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A definition of G is derived using the product of two Planck point masses and a defi-
nition of ~ based on the speed of light in vacuum and geometry. The theoretical value
of G is found to be 6.74981057667161 × 10−11 m3 kg−1 s−2 yielding a relative accuracy
error of the CODATA 2010 G-value of −1.1255%. One experiment resulted in a value
with a smaller relative accuracy error than the CODATA 2010 G-value of −0.5098%.
Both rest and relativistic mass product equations are derived. These equations relate the
relative spacetime spin frequency ωs, the relative orbital frequency ωo and (relativistic
equation only) the Lorentz factor γ describing relative linear speed of two bodies to the
mass product. The Planck mass is a special case mass with ωsωo = ω2

planck = 1 s−2. The
theoretical value of the Planck mass was found to be 2.16039211144077×10−8 kg. The
relative accuracy error of the CODATA 2010 Planck mass value is 0.7461%. This error
is attributed to use of the different definition of ~. When derived from both ~ and G
constants as well as the rest mass product equation, three kilogram unit definition can-
didates are all inconsistent. The candidate derived from the rest mass product equation
is the only candidate that has equal second and meter exponents suggesting a kind of
symmetry. This definition is considered the nominal kilogram unit definition. The other
two candidates are considered to be artifacts of the ~ and G constants.
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1 Introduction

The Newton gravitational constant is of fundamental impor-
tance in Newtonian mechanics and general theory of relativ-
ity. The value of the constant has been determined by ex-
periments and at present no theoretical definition of its value
based on more fundamental constants such as the speed of
light in vacuum is widely known. In this paper I present such
a definition of the constant.

2 Derivation of the Newton gravitational constant

2.1 Constant derivation

The published CODATA 2010 value of the Newton gravita-
tional constant G is 6.67384(80) × 10−11 m3 kg−1 s−2 with a
relative standard uncertainty ur = 1.2×10−4 (TABLE XL) [1].
For the rest of this paper that value is referred to as Gexp.

The Planck mass is

mP =
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The product of two Planck point masses is then
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After expansion of ~ using the definition from [2]
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Reorganize
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Here there is 2π times a spacetime spin specific volume
divided by G when analyzed using the spacetime spin toy
model of [2]. The special theory of relativity lets us know that
the mass of a body increase with increased speed of move-
ment of the body relative to a reference body. Therefore I
expect mass contributions from relative spacetime spin, rel-
ative orbital motion, and relative linear motion to be part of
the equation and this require three factors. If the 3-spacetime
spin volume set is expanded

m01m02 = 2π

4
3
πr3

1

4
√

(πr2
1)3(πr2

1)3(πr2
1)3(πr2

1)3G

Casper Spanggaard. On the Nature of the Newton Gravitational Constant 1



CC BY-NC-ND 4.0 Intl. ithought

then the individual mass contributions can be seen. The
fourth factor seems misplaced thereby illustrating the some-
what weird division of geometric information that is partially
encoded in ~ and G and that complicates interpretation. How-
ever this fourth factor does give a hint as to the structure of
the G definition equation.G must remove the factor. Let us for
the moment assume that G also removes the 2π factor then

G = 2π 4

√
1

(πr2
1)3

k

where k is some factor such that the experimentally de-
termined value Gexp is within an acceptable relative accuracy
error. The constraints are satisfied for

k ≈ 4
√

c0

A definition of G is then

G = 2π 4

√
c0

(πr2
1)3

= 6.74981057667161 × 10−11 m3 kg−1 s−2

(2)

However the additional factor

4
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must be accounted for in the mass product equation under
derivation
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2.2 Experimental Newton gravitational constant accu-
racy

Accuracy of the experimental values of G relative to the theo-
retical value is considered. With a theoretical value given by
(2) the relative accuracy error of several experimentally deter-
mined values are listed in table 1. There is a general tendency
of the experimentally determined values to be smaller than
the theoretical value. I have included the value from some ex-
periments that have significantly lower relative accuracy error
than the CODATA 2010 value.

