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Abstract 
The theory of skeleton relational structures is very useful in the investigation of the 

isomorphism between structures in which relations play an important role. It is an important 

tool for model designers. This theory is also known as lattice theory. 
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 Introduction 

Quantum theory deviates in fundamental aspects from classical physics. Quantum theory 

appears to be ruled by quantum logic, while classical physics is ruled by classical logic. 

 

From contemporary physics we know that elementary particles behave non-classical. They 

can present themselves either as a particle or as a wave. A measurement of the particle 

properties of the object destroys the information that was obtained from an earlier 

measurement of the wave properties of that object.  

 

With elementary particles it becomes clear that that nature obeys a different logic than our old 

trusted classical logic. The difference resides in the relational structure of the corresponding 

models. In particular the modularity axiom of the skeleton relational structure differs. That 

axiom is weakened.  

 

Here we are not interested in quantum logic and classical logic as logic systems. We consider 

their structure as skeleton relational structures. 
 

Classical logic is congruent to an orthocomplemented modular lattice.  

 

Quantum logic is congruent to an orthocomplemented weakly modular lattice. Another name 

for that lattice is orthomodular lattice. 



 Lattices 

A subset of the axioms of the skeleton relational structure characterizes it as a half ordered 

set. A larger subset defines it as a lattice. 

A lattice is a set of elements 𝑎, 𝑏, 𝑐, … that is closed for the connections ∩ and ∪.  

 

∩ is called conjunction1. 
 

 
 
∪ is called disjunction. 
 

 
 

These connections obey: 

  

 The set is partially ordered. With each pair of elements 𝑎, 𝑏 belongs an element 𝑐, such 

that 𝑎 ⊂  𝑐 and 𝑏 ⊂  𝑐.  

 The set is a ∩half lattice if with each pair of elements 𝑎, 𝑏 an element 𝑐 exists, such 

that 𝑐 =  𝑎 ∩  𝑏.  
 The set is a ∪half lattice if with each pair of elements 𝑎, 𝑏 an element 𝑐 exists, such 

that 𝑐 =  𝑎 ∪  𝑏.  
 The set is a lattice if it is both a ∩half lattice and a ∪half lattice. 

 

The following relations hold in a lattice:  

 

𝑎 ∩  𝑏 =  𝑏 ∩  𝑎 
 

(𝑎 ∩  𝑏)  ∩  𝑐 =  𝑎 ∩  (𝑏 ∩  𝑐) 
 

𝑎 ∩ (𝑎 ∪  𝑏)  =  𝑎 
 

𝑎 ∪  𝑏 =  𝑏 ∪  𝑎 
 

(𝑎 ∪  𝑏)  ∪  𝑐 =  𝑎 ∪  (𝑏 ∪  𝑐) 
 

𝑎 ∪ (𝑎 ∩  𝑏)  =  𝑎 
 

The lattice has a partial order inclusion ⊂: 

 

a ⊂ b ⇔ a ⊂ b = a 

 

A complementary lattice contains two elements 𝑛 and 𝑒 with each element 𝑎 a 

complementary element 𝑎’ such that: 

                                                 
1 http://en.wikipedia.org/wiki/Logical_conjunction 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 



 

𝑎 ∩  𝑎’ =  𝑛 
 

𝑎 ∩  𝑛 =  𝑛 
 

𝑎 ∩  𝑒 =  𝑎 
 

𝑎 ∪  𝑎’ =  𝑒 
 

𝑎 ∪  𝑒 =  𝑒 
 

𝑎 ∪  𝑛 =  𝑎 
 

𝑒 is the unity element; 𝑛 is the null element of the lattice 

 

An orthocomplemented lattice contains two elements 𝑛 and 𝑒 and with each element 𝑎 an 

element 𝑎” such that: 

 

𝑎 ∪  𝑎” =  𝑒 
 

𝑎 ∩  𝑎” =  𝑛 
 

(𝑎”)” =  𝑎 
 

𝑎 ⊂  𝑏 ⟺  𝑏” ⊂  𝑎” 
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2.1 Types of lattices 

 Distributive lattice 

A distributive lattice supports the distributive laws: 

 

𝑎 ∩ (𝑏 ∪  𝑐)  =  (𝑎 ∩  𝑏)  ∪  ( 𝑎 ∩  𝑐) 
 

𝑎 ∪ (𝑏 ∩  𝑐)  =  (𝑎 ∪  𝑏)  ∩  (𝑎 ∪  𝑐) 
 

 Modular lattice  

A modular lattice supports: 

 

