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Mainstream cosmology proclaims the cosmic expansion is accelerating, by mysterious “dark 
energy” accounting for 70% of the cosmos. This paper “decelerates” it to the critical expansion, 
by reinterpreting cosmological observation data, free of parameter fitting—via a relativistic law 
on how the fundamental particle’s blue- or redshift diminishes the particle’s observation 
probability, namely, the observability of the event that emitted the particle. The event’s 
observability reflects the degree of resonance in length scale, between the event and the observer. 
The law roots in the event-size’s being the multiplicative product (measured in   ) of conjugate 
uncertainties, as the Heisenberg uncertainty principle implies. Redshift and observability, though 
each varying with relativity, covary into the law, per the principle of relativity—also per the 
uncertainty principle herein generalized for relativity. Agreeing with the Barbour ‘timelessness,’ 
the law holds in particle physics, evaporates “dark energy,” and potentially dissolves two other 
cosmological enigmas, all without numerical tweak.  
 
Subject Areas: Measurement theory (quantum mechanics) (03.65.Ta), Wave propagation and 
interactions (04.30.Nk), Dark energy (95.36.+x)  
 

I. INTRODUCTION  
 
 Redshift z is (λ/λ0) – 1, where λ is the observed wavelength at the observer, and λ0 
the proper wavelength at the wave-emitting event. Unless otherwise stated, redshift [z:   
(–1, ∞)] covers blueshift [z: (–1, 0)], and the cosmological redshift is positive. The paper 
shows, as a law, how the redshift itself compromises the observability—namely, 
observation probability—of an event. The law dismisses “cosmic acceleration” [1–3] and 
returns the cosmos to the critical expansion [4,5], within observational uncertainty.  
 The most celebrated “evidence of cosmic acceleration” has been the Type-Ia 
supernovae’s ‘luminosity-distance vs. redshift’ [1–3]—as interpreted by the cosmological 
model [4,6] that introduces the dark-energy density ΩΛ. Other “supporting evidence,” 
such as from the cosmic microwave background (CMB) [7], etc. [8], for correlation, also 
roots in the same parameter-space featuring ΩΛ. While welcoming ΩΛ’s seeming 
theoretical convenience, we are “solving” the mystery by creating another; moreover, 
phenomenological correlation unnecessarily implies physical causation.  

As a preview, Fig. 1 depicts the law [see Eq. (12)] on how the event observability  
φ  

(via any elementary particle as a medium) decreases from 100% anchored at z  0, down 
to zero at z ‘ ’ −1 (extreme of blueshift) or ∞ (extreme of redshift). Therefore, in the 
universe of general relativity (GR), the observability—or the effectiveness of 
luminosity—of a star drops to 47%, as cosmological redshift z equal to 1; to near zero, as 
z approaching infinity. In other words, the compromise on the event observability reflects  
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FIG. 1. Functional form of the event’s observability  (namely, the unitless 
efficiency of the event’s intrinsic emission of any kind—after correction for all 
factors other than redshift, e.g., the event-to-observer luminosity distance):  

a) , where  (0, 1) is the radial speed of the event in 
(stochastic) special relativity (SR), per Eq. (6), and  

b) , where   is the radial redshift of the event’s emission in 

general relativity (GR), per Eq. (12). For radial blueshift  (–1, 0),  is 
the same curve, but left-right reversed. Both redshift and blueshift diminish 
the event’s observability.  
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the mismatch between λ and λ0, agreeing with the common knowledge that  ‘ ’ 0 and 
∞ be unobservable (as the blackbody radiation has reminded us). By contrast, behind the 
“cosmic acceleration,” the subliminal belief that the event observability is z-independent 
fails the sanity check.  
 We coin such variation as the law of relativistic observability compromise (ROC). 
The dimming effect deceives us to believe the cosmic objects ‘were’ farther than 
expected, “owing to acceleration.”  

The law is counterintuitive, because, in daily life, we see light ‘only’ from events 
moving orders-of-magnitude slower than light, causing no discernible loss of 
observability. For instance, even in the Large Hadron Collider (LHC) [9], the light-
emitting collision events (between near–light-speed mass particles) are mostly speedless; 
even in the synchrotron, the light-emitting events are tangent to the circulating electrons’ 
orbit and ‘fixed’ to the lab (though the electron speed is relativistic).  

The law is imperative, because, in measuring wavelength, we have neither resolution 
for zero nor capacity for infinity, that is, cannot observe the extremes of blue- and 
redshift.  
 In GR, the ratio λ/λ0 equals LOB/LPP, where a) LOB is the event’s observed length, 
scaled at the observer, and b) LPP the event’s proper length, scaled at the event—and 
virtually at the observer, thanks to the principle of relativity [10–12]. Per the ‘new’ law, 
with redshift z being (LOB/LPP) – 1, event observability  

φ  reflects the degree of resonance 
in length scale, between a’) the proper-observer–scaled event and b’) the proper-event–
scaled observer.  
 The twins’ relation between redshift z and observability  

φ  a) surfaces from stochastic 
special relativity (SR), introduced herein as a scaffold, and b) sublimes into a law, by the 
principle of relativity.  
 The argument begins with Postulate 0: In quantum mechanics (QM), event 
observability is the probability of occurrence of the structureless event-to-observer 
vectoring particle (namely, elementary particle) at the observer. Congruently, event 
observability is the observable event-fraction, that is, the ratio of the observable event-
size (manifested by the particle) over the proper event-size. The default unit for event-
sizes is  for it is impartial between any and all pairs of conjugate observables. In 
‘classical’ SR and QM, the observable event-size  equals Δ(r)Δ(pr)—i.e., the product 
of a) the uncertainty in position increment r and b) that in momentum pr. Likewise, the 
proper event-size  equals Δ(τ)Δ(m0)—i.e., of a’) the uncertainty in proper-time 
increment τ and b’) that in rest-mass m0. At face value, the event-fraction σOB /σ PP  (≡φ )  
becomes the event observability.  
 Stochastic SR modifies the event observability (to  

φ , in notation) by further asserting 
the speed of light shows a) an a priori constant expectation-value shared by all event-
observer pairs but also b) an uncertainty inherent and specific to each event-observer pair. 
The speed of light must manifest its statistical nature in observation. It is the definition of 
observability, along with the uncertainty in the speed of light, that unveils the law.  
 