3 Mass product equations

3.1 Rest mass product equation

The centripetal acceleration is

ac =
v2

r
= rω2 (4)

Equating the gravitational force between two bodies to the
centripetal force using (4)

Experiment /

source
Experiment
G-value
(10−11 m3 kg−1 s−2)

Relative
accuracy
error

CODATA 2010 [1] 6.67384 −1.1255%
Atom interf. #1 [3] 6.693 −0.8417%
Atom interf. #2 [4] 6.67191 −1.1541%
PTB experiment [5] 6.71540 −0.5098%

Table 1: Some experimentally determined values of G and their rel-
ative accuracy error.

Gm01m02

r2 = m01ac = m01rω2

and rearranging then

m01m02 =
m01ω

2r3

G
(5)

Comparing (3) to (5), I notice that ω2 is missing at the
right side of (3). This relative angular frequency squared
modifier must describe both relative spacetime spin and or-
bital motion of a two-body point mass system since those are
the two components of rest mass. When split into its compo-
nents

ω2 = ωsωo

where ωs is relative spacetime spin frequency and ωo is
relative orbital frequency of the two bodies. Then
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Reorganize and the rest mass product equation is
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where ωs is relative spacetime spin frequency and ωo is
relative orbital frequency of the two bodies.

3.2 Relativistic mass product equation

Let γ be the Lorentz factor. Then

γm01γm02 = γ2m01m02 =

γ2 4
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Reorganize and the relativistic mass product equation is
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where ωs is relative spacetime spin frequency, ωo is rela-
tive orbital frequency of the two bodies and γ is the Lorentz
factor describing relative linear speed of the two bodies.

4 The Planck mass

The Planck mass can be found using (6) as

mP =
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= 2.16039211144077 × 10−8 kg

where

ωsωo = ω2
planck = 1 s−2

The published CODATA 2010 value of the Planck mass
is 2.17651(13) × 10−8 kg with a relative standard uncertainty
ur = 6.0 × 10−5 (TABLE XLI) [1]. This result in a relative
accuracy error of the CODATA 2010 Planck mass value of
0.7461%. The error is attributed to use of the different defini-
tion of ~ from [2].

5 Kilogram unit definition

Consider the unit of (6)

m
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Then the unit of mass derived from (6) is

m−
7
8 s−

7
8 = kg (7)

which is different from what was derived from the re-
duced Planck constant in [2]

s2m−6 = kg (8)

Consider the unit of G derived from (2)
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Then the unit of mass derived from (2) is

m
17
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which is different from both (7) and (8). ~ and G constants
have their unit defined such that (1) gives kilogram unit, but

that the kilogram unit of the constants do not correspond to
the same physics. When the constants are defined using the
speed of light in vacuum, the derived kilogram unit defini-
tion candidates are inconsistent. (7) is the only kilogram def-
inition candidate that has equal second and meter exponents
suggesting a kind of symmetry. I consider (7) to be the nom-
inal kilogram unit definition and (8) and (9) to be artifacts of
the ~ and G constants.

6 Conclusion

I derived a definition of G using the product of two Planck
point masses and a definition of ~ based on the speed of light
in vacuum and geometry as (2). The theoretical value of G
was found to be

6.74981057667161 × 10−11 m3 kg−1 s−2

The relative accuracy error of the CODATA 2010 G-value
is −1.1255%. One experiment resulted in a value with a
smaller relative accuracy error than the CODATA 2010 G-
value of −0.5098%.

Both rest and relativistic mass product equations were de-
rived. These equations relate the relative spacetime spin fre-
quency ωs, the relative orbital frequency ωo and (relativistic
equation only) the Lorentz factor γ describing relative linear
speed of two bodies to the mass product.

The Planck mass is a special case mass with

ωsωo = ω2
planck = 1 s−2

The theoretical value of the Planck mass was found to be

2.16039211144077 × 10−8 kg

The relative accuracy error of the CODATA 2010 Planck
mass value is 0.7461%. This error is attributed to use of the
different definition of ~.

When derived from both ~ and G constants as well as the
rest mass product equation, the three kilogram unit defini-
tion candidates are all inconsistent. The candidate derived
from the rest mass product equation is the only candidate that
has equal second and meter exponents suggesting a kind of
symmetry. This definition is considered the nominal kilogram
unit definition

kg = m−
7
8 s−

7
8

The other two kilogram unit definition candidates are con-
sidered to be artifacts of the ~ and G constants.
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