(𝑎 ∩  𝑏)  ∪ (𝑎 ∩  𝑐)  =  𝑎 ∩ (𝑏 ∪  (𝑎 ∩  𝑐)) 
 

 Weak modular lattice  

A weak modular lattice supports instead: 

 

There exists an element 𝑑 such that 

 

𝑎 ⊂  𝑐 ⇔  (𝑎 ∪  𝑏) ∩  𝑐 

 =  𝑎 ∪ (𝑏 ∩  𝑐)  ∪ (𝑑 ∩  𝑐) 

 

where 𝑑 obeys: 

 

(𝑎 ∪  𝑏)  ∩  𝑑 =  𝑑 
 

𝑎 ∩  𝑑 =  𝑛 
 

𝑏 ∩  𝑑 =  𝑛 
 

[(𝑎 ⊂  𝑔) 𝑎𝑛𝑑 (𝑏 ⊂  𝑔)  ⇔  𝑑 ⊂  𝑔 
 

 Atomic lattice  

In an atomic lattice holds  

 

∃𝑝 𝜖 𝐿 ∀𝑥 𝜖 𝐿 {𝑥 ⊂  𝑝 ⇒  𝑥 =  𝑛} 
 

∀𝑎 𝜖 𝐿 ∀𝑥 𝜖 𝐿 {(𝑎 <  𝑥 <  𝑎 ∩  𝑝) 

 

 ⇒  (𝑥 =  𝑎 𝑜𝑟 𝑥 =  𝑎 ∩  𝑝)} 
 
𝑝 is an atom 

 

(18) 

(19) 

(20) 

(21) 

(22) 
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(26) 
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 Examples 

Both the set of elements of quantum logic and the set of closed subspaces of a separable 

Hilbert space Ң have the structure of an orthomodular lattice. In this respect these sets are 

congruent. 

 

In quaternionic separable Hilbert space, an atom is an eigensubspace of a corresponding 

operator. That eigensubspace is spanned by eigenvectors of another operator. The atom 

specifies a state. 

In a complex number based Hilbert space, states exist in pure and in mixed form. 

 

Classical logic has the structure of an orthocomplemented distributive modular and atomic 

lattice. 
 

Quantum logic has the structure of an orthomodular lattice. That is an orthocomplented 

weakly modular and atomic lattice.  
 

The set of closed subspaces of a Hilbert space also has that structure.  

  



2.2 Lattice elements 
Lattice elements can, but must not be propositions. In logic systems the elements are 

considered as propositions. This is why the name “quantum logic” has confused many 

physicists. For the purpose of model generation the elements of this structure can better be 

interpreted as modular construction elements. 

 

Thus quantum logic has a treacherous name. It can be considered as a logic system and it can 

be considered as a skeleton relational structure of a modular system. In this skeleton relational 

structure the elements can be interpreted as building blocks and as composites of building 

blocks. With this interpretation the skeleton relational structure can become part of a recipe 

for modular construction. 

 Propositions 

In Aristotelian logic a proposition is a particular kind of sentence, one which affirms or denies 

a predicate of a subject. Propositions have binary values. They are either true or they are false. 

Propositions take forms like "This is a particle or a wave". In mathematical logic, 

propositions, also called "propositional formulas" or "statement forms", are statements that do 

not contain quantifiers. They are composed of well-formed formulas consisting entirely of 

atomic formulas, the five logical connectives2, and symbols of grouping (parentheses etc.). 

Propositional logic is one of the few areas of mathematics that is totally solved, in the sense 

that it has been proven internally consistent, every theorem is true, and every true statement 

can be proved. Predicate logic is an extension of propositional logic, which adds variables and 

quantifiers. 

Predicates may accept attributes and quantifiers. The predicate logic is also called first order 

logic. A dynamic logic can handle the fact that predicates may influence each other when 

atomic predicates are exchanged. 

2.3 Hilbert space 
The set of closed subspaces of an infinite dimensional separable Hilbert space is lattice 

isomorphic with the set of elements of a an orthomodular lattice. This set makes clear that the 

skeleton relational structure owns other interpretations than the interpretation as a logic 

system of propositions. What is the added value of the Hilbert space model? 

It adds the superposition principle and in the form of Hilbert vectors it shows finer detail than 

the skeleton relational substructure.  

                                                 
2 http://en.wikipedia.org/wiki/Logical_connective 

http://en.wikipedia.org/wiki/Logical_connective
http://en.wikipedia.org/wiki/Logical_connective


 Restrictions 

The skeleton relational structures can only model countable sets of discrete elements. The 

structures offer no means for modeling continuums. 

The axioms that define these structures specify relations between the elements. These axioms 

do not specify the content of the elements. 

 

The axioms do not provide a means to implement dynamics. The skeleton relational structures 

can only model a static status quo. 

 

These restrictions also hold for separable Hilbert spaces. 

This does not say that the Hilbert space cannot describe the change of the data that is stored in 

the eigenspaces of its operators. It means that the control of this change is housed outside the 

Hilbert space. 

  



 Hilbert logic 

The set of elements of traditional quantum logic is lattice isomorphic with the set of closed 

subspaces of a separable Hilbert space. However there exist still significant differences 

between this logic system and the Hilbert space. It is interesting to study where quantum logic 

differs from this substructure of separable Hilbert spaces. 

 

The gap between the two structures can be closed by refining the specification of quantum 

logic until it becomes the specification of Hilbert logic.  

 

Step 1: Add to each element as an extra attribute a numeric value that gets the name relevance 

factor. 

Step 2: Require that linear combinations of atomic elements also belong to the new logic 

system.  

Step 3: Introduce the notion of a relational coupling measure between two linear elements. 

This measure has properties that are similar to the properties of the inner product of Hilbert 

space vectors. 

Step 4: Close the subsets of the new logic system with respect to this relational coupling 

measure. This closure adds new elements that are the equivalents of Hilbert vectors. Sets of 

Hilbert vectors span Hilbert subspaces. 

The relevance factor and the relational coupling measure can have values that are taken from 

a suitable division ring3. The resulting logic system will be called Hilbert logic.  

4.1 Similarity with Hilbert space 
The addition of the relevance factor installs the superposition principle. A linear combination 

of linear elements is again a linear element. 

In this way the Hilbert logic is lattice isomorphic as well topological isomorphic with the 

corresponding Hilbert space. 

Due to this similarity the Hilbert logic will also feature linear operators. 

In a Hilbert logic, linear operators can be defined that have linear atoms as their eigen-

elements. The eigenspace of these operators is countable. The eigenvalues are numbers that 

introduce geometry into the model. 

Linear elements are the equivalents of Hilbert vectors. General basic modularization structure 

elements are the equivalents of (closed) subspaces of a Hilbert space. 

The measure of the relational coupling between two linear elements is the equivalent of the 

inner product between two Hilbert vectors. 

 

This intermezzo merely explains that the only difference between quantum logic and the set 

of closed subspaces of a separable Hilbert space is the superposition principle. 

4.2 Norm 
The modulus of the relevance factor can be used to define the notion of the norm of the 

element. 

4.3 Interdependent 
Two elements are interdependent when their relative relevance factor is non-zero. 

                                                 
3 The restriction to a division ring is taken from the fact that also Hilbert space restricts its 

numbers to elements of a division ring. 



4.4 Dimension 
The elements of Hilbert logic have a dimension. It is the number of mutually independent 

normed elements that span the element. 

4.5 Free elements 
The relevance factor can be used to define the notion of free elements. 

If the modulus of the relevance factor is maximized at a fixed value, for example unity, then a 

free element can be defined as an element for which this maximum is reached. It means that 

free elements cannot be considered as members of a superposition. On the other hand free 

elements can be superpositions of bounded elements. 

When used in this way the relevance factor takes the role of a probability amplitude. 

4.6 Binding building blocks and encapsulating their relations. 
The superposition principle is the driving force behind the binding of building blocks into 

composites. Composites are construction elements that can be written as linear combinations 

of more basic building blocks.  

 

In fact the composites are spanned by vectors that are elements of the constituents.  

 

Thus, the constituents of composites are not free elements. Instead they are bounded elements. 

The constituents lose their individuality and the relations in which these constituents play a 

role become less apparent. With other words, the superposition principle installs the relational 

encapsulation of the constituents of the composite. 

 
Part of the binding is due to the embedding of the Hilbert subspaces and their content in corresponding 

subspaces of the Gelfand triple. This will be treated later. 


	1 Introduction
	2  Lattices
	2.1 Types of lattices
	2.1.1 Distributive lattice
	2.1.2 Modular lattice
	2.1.3 Weak modular lattice
	2.1.4 Atomic lattice
	2.1.5 Examples

	2.2 Lattice elements
	2.2.1 Propositions

	2.3 Hilbert space

	3  Restrictions
	4 Hilbert logic
	4.1 Similarity with Hilbert space
	4.2 Norm
	4.3 Interdependent
	4.4 Dimension
	4.5 Free elements
	4.6 Binding building blocks and encapsulating their relations.