II. EVENT NETWORK  
 

λ =

 ,
σOB

σ PP
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 In QM, ‘event’ refers to a fundamental happening, whereas ‘observer’ to an 
observation event, which constitutes a generalized observer (as opposed to a conscious 
observer, such as us). On top of its usual Einsteinian context in relativity, ‘observation’ 
now emphasizes the observer’s ‘seeing along one dimension (1D)’ (see below).  
 Any event takes observation for an operational definition. As a model, reality is an 
evolving network among (observation) events, each of which terminates one set of 
elementary particles and then emits another set, entangled by the event. An observation 
event (i.e., observer) is under multiple subsequent observations, and from one event to a 
next propagates an elementary particle. A composite particle thus corresponds to a 
contiguous subsection of the event network.  
 Events are geometric elements of physical reality, so elementary particles are the 
event’s fragments. No elementary particle reveals its intact identity alone, in that its 
existence means already in interaction with, and as part of, the upcoming observer.  
 As Postulate 1, any event observation is along the radial ‘1D’ space—defined by the 
event-observer pair—that accommodates the projection of the elementary particle’s total 
angular momentum J relative to the observer. For instance, an incident photon projects 
its orbital angular momentum as well as intrinsic spin (one   ), with the latter as helicity, 
onto the 1D [13,14]. The 1D forbids any tangential component to the observer. With no 
event in between the two defining events, the 1D connection differs from its counterpart 
in classical geometry. The following discussion focuses on the 1D, along with the new 
connotation.  
 

III. MASS AND OBSERVABILITY  
 
 Per the Heisenberg uncertainty principle, events in spacetime are not volumeless 
mathematical points, that is, not as required of the (fictitious) measurements that would, 
from a ‘point’ source to a ‘point’ detector, always reproduce the speed-of-light constant. 
‘Classical’ SR fails to provide a template for logging incidental (that is, prestatistical or 
raw) data, as sub- and superluminality may and should occur because of ‘noise.’  
 A physical constant is an a priori mathematical constant, but with uncertainty in 
(statistical) observation. Per incidental (prestatistical) measurement, the speed of light is a 
random variable cR—imaginably needed for us, on further cR measurements, to a) 
renormalize the scale of speed by resetting the new 〈cR〉 to one and then b) update Δ(cR), 
where 〈_〉 is the statistical expectation and Δ(_) the standard deviation [15]. It is our 
theoretical assertion that 〈cR〉 (≡ c) = 1. In the similar sense,    is constant.  
 To provide templates for logging incidental data, SR becomes stochastic (see 
Appendix A, for derivation):  
 

 cR  t( )2
− r

cR

⎛

⎝⎜
⎞

⎠⎟

2

= cR  τ( )2
 (or  t
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E
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⎛

⎝⎜
⎞
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with t being time increment, and E energy—per Postulate 2: Speed-of-light cR is a 
random variable serving as the ‘timeless’ yardstick specific to the prestatistical 
(incidental) event observation—which the stochastic dynamic variables [tilded in 
notation; see Eqs. (1) and (2)] describe. Equations (1) and (2) result from three additional 
premises: a) convergence of stochastic SR to ‘classical’ SR, in the non-QM limit, b)       
 t - E,   r - pr , and  τ - m0  conjugation (see Appendix B), and c) operational definition of cR 
being r/t, as τ = m0 = 0.  Equations (1) and (2) represent beyond a unit change of 
variables, which requires a conversion constant (e.g., c), not a random variable (e.g., cR).  
 Unlike ‘classical’ SR, stochastic SR offers every event (as well as mass-carrying 
particle) life and essence, namely, proper-time increment 〈τ 〉 and rest-mass 〈m0〉, both 
dictating (and being quasi dictated by) the relations among fundamental uncertainties in 
the event observation (see Appendix C):  
 

    1
4

τ 2 Δ(c1, R )⎡⎣ ⎤⎦
2
= Δ(r)[ ]2 − Δ(t)[ ]2 ,    (3) 

 

    1
4
m0

2 Δ(c1, R )⎡⎣ ⎤⎦
2
= Δ(pr )[ ]2 − Δ(E)[ ]2 ,   (4) 

 
where Δ(c1, R ) ≡ Δ(cR ) cR . [As a flaw, owing to Δ(c1, R ) ‘= ’ 0, ‘classical’ SR leaves 〈τ〉 
and 〈m0〉 indeterminate and predicts Δ(r) = Δ(t)  and Δ(pr ) = Δ(E)  (see Appendix A, for 
algebra) for all entities, erroneously including (mass-carrying) events and mass-carrying 
particles.] In addition, gravity physics mandates the speed of light deviate from constancy 
in observation if and only if gravity appears [11–13], that is, in observing a quantum 
event,  
 
   Δ(cR ) > 0 ⇔  " m0 > 0 and τ > 0( )."    (5) 
 
Equations (3)–(5), along with the measurement principle of Δ(_) > 0, indicate Δ(r)Δ(pr)  > 
 Δ(t)Δ(E), as expected of the space-time asymmetry in QM.  
 Equations (1) and (2) lead to the law of ROC in stochastic SR (see Appendix D):  
 
   

 
1+ βR

2( ) 1+ φ( ) = 2 ,      (6) 

 

   
 
βR ≡

r
t

=
r
t

⎛
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⎞
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φ ≡
σOB  ≡  Δ( r)Δ( pr )[ ]
σ PP  ≡  Δ( τ )Δ( m0 )[ ] ,      (8) 

 
where  is the event observability, with each constituent   

φ
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Δ( X) = Δ(X)[ ]2 + 1

4
X 2 Δ(c1, R )⎡⎣ ⎤⎦

2
,   (9) 

 
in Eq. (8). As another random variable, βR is the event’s incidental velocity, relative to 
the immediate follow-on mass-carrying entity, which is either the elementary particle or 
the observer (to whom the event emits a massless elementary particle). Via Eq. (9),  σ PP  
[defined in Eq. (8)] becomes proper of—because Δ(c1,R) is characteristic of—the event 
observation; in comparison, σ PP  [≡ Δ(τ)Δ(m0)] is proper only of the event, which would 
be virtual if unobserved, that is, if Δ(c1,R) undefined.  

Equation (6), with Δ(_) > 0, enforces 〈βR〉 ≠ 0 (see Appendix E), namely, 0 < ⎥〈βR〉⎢  
(< 1), and 0 <  < 1. Self observing is therefore infeasible, rendering a) 〈X〉Δ(c1,R) ≠ 0 in 
Eq. (9) and b)  σOB >σOB  [≡ Δ(r)Δ(pr)] and  σ PP >σ PP . Besides, Δ(c1,R) couples the entire 
set of  Δ( X),  only when none of the corresponding 〈X〉 is zero, which is always true in 
stochastic SR. Stationarity, with ‘〈r〉 = 〈pr〉 =⎥〈βR〉⎢= 0,’ refers to an approachable but 
unreachable limit.  
 

IV. SPIN AND EVENT-SIZE  
 

The section verifies Eq. (6), in the triple limit of a) the event is speedless to the 
observer, b) Δ(c1,R) vanishes [in Eq. (9)], and c) the observed elementary particle from the 
event has quasi ‘completed’ its interactional redshift. [Limit ‘a)’ includes the head-on 
collision between a particle and its antiparticle, at any same speed to our lab.]  

Per Postulates 1 and 2, event-size  σOB  [in Eq. (8)] reduces to σOB that equals the 1D 
projection-magnitude of the particle’s total angular momentum J [13,14], where J is the 
vectorial sum of the intrinsic spin S and orbital angular momentum L. Observability  

φ  
becomes a rational number, per the quantization of angular momentum.  

An elementary particle free of S and L would violate the Heisenberg uncertainty 
principle (i.e., σOB ≥   / 2),  for squeezing  σOB  (>σOB) and hence σOB to zero, that is, 
below   /2. Owing to never forbidding L’s projection from being zero, Nature prohibits 
spin-zero elementary (structureless) particles—agreeing with E. Wigner’s seminal 
analysis on the Lorentz group [16,17] of SR. [The “discovered (spin-zero) Higgs boson” 
cannot be ‘elementary’ (see Appendix F).] By the same token, a massless elementary 
particle’s S must project onto the 1D, creating the particle’s nonzero helicity [16,17] to 
warrant its (nonzero) observability in case L’s projection is zero.  
 A formal derivation (see Appendix G) shows  
 
    τ̂ ,  m̂0[ ] = −2iÎ ,      (10) 
 
with ^ labeling quantum operators and  being the identity operator—and the doubling 
in commutator ‘size’ is a mathematical mandate, so far missing in the literature. As a 

 
φ

Î
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check, because a) σ PP >σOB  and b) the smallest nonzero increment in angular 
momentum is   / 2 , the Heisenberg uncertainty principle (σOB ≥   / 2)  implies  
 
    σ PP ≥   ,        (11) 
 
which results from Eq. (10) as well [see Appendix G, Inequality (G10)]. For distinction, 
we name Inequality (11) the proper uncertainty principle.  
 Consider the mildest electron-positron (e–-e+) pair-production event that is speedless 
to the lab. Per Eq. (6), the default event-fraction  

φ  of 1/2 ‘observed’ by either e– or e+—
or by a ‘lab-stationary’ observer who detects either e– or e+—leads to the proper e–-e+ 
energy gap of 2me, where me is the rest-mass common to e– and e+ (see Appendix H). 
Consistently, the default ‘ 

φ = 1/2’ is the ratio of a) the electron-spin magnitude   / 2  (per 
Postulate 1)—or, equivalently, the greatest lower-bound of  for a speedless event, per 
the (nonrelativistic) Heisenberg uncertainty principle—over b) the mildest  namely, 
the greatest lower-bound    of σ PP ,  per the proper uncertainty principle.  
 In the triple limit, collision between two (spin-1) photons, without relative L, may 
cause σ PP = 0  (unobservable; that is, forbidden),    (just discussed), or  2.  We address 
the last as follows. Equation (6), with the conservation of linear momentum, predicts 

 
φ = 1/ 4  and 3 / 4,  for the two resulting entangled particles—the former has  
⎥〈βR〉⎢  and 〈m0〉 = me; the latter has  ⎥〈βR〉⎢  and quasi ‘rest-
mass 〈m0〉’ = 3me (with the increase due to L’s projection magnitude  )  (see Appendix I). 
Still, the two  

φ ’s add up to one, as anticipated of a single event that is speedless to two 
complementary observers. [That ⎥L⎢ must be an integer multiple of    rules out the 
possibility of  

φ = 1/ 2  for both particles if  σ PP = 2  (refer to Appendix I).]  
 Equation (6) permits continuous ‘tuning’ of  

φ  from such exemplified rational 
numbers dictated by S and L. For instance, when the mildest e–-e+ annihilation event 
moves [radially (for in 1D) to the observer], its  via either one of the two resulting 
photons becomes smaller than   / (2).  The compromise is in observation probability; it 
retains the particle’s helicity and 1D projection of L, once observed.  
 See Section V, for the general meaning of ‘ 

φ = 1 ’ and fractional  
φ , as a real (rational 

or irrational) number; Section VIII, for the significance of compromised  
φ  in QM.  

 
V. FRACTIONAL OBSERVABILITY  

 
 For observation via (for now) a massless elementary particle, the law of ROC (so far 
in stochastic SR) turns into  
 

   
 
φ(z) = 2

(1+ z)2 + (1+ z)–2
 (see Fig. 1),    (12) 

 

σOB

σ PP ,

 σOB =  / 2,
= 3 / 5,  σOB = 3 / 2, = 1/ 7,

 
φ
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per Eq. (6) and the Doppler relation [10,11] of 〈βR〉 and z—where 〈βR〉 is meaningful only 
between mass-carrying entities, and z is of the massless elementary particle travelling in 
between. Now that the conception of z is universal per particle-wave duality, Eq. (12) 
holds for observation via any event-to-observer particle, whether massless or not.  

Derivation of Eq. (6) and hence (12) does not differentiate the meaning for Δ(X) 
between a) the observational uncertainty of a fundamental quantum event and b) that of a 
composite ‘event’ spanning, at our choice, a contiguous subsection of the event network. 
Equation (12) applies to observation of cosmic (composite) events or objects, in the 
‘universe of stochastic SR’ for now [and that of GR (see Section VI)].  
 The observability  of an event is that of the event-to-observer elementary particle, 
as referenced to the particle’s nominal initial state whose wavelength λ0 is proper to (and 
‘at’) the thereby referenced event. Equation (12) permits different definitional choices of 
the (referenced) event from the same physical ‘happening’ (e.g., e–-e+ annihilation). For a 
given observed λ, a different (but physical) choice for λ0—namely, a different 
definitional choice for the (referenced) event—leads to a different pair of z and 
(fractional)  φ,  and vice versa. That is, for a given λ, a different z corresponds to a 
different choice for the event; the  

φ  resulting from Eq. (12) becomes of this specific 
event. [Such disciplined flexibility in defining the event also holds in GR (see below).]  
 For instance, in (a single) observation of the e–-e+ annihilation, the event may 
correspond to one of the two generated photons that has partially fulfilled its interactional 
(i.e., annihilational) redshift, to an arbitrary but specific extent. The ‘partial’ event may 
further redshift by z '  relative to the observer and is characteristic of a z ' -dependent 
observability  

φ '  to the observer. By the same token, we, as a single observer (from a 
single direction), get to specify, with freedom, a cosmic event or object as if it had a 
virtual pair of zero z and  

φ = 1  [in the universe of GR (see below)]. This is a leap in 
conception; recall, under the “triple limit” of Section IV, it is the summation over two 
observers’ fractional  

φ ’s that leads to total  
φ = 1.   

 
VI. TRUE OBSERVABLES  

 
 In portraying physical laws, the principle of relativity [10–12] demands ‘equivalence’ 
of (i.e., among) all observers. From the anthropic perspective of ‘event vs. observer,’ the 
principle translates to: Any (global) physical law is in terms of a set of observer’s local 
observables that all observers nominally share—and thereby share the law—so we can 
correlate the observers for a common event E (underscored for distinction from energy 
E), via its intrinsic property. Defined earlier, ‘observer’ refers to the generalized 
observer, not us.  
 As a single event, the observer (locally) ‘owns’ its observables νi (with i being an 
index). Such local νi reflect the incoming elementary particle at the observer; they are 
‘functions’ ν i (E,  REO )  of a) event E that emitted the elementary particle and b) the 
relativity context (denoted as a quasi variable REO, for shorthand) connecting E to the 
observer. (In this way, we skip the debate on the existence of the graviton.)  

 
φ
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 To be eligible as a (global) law, the local relation among the νi involves no REO as 
otherwise it would contradict the default observer-specific localness and disqualify the 
“law.” Namely, each law results from covariance among a set of νi, regardless of REO, and 
corresponds to an equation explicit of νi, but only implicit of REO through ν i (E,  REO ) .  
 In notation, the above conception condenses to  
 
   fLAW ν1,  ν2,  ν3,  ...( ) = 0 ,     (13) 
 
where fLAW  is the expression describing the law—prohibiting fLAW (ν1, ν2, …, REO) = 0. 
To the generalized observer, Eq. (13) conceals νi’s dependence on REO. To us,  
 
  fLAW ν1(E,  REO ),  ν2 (E,  REO ),  ν3(E,  REO ),  ...⎡⎣ ⎤⎦ = 0 ,   (14) 
 
in that conscious observers can conceive of the event network, and then of E and REO.  

Because of not explicitly involving REO, Eq. (13) is valid even when REO is in the 
asymptotic limit of stochastic SR, which can therefore serve as a scaffold for helping 
derive physical laws among true νi. Both  

φ   ≡ σOB σ PP( )  and z  ≡ LOB LPP( )−1⎡⎣ ⎤⎦  act as 
ν i (E,  REO ),  for each involves merely a ratio with a) the numerator reflecting only E and 

REO and b) the denominator only E. Seemingly trivial, Postulate 3 states  
φ  and z  are 

physical observables complying with the principle of relativity—warranting  
φ  and z  

may covary into a law (invariant to any physically permissible REO). Thereby, Eq. (12) 
holds in GR, after we obliterate all the scaffolding context of stochastic SR—such as  

φ ’s 
‘anatomy’ in terms of Δ(_)’s [for the observer is clueless of  r,   pr ,   τ ,  and  m0,  let alone 
their Δ(_)’s], Eq. (6) [for 〈βR〉 is a pseudo observable (see Appendix J)], etc.  
 Equation (12) ensures a) the observability of the cosmos mathematically integrable 
over the entire domain of redshift and b) 0+ observability expected of the Big Bang’s 
extreme onset (see Appendix K). Equation (12) is essential and ‘neutral’ to any 
cosmological model, whether or not involving the Big Bang.  
 

