Solving the Naturalness Problem on Minimal Fractal Manifolds

Ervin Goldfain

Photonics CoE, Welch Allyn Inc., Skaneateles Falls, NY 13153, USA

Abstract

The “naturalness” problem stands out as one of the deepest mysteries of Quantum Field Theory (QFT) and cosmology. A vast array of proposals on how to tackle this challenge has been advanced over the years with no compelling experimental evidence and no major breakthrough. In this brief report we re-emphasize that the onset of the minimal fractal manifold near or above the electroweak scale provides a straightforward resolution of this problem.

Key words: Naturalness problem, Fine-tuning, Hierarchy problem, Higgs mechanism, Electroweak scale, Cosmological constant, Vacuum energy density, Minimal fractal manifold.

The “naturalness” problem (NP) can be traced back to the enormous numerical difference separating three fundamental scales of QFT and cosmology: the energy scale of electroweak interaction (M_{EW}), the Planck scale (M_{Pl}) and the vacuum energy density expressed in terms of the cosmological constant ($\Lambda_{cc}^{\frac{1}{2}}$) [1-3]. The “naturalness” hypothesis stems from the assumption that the ratio

$$\varepsilon = \frac{\Lambda_{cc}^{\frac{1}{2}}}{M_{EW}} \sim \frac{M_{EW}}{M_{Pl}} = O(10^{-15})$$

(1)
has a deep dynamical explanation that evades the need for fine tuning [1]. Many scenarios attempting to solve the NP have been put forward over the years, namely,

1) The Technicolor model,

2) Supersymmetry (SUSY),

3) Large Extra Dimensions models,

4) Warped Compactifications models,

5) Little Higgs theories,

6) Anthropic-based theories,

7) String/M theories,

8) Landscape and Multiverse scenarios.

Experimental evidence in favor of either one of these attempts is currently non-existing. In this context, we re-emphasize here that (1) follows naturally from placing QFT on a space-time support equipped with minimal deviations from four-dimensions $\varepsilon = 4 - D, \varepsilon \ll 1$ (called *minimal fractal manifold*) [4-12]. The interested reader is also directed to https://www.researchgate.net/profile/Ervin_Goldfain/publications for online access to many of our recent articles related to this topic.

References:

