ASSUMED FRIEND) have been supplied
with masses of hypotheses not contained in the condition
(HOSTILE, UNKNOWN, SUSPECT, and NEUTRAL).

For both of the rules, in the first place the absolute condi-
tioning case has been considered as a specific circumstance
of relative conditioning. As the second, the relative condition-
ing has been performed with given weights of ω0 and ωA.
Then, the absolute opposite conditioning has been presented
as another special circumstance of relative conditioning.

The reason for the absolute opposite conditioning in this
case is purely illustrative. Theoretically, it could be useful
if the condition hypothesis was complex (expressed as union
or intersection of multiple hypotheses) and it was convenient
to consider the complement of the condition. However, in most
of the cases the condition, as output of the external system is
simple. Thus, it is very unlikely that such kind of conditioning
would be applied in threat assessment.

Regarding the distinction in the presented rules, in this case,
the essential difference between conditioning rules (4) and
(7) resides in the manner the mass of NEUTRAL hypothesis
is redistributed. For the rule (4) the mass of NEUTRAL is
transferred completely to the mass of FRIEND, while for
the rule (7) the mass of NEUTRAL is transferred to FRIEND,
JOKER, FAKER, and ASSUMED FRIEND proportionally
to their masses. In other words, in case of the rule (7)
the redistribution is performed with the higher degree of trust
in the adequacy of the target threat observation model. There-
fore it may be regarded as more optimistic in comparison
to pessimistic rule (4).

IV. CHOOSING THE PROPER CONDITIONING RULE

Choosing the proper rule is one of the most important
questions related to application of any fusion techniques
(conditioning and combination). Since there are many rules
of combination and conditioning [2], [5], [3], [4], and even
more possible fusion cases, the choice of any particular rule for
the particular case could be a topic of papers for the next few
decades. Moreover, since there are no existent standardized
fusion cases for particular domains the choice of the optimal
rule seems to be a philosophical problem.

Since in this paper there are two rules of conditioning
proposed the problem of selection of the proper one still
holds. Additionally, each of these rules introduces weights
(ω0 and ωA) in order to establish the ’relativity’ of the condi-
tioning, and setting particular values to these weights requires
a comment.

According to the knowledge of the authors [5], [3], [4],
and [6], in most of the cases selection of the particular rule for
conditioning (as well as combination) is done experimentally.
For the particular fusion task e.g. threat assessment in Com-
mand and Control system one chooses the rule which returns
the closest results to the expected values. However, even within
the particular fusion task it is possible to find situations,



where another rule returns results substantially better than the
previously selected one. That means two things:

– there is no universal rule of conditioning, correct in every
conditions,

– if that is so, the particular fusion task should be split for
at least two subtasks.

In other words, the particular rule of conditioning should
be selected dynamically according to specified circumstances
of information integration process.

In this section, the authors would like to define the factors
which may influence on the choice of the particular rule
of conditioning.

Quality of gathered information could be regarded as a basic
parameter that affects selection of conditioning rules. Further,
this parameter may be decomposed for two components refer-
ring to attribute (observation) model and data. Thus, the quality
aggregates both: model adequacy and data precision. The fun-
damental question is how these model adequacy and data
precision may be assessed and transformed into the quality
in order to make choice of conditioning rule?

Possible solution of this problem may reside in analysis
of bba subjected to conditioning. Bba, by definition, performs
a kind of distribution, where subsequent masses reflect the de-
gree of belief in particular hypotheses. If sensors are not
reliable relatively high mass will be transferred to hypothesis
describing complete ignorance. For instance, for the consid-
ered case it could be I = F ∪ H ∪ U ∪ N. By implication
if the sensors are reliable the mass referring to the complete
ignorance is zero. That may be regarded as the first insight
in data precision. Another inference on data precision may
be done by overview of distribution of mass over the rest
of the hypotheses. Conciseness of the distribution means
higher precision. Adequacy of the attribute (observation)
model, on the other hand, may be defined by compliance of
hypothesis of the highest mass with the hypothesis of the con-
dition. If there exists any relation between the highest mass
hypothesis and the condition, e.g. including or intersecting
they may be regarded as compliant. On the other hand if they
are disjoint they are regarded as noncompliant.

Referring the deductions above to the features of the pre-
sented rules a simple logic (briefly described in Table I) may
be applied in order to choose the proper conditioning rule.

Table I
CHOICE OF THE CONDITIONING RULE BASED ON MODEL ADEQUACY AND

DATA RELIABILITY

Model Data Quality Description Conditioning

poor poor poor mmax 6= Cond, m(Θ) ↑ absolute, (4)
poor good poor mmax 6= Cond, m(Θ) ↓ absolute, (4)
good poor poor mmax

∼= Cond, m(Θ) ↑ absolute, (7)
good good good mmax

∼= Cond, m(Θ) ↓ relative, (7)

If the highest mass hypothesis is not compliant with the con-
dition, which means the attribute (observation) model is not
adequate, no matter if the data are precise or not, in such
case absolute conditioning should be applied with no respect

to the attribute (observation) model. This may be achieved
by using the rule (4) with ω0 = 0 and ωA = 1.

If the mass referring to total ignorance is relatively high and
the highest mass hypothesis is compliant with the condition
that means that the sensor data are poor and the attribute
(observation) model is adequate. In such case absolute con-
ditioning should be applied with respect to the attribute
(observation) model which may be achieved by using the rule
(7) with ω0 = 0 and ωA = 1.