VII. NO ‘COSMIC ACCELERATION’  
 
 To interface with quantum uncertainties, it is stochastic SR, instead of ‘classical’ SR, 
that serves as the cornerstone of GR. Stochastic SR embeds Eq. (12), and therefore so 
does GR (see Appendix L), along with the (complete) GR-based cosmological model. 
Because a complete physical model need encompass observation per se (for interpreting 
observational data), we must calibrate our cosmic observation with the ROC effect.  
 Being the major “evidence of cosmic acceleration [1–3],” Fig. 2 illustrates observed-
magnitude [5] m (underscored for distinction from mass m) vs. redshift z of the Type-Ia 
supernovae. The current article depicts, in the figure, the ROC-corrected curve (blue solid 
dots) for the cosmic critical-expansion (CCE):  
 
  mCCE (ROC;  z) ≡ mCCE (No ROC;  z)

 
− 2.5 log10

φ(z)( ) ,  (15) 
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FIG. 2. Observed-magnitude [5] m vs. redshift z of Type-Ia supernovae 
(reproduced with permission from Ref. [1], Copyright 2003, American Institute of 
Physics). The original caption reads  

“Observed magnitude versus redshift is plotted for well-measured distant and 
(in the inset) nearby Type Ia supernovae. For clarity, measurements at the 
same redshift are combined. At redshifts beyond z =  0.1 (distances greater 
than about 109 light-years), the cosmological predictions (indicated by the 
curves) begin to diverge, depending on the assumed cosmic densities of mass 
and vacuum energy. The red curves represent models with zero vacuum 
energy and mass densities ranging from the critical density ρc down to zero 
(an empty cosmos). The best fit (blue line) assumes a mass density of about 
ρc/3 plus a vacuum energy density twice that large—implying an accelerating 
cosmic expansion.”  

Per Eqs. (12) and (15), the current work adds four blue solid dots—one for each 
tick-marked z—to indicate the theoretical observed-magnitude  of 
the Type-Ia supernovae in the cosmic critical-expansion (CCE), after correction 
for the ROC (for ‘relativistic observability compromise’) effect. Free of parameter 
fitting, the effect lifts the “orthodox” CCE curve (labeled with ρc) to 

, which coincides with the observational data, showing the cosmos 
is in the critical expansion, to within observational uncertainty.  

 
 

mCCE (ROC;  z)

mCCE (ROC;  z)
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where mCCE (No ROC;  z)  is the CCE curve as if no ROC associated with the photons 
traversing the universe before our observation terminates them (see Appendix M).  
 Curve mCCE (ROC;  z)  intersects 21 uncertainty bars—of the 28 observational data 
points—only one fewer than Ref. [1]’s modeled best fit (thin blue curve, which gives 
parameter ΩΛ≈  2/3). In particular, mCCE (ROC;  z)  intersects eight uncertainty bars of all 
nine data points (red dots) from the High-Z Supernova Search [2], leaving one near miss. 
The supernovae’s data coincide with the rectified cosmic critical-expansion curve, to 
within observational uncertainty; the supernovae deny the “cosmic acceleration.”  
 The correction is based all on common knowledge (Postulates 0–3) and free of 
parameter fitting. By Occam’s razor, “cosmic acceleration” appears artifactual.  
 The law of ROC also seems to dissolve the crisis of, as identified by Ref. [18], 
missing 400% of hydrogen-atom ionizing photons in observation at cosmological z 
slightly above 2—where Fig. 1 shows the 400% is  (1− φ) φ  with  φ(z ≅ 2) ≅ 0.2 .  A 
recommended further check on the monotonic  

φ(z)  in Fig. 1 is to account for the enigma 
raised by Ref. [19]: Why has it been easier to see gas relativistically blowing toward than 
away from us, at all high-z quasars?  
 

VIII. RELATIVISTIC UNCERTAINTY  
 
 Redshift z is Γ–1, where Γ ≡ LOB/LPP. Equation (12) entails the event’s observability 
amplitude ψ  in 1D—via the 1D-defining elementary particle (massless or not)—to be  
 

   ψ = eiδ 2
Γ2 + Γ–2 ,      (16) 

 
where eiδ  is a unitary phase factor. Being a multiplicative factor of the particle’s total 
probability amplitude at the observer, amplitude ψ  profiles the degree of resonance in Γ 
or Γ–1, peaking at Γ = 1. Amplitude ψ  leaves intact the particle’s helicity and 1D 
projection of the orbital angular momentum.  
 Equation (16) leads to the relativistic uncertainty principle [via Eq. (G8b) and 
Inequality (G10), in Appendix G]:  
 

   Δ(r)Δ(pr ) ≡ σOB( )
 
≥ 
Γ2 + Γ–2 ,    (17) 

 
of which the Heisenberg uncertainty principle is the nonrelativistic extreme (with Γ = 1) . 
The new principle allows relativity, through Γ, to a) squeeze σOB  to below   / 2  and b) 
lower the observer-effective vacuum energy in the expanding cosmos. Inequalities (11) 
and (17) are principles of both uncertainty and event-size.  
 

IX. CONCLUDING REMARKS  
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 In any physical measure, the generalized observer must be nonzero finite; it lacks 
precision for 0 and capacity for ∞. The more λ approaches 0 or ∞, the less discernible the 
event. Accepting the “cosmic acceleration,” namely, denying the law of ROC, 
(oxymoronically) connotes 100% statistical observability of an event emitting a wave 
with λ ‘ ’ 0 or ∞—that is, a “wave of no wave” (which is unphysical and 
unrecognizable). It is unsurprising that the law of ROC explains away all three cosmic 
enigmas described in Section VII.  
 Holding for the cosmological observation and the e–-e+ interaction, Eq. (16) [with 
Inequality (17)] partly hints on how to address integrability issues of quantum field 
theory. For instance, the ‘spin network’ appears incomplete, in contrast to the event 
network per Eq. (16).  
 Postulates 0–3 agree with J. Barbour’s ‘timelessness’ [20], and so do the resulting 
Eqs. (12) and (16)—after obliterating stochastic SR (along with ‘time’) as a scaffold.  
 Other than experimental tests based on Inequality (17), a recommended check on Fig. 
1 is as follows. We may a) create a beam of electrons, narrow in energy distribution but 
tunable ‘up’ to 1.2 Mev (for normalized speed of 0.9), to annihilate positrons (e.g., in an 
electromagnetic trap) ‘speedless’ in our lab and b) measure how, at a grazing angle to the 
collision axis, the effective photon-emission intensity varies with the annihilation event’s 
speed, namely, half the incident electron’s speed in here. The measurements are in two 
opposite directions, one for blueshift, and the other redshift. (The e–-e+ collider also 
works if the energy mismatch between the two counter beams is tunable, and therefore so 
is the annihilation event’s speed to the lab.) This may settle the debate.  
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APPENDIX A: STOCHASTIC SPECIAL RELATIVITY  
 

Together with Section III (in the main text), this section helps justify replacing 
‘classical’ special relativity (SR):  
 
   t 2 − r2 = τ 2 ,       (A1) 
 
   E2 − pr

2 = m0
2 ,      (A2) 

 
with stochastic SR:  
 

    cR  t( )2
− r

cR

⎛

⎝⎜
⎞

⎠⎟

2

= cR  τ( )2
,    (A3) 

 

=
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   E
cR

⎛

⎝⎜
⎞

⎠⎟

2

− cR  pr( )2
= m0

cR

⎛

⎝⎜
⎞

⎠⎟

2

,    (A4) 

 
where, as a random variable, cR is the speed of light (i.e., spacetime yardstick) specific to 
the prestatistical (incidental) event observation, as defined in the main text.  
 Here begins the derivation. Postulate 2, with the three premises listed below Eq. (2), 
demands ‘softening’ Eqs. (A1) and (A2) as  
 

   cR
a  t( )2

− r
cR

1−a

⎛
⎝⎜

⎞
⎠⎟

2

= cR
a  τ( )2

,    (A5) 

   (or  t
2 − r 2 = τ 2,  by variable definition)  

 

   E
cR

a

⎛
⎝⎜

⎞
⎠⎟

2

− cR
1−a  pr( )2

= m0

cR
a

⎛
⎝⎜

⎞
⎠⎟

2

,    (A6) 

   (or  
E2 − pr

2 = m0
2,  by variable definition).  

 
leaving statistical theory alone to determine parameter a’s value.  
 The definition of standard deviation [15]  results in  
 
    Δ( τ

2 ) = 2 τ Δ( τ ) ,       (A7) 
 
where 〈_〉 denotes the statistical expectation of ‘_.’ Owing to the statistical covariance 
between  t − r  and  t + r  being zero, Eq. (A5) leads to  
 

  
 
Δ( τ 2 ) = t + r( )2 Δ t − r( )⎡⎣ ⎤⎦

2
+ t − r( )2 Δ t + r( )⎡⎣ ⎤⎦

2
,  (A8) 

 
which, along with Eq. (A7), becomes  
 

   
 
Δ( τ ) =

Δ(t )[ ]2 + Δ( r)[ ]2
2

1+ βR
2

1− βR
2 ,   (A9) 

 
with  substituting for 

 
r t

2
 = r t 2 cR

−2( ).  (Recall r and t are each a 

differential increment of spacetime, by definition.) In Eq. (A9),  must be an 

expectation value—of the event’s incidental velocity  as normalized relative to cR
—in that all three other entities [i.e.,  Δ( τ ),   Δ(t ),  and  Δ( r) ] are statistical values (of the 
event).  must also correspond to the radial velocity of the event. (Similar to that of 
cR, subscript R reminds  is a stochastic random variable.)  

Δ(_)

βR
2

βR

βR ,

βR

βR
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Restarting from  τ =   ±(t
2 − r 2 )1/2  [seemingly redundant to Eq. (A5)] gives  

 

   
 
Δ( τ ) = Δ(t )[ ]2 + βR

2 Δ( r)[ ]2 1
1− βR

2 .    (A10) 

 
Equating the right-hand sides of Eqs. (A9) and (A10) indicates  
 
    Δ(t ) = Δ( r) ,       (A11) 
 
regardless of  and  Δ( τ ).  The geometric and algebraic analogy between Eqs. (A5) 

and (A6) legitimates substituting  for 
 
pr E

2
 = pr E

2
cR

2( )  as well and 

entails  
 
    Δ( E) = Δ( pr ) ,       (A12) 
 
regardless of  and  Δ( m0 ).   
 By definition, Eq. (A11) is  
 

   Δ cR
a t( ) = Δ r

cR
1−a

⎛
⎝⎜

⎞
⎠⎟

,      (A13) 

 
which expands into  
 
  Δ(t)[ ]2 + a2 τ 2 + (2a −1)2 r 2⎡⎣ ⎤⎦ Δ(c1, R )⎡⎣ ⎤⎦

2
= Δ(r)[ ]2 ,  (A14) 

 
with Δ(c1, R )  being the unitless ratio of Δ(cR ) cR ,  whatever the unit or the value of 
cR  is. Per Eq. (A14) and the measurement principle of Δ(_) > 0 , parameter a—in Eqs. 

(A5) and (A6)—must be 1/2 in that Δ(r)  is independent of r  in statistics. Equations 
(A3) and (A4) thus hold as the basic data-logging format for prestatistical (incidental) 
event observations, in stochastic SR.  
 