Finally, if the mass referring to total ignorance is relatively
low and the highest mass hypothesis is compliant with the con-
dition that means that the sensor data are reliable (good)
and the attribute (observation) model is adequate. In such
case relative conditioning should be applied with respect
to the attribute (observation) model which may be achieved by
using the rule (7) with ω0, ωA ∈ (0, 1), where: ω0 + ωA = 1.

As a summary of this section it is worth of notice that
particular values of the ’relativity’ weights (ω0 and ωA)
depend only on the specific configuration of the fusion system.
In the authors’ opinion it is pointelss to discuss any specific
values without reference to the particular system since there
are no general guidelines for presetting.

V. SELECTION OF CONDITIONING RULES - EXAMPLES

In order to illustrate the selection mechanism few more
examples have been delivered. However, in the first place, it is
suggested to reconsider the example from Section III. Table II
presents the summarized bba (before and after conditioning).
In this very case, before conditioning performed, the dominant
masses had referred to FRIEND and FAKER hypotheses,
which was compliant with the condition hypothesis (FRIEND).
That means the model was adequate. Additionally, the total ig-
norance mass has not been defined (as nonzero), which means
the data were reliable. According to Table I, in such case
the relative version of the rule (7) should be selected, which
was exactly what was decided.

Table II
EXAMPLE 1: BBA BEFORE AND AFTER CONDITIONING OPERATION

Threat \ bba m m(7)R(·|F )

F 0.2 0.223
H 0.1 0

U 0.1 0

A = F ∩ U 0.1 0.212

S = H ∩ U 0.1 0

K = F ∩ H 0.1 0.212

J = F ∩ H ∩ U 0.2 0.323

N 0.1 0.03

I = F ∪ H ∪ U ∪ N 0 0

In the next example it is suggested to consider bba given
in the second column of the Table III. In this case the biggest
mass has been assigned to total ignorance. Furthermore, there
is no predominance of any particular primary hypotheses [11]
(FRIEND, HOSTILE, UNKNOWN, NEUTRAL) or secondary



hypotheses [11] (ASSUMED FRIEND, SUSPECT, FAKER,
JOKER). That means that the gathered data are not reliable
and and the model adequacy has not been proven. Therefore
the absolute version of the rule (4) should be chosen.

Table III
EXAMPLE 2: BBA BEFORE AND AFTER CONDITIONING OPERATION

Threat \ bba m m(4)A(·|F )

F 0.1 0.56
H 0.1 0

U 0.1 0

A = F ∩ U 0.06 0.16

S = H ∩ U 0.06 0

K = F ∩ H 0.06 0.16

J = F ∩ H ∩ U 0.06 0.12

N 0.06 0

I = F ∪ H ∪ U ∪ N 0.4 0

In the last example it is suggested to consider bba given
in the second column of the Table IV. In this case the biggest
mass has also been assigned to total ignorance, which proves
relatively low sensor reliability. However, except m(I), there
is a predominance of FRIEND hypothesis over the other hy-
potheses. Thus the model be regarded as adequate. Therefore
the absolute version of the rule (7) should be chosen.

Table IV
EXAMPLE 3: BBA BEFORE AND AFTER CONDITIONING OPERATION

Threat \ bba m m(7)A(·|F )

F 0.16 0.422
H 0.1 0

U 0.1 0

A = F ∩ U 0 0.1

S = H ∩ U 0.06 0

K = F ∩ H 0.06 0.259

J = F ∩ H ∩ U 0.06 0.219

N 0.06 0

I = F ∪ H ∪ U ∪ N 0.4 0

In the presented procedure of selection of the conditioning
rules bba provides qualitative information on data reliability
as well as model adequacy. Analyzing the above examples,
some harsh reader could regard reasoning about the adequacy
of the model based on the bba as vague, due to the fact bbas
are affected with measuring errors, and it is possible these
errors influence on the decision whether a particular model
is adequate or not. However, it is important to notice that
in real systems these bbas are updated regularly, which enables
to improve statistically the reference for decision making.
That means that any predominance of a certain hypothesis
may be confirmed by the subsequent version of updated bba.

It is also a matter of convention how to deal with a particular
case when m(Θ) = m(I) is the maximal mass in the bba.
Assuming that the condition hypothesis does not refer to total
ignorance: On one hand, since bba influences both data relia-

bility and model adequacy it is justified to select the absolute
version of the rule (4). On the other hand, it is reasonable
to exclude the total ignorance hypothesis m(Θ) = m(I)
while deciding about the adequacy of the model, in order to
distinguish two aspects (qualitative features) of the gathered
bba, which is preferable by the authors.

VI. CONCLUSION

The introduced new rules of conditioning have been in-
vented as a response for problems emerging while applying
the existing absolute conditioning techniques in the real world.
Considering the condition as identical with the ground truth
may be useful in theory, however in practice it often performs
an assumption hard to accept [5]. Updating attribute fusion
results with evidence from the external system is an excellent
example for that. Each time the highly processed information
is used, no matter how good the system is, there is a risk that
the output information is corrupted or at least slightly changed
[12], [13].

The presented conditioning rules enable to set weights
in order to define the degree of belief in the external system
output. These weights should be treated as tactical and tech-
nical parameters of the system performing combination and
conditioning. Certainly, depending on the actual needs, they
may be fixed or changeable dynamically. However the exact
values should result from the particular system configuration
thus no theoretical preference is made.

In case of choosing a particular rule of conditioning it is
different, and some general guidelines may be established.
The proposed method of selection of the conditioning rules
may be applied in Command and Control systems, where
multiple rules may be implemented. In such case the choice
of the proper conditioning rule may perform an element
of so called Conditioning Management.
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