APPENDIX B: CONJUGATION OF TIME AND ENERGY  
 

As defined in Ref. [21], the time operator can be self-adjoint and compatible with the 
energy operator having a spectrum bounded from below. “On their common domain, the 
operators of time and energy satisfy the expected canonical commutation relation. Pauli’s 
theorem [22] is bypassed because the correspondence between time and energy is not 
given by the standard Fourier transformation, but by a variant thereof known as the 
holomorphic Fourier transformation. [21]”  
 

βR

βR
2

βR
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APPENDIX C: ‘DEFINITIONS’ OF τ  AND m0   
 

 With a =  1/2, Eq. (A14) reduces to an (quasi) operational ‘definition’ of τ :   
 

    1
4

τ 2 Δ(c1, R )⎡⎣ ⎤⎦
2
= Δ(r)[ ]2 − Δ(t)[ ]2 .    (C1) 

 
One can verify the interplay consistency among the three Δ ’s in Eq. (C1) on a classical-
SR spacetime diagram, which reflects Δ(c1, R )  by ‘backward’ referencing the precise light 
cone to the fuzzy event ‘confined’ with Δ(t), Δ(r),  and invariant Δ(τ ).  Via analogy 
between Eqs. (A3) and (A4), Eq. (C1) implies an (quasi) operational ‘definition’ of 
m0 :  

 

   1
4
m0

2 Δ(c1, R )⎡⎣ ⎤⎦
2
= Δ(pr )[ ]2 − Δ(E)[ ]2 .   (C2) 

 
 Herein, τ  and m0  must be a) positive for the physical event and b) nonnegative 

for the elementary particle. Both  and  dictate the relations among the 
fundamental Δ’s in the event observation—and among those of an observed particle. Still, 
an elementary particle may be proper-timeless and rest-massless.  
 Division by zero is indeterminate. It is (nonzero) Δ(c1, R )  in Eqs. (C1) and (C2) that 
turns on the event’s and the elementary particle’s proper-time and rest-mass as dynamic 
variables. Zero  is an intrinsic flaw with ‘classical’ SR. By default, SR should 
refer to stochastic SR, not ‘classical’ SR.  
 

APPENDIX D: OBSERVABILITY IN STOCHASTIC SR 
 
 Equation (A11) converges Eqs. (A9) and (A10) to the same form(s):  
 

   

 

Δ( τ ) =

Δ(t )
1+ βR

2

1− βR
2  or, equivalently,

Δ( r)
1+ βR

2

1− βR
2 .                         

⎧

⎨

⎪
⎪
⎪

⎩

⎪
⎪
⎪

   (D1) 

 
Likewise, Eq. (A12) results in  
 

τ m0

Δ(c1, R )
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Δ( m0 ) =

Δ( E)
1+ βR

2

1− βR
2  or, equivalently,

Δ( pr )
1+ βR

2

1− βR
2 .                         

⎧

⎨

⎪
⎪
⎪

⎩

⎪
⎪
⎪

  (D2) 

 
Involving no QM, the derivations of Eqs. (D1) and (D2) depend only on a) the definition 
of standard deviation Δ(_) and b) stochastic SR. At the quantum-event level, Δ(_) must 
correspond to the uncertainty. Equations (D1) and (D2) are therefore essential in quantum 
observation, so is their multiplicative combination, which gives  
 

   
 

φ =
1− βR

2

1+ βR
2 ,       (D3) 

 
or, equivalently,  
 
   

 
1+ βR

2( ) 1+ φ( ) = 2 ,      (D4) 

 
where  
 

   
 

φ ≡
Δ( r)Δ( pr ) ≡ σOB( )
Δ( τ )Δ( m0 ) ≡ σ PP( )      (D5a) 

      
 
= Δ(t )Δ( E)

σ PP

,      (D5b) 

 
with each constituent  
 

   ,   (D6) 

 
in Eqs. (D5a) and (D5b). So X Δ(c1, R )  (≠ 0)  increases the event-size.  

 In the limit of zero Δ(c1,R),  
φ  becomes φ ≡ Δ(r)Δ(pr )

Δ(τ )Δ(m0 )
 or, equivalently, Δ(t)Δ(E)

Δ(τ )Δ(m0 )
,  

where the nonzero numerators together highlights ‘classical’ (nonstochastic) SR’s self-
contradiction between nonzero event volumes [i.e., Δ(t)Δ(r) ’s; not event-sizes] in 
spacetime and the a priori constant speed of light that requires zero event volumes.  
 

APPENDIX E: NO STATIONARITY  
 
 Equation (D4) leads to  

 
Δ( X) = Δ(X)[ ]2 + 1

4
X 2 Δ(c1, R )⎡⎣ ⎤⎦

2
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βR Δ βR( ) = Δ( φ)

1+ φ( )2
,     (E1) 

 
which prohibits βR  from being zero in that no standard deviation Δ(_)  from 
measurement may ever be zero. [No stationarity agrees with the (positive) zero-point 
energy in QM.] The nominal missing point of  

φ  at βR = 0  leaves intact Eq. (6)’s [or 
(D4)’s] prediction of 

 
lim

βR  → 0+
φ = 1.   

 
APPENDIX F: ‘DISCOVERY’ OF HIGGS BOSON  

 
Being an elementary particle, the (spin-0) Higgs boson [23] ought to be structureless. 

Its “discovery” announced, on 3 July 2012, at the LHC [9] fell short of verification in this 
regard. Did we mistake a meson (e.g., a top-antitop quark pair) for the Higgs boson [17], 
rhyming the history, in the 1940s, we mistook pions for the elementary mediators 
between protons? Should it exist as a structureless particle, E. Wigner’s seminal analysis 
of the Lorentz group [16]—which forbids spin-zero elementary (structureless) particles—
would be incorrect, so would special relativity (SR). It is improper to celebrate the 
“discovery,” along with SR. Voting does not determine physics.  
 

APPENDIX G: DERIVATION OF  τ̂ ,  m̂0[ ] = −2iÎ   
 

Applying the (Hermitian) Pauli matrices [24,25] to two independent operators Â  and 
B̂  of same dimension, one can synthesize two degree-2 algebraic operators that are a) 
orthogonal to each other and b) antisymmetric in permuting  and , as follows:  
 

  Â B̂( ) 1 0
0 −1

⎛
⎝⎜

⎞
⎠⎟

Â
B̂

⎛

⎝
⎜

⎞

⎠
⎟ = Â2 − B̂2 ,    (G1) 

 

  Â B̂( ) 0 −i
i 0

⎛
⎝⎜

⎞
⎠⎟

Â
B̂

⎛

⎝
⎜

⎞

⎠
⎟ = i B̂,  Â⎡⎣ ⎤⎦ ,    (G2) 

 
where B̂,  Â⎡⎣ ⎤⎦ ≡ B̂Â − ÂB̂ .  

 Operator B̂,  Â⎡⎣ ⎤⎦  is reminiscent of the canonical commutators in QM, and Â2 − B̂2  is 
of the spacetime interval in SR.  
 Based on different Pauli matrices, Â2 − B̂2  and B̂,  Â⎡⎣ ⎤⎦  constitute a basis for all 

antisymmetric degree-2–algebraic operators in Â  and B̂.  Algebra among operators 

Â B̂
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Âj
2 − B̂j

2  (j = 1, 2, 3, ...) therefore ‘parallel’ that among i B̂j ,  Âj⎡⎣ ⎤⎦ . For instance, when 
equation fL .C .(_) =  0 relates operators—as arguments of linear combination fL .C .(_)—
that are each in the form of Âj

2− B̂j
2 , fL .C .(_) =  0 similarly relates all corresponding 

i B̂j ,  Âj⎡⎣ ⎤⎦  (and vice versa). Namely,  
 

  

fL .C . Â1
2 − B̂1

2,  Â2
2 − B̂2

2,  Â3
2 − B̂3

2,  ...( ) = 0

                              ⇓

fL .C . i B̂1,  Â1⎡⎣ ⎤⎦,  i B̂2,  Â2⎡⎣ ⎤⎦,  i B̂3,  Â3⎡⎣ ⎤⎦,  ...( ) = 0.

   (G3) 

 
The Pauli matrix (σ̂ z ) in Eq. (G1) and that (σ̂ y ) in Eq. (G2) are components of the 

Pauli vector in isotropic 3D space. The isotropy also leads to Eq. (G3).  
In stochastic SR of 1D space, the following equations of operators hold for QM:  

 
    ̂t

2 − ̂r 2 = ̂τ 2 ,       (G4) 
 
    

̂E 2 − ̂pr
2= ̂m0

2 .       (G5) 
 
When without the hat ^, each symbol may refer to the observed value of the 
corresponding observable if without confusion. By default, Eqs. (G4) and (G5) accept 
conjugation between time and energy. (See Appendix B, for why to deny Pauli’s theorem 
[22]).  

Differencing Eqs. (G4) and (G5),  
 

   
 
̂E 2 − ̂t 2( )− ̂pr2− ̂r 2( ) = ̂m0

2− ̂τ 2 ,    (G6) 

 
suggests  
 
   t̂ ,  Ê⎡⎣ ⎤⎦ − r̂,  p̂r[ ] = ≡( ) τ̂ ,  m̂0[ ] ,    (G7) 
 
per Eq. (G3) and the definitions of tilded (that is, stochastic) variables [in Eqs. (A5) and 
(A6)], but now with a = 1/2. [Notice tildes disappear in Eq. (G7).] In addition, 
characteristic of special-relativistic QM [24],  
 
   r̂,  p̂r[ ] = − t̂ ,  Ê⎡⎣ ⎤⎦       (G8a) 

               = +iÎ ,       (G8b) 
 
where the plus sign is of the prevailing convention in the literature. Equations (G7)–
(G8b) generate the ‘double-sized’ commutator:  
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    τ̂ ,  m̂0[ ] = −2iÎ .      (G9) 
 

For an arbitrary but specific quantum state W, the following relation is valid between 
two conjugate observables Â  and B̂  [25]:  
 

   Δ(A)Δ(B) ≥ 1
2

Â,  B̂⎡⎣ ⎤⎦ W
.     (G10) 

 
Combining Eq. (G9) and Inequality (G10) gives an intrinsically nonrelativistic 
uncertainty principle:  
 
    σ PP >( )  Δ(τ )Δ(m0 ) ≡ σ PP( )  ≥  ,    (G11) 
 
in contrast to the familiar one,  ( σOB >)  Δ(r)Δ(pr )  (≡ σOB )  ≥   / 2 . In Section IV, it is 
through Inequality (G10) that Inequality (G11) implies the factor of two in Eq. (G9).  
 

APPENDIX H: ELECTRON-POSITRON ENERGY GAP  
 

The energy gap between electron e– and positron e+ is twice the electron rest-mass  
[24]. In the mildest e–-e+ pair-production event, e– ‘sees’ e+ higher in energy by , and 
vice versa, per charge conjugation.  
 Below is a check on Eq. (6)’s [or (D4)’s] validity against this requirement. In the 
limit of zero Δ(c1,R), owing to e– carrying  1/2 from the mildest pair-production event, 

Eq. (6) predicts the equivalent (pseudo) relative speed  between e– and the event is 

. (See Appendix J, for why speed is pseudo.) Per SR’s velocity addition rule 

[10,11], the equivalent (pseudo) velocity β+−  of e+ relative to e– becomes . The 

relative energy of e+ to e– is = me 1− β+−
2( )−1/2 , so the minimum , namely, the 

e–-e+ energy gap, is .  
 Both βR  and β+−  in here are nominal parameters (instead of velocities in the 
context of ‘classical’ SR, which addresses mass-carrying particles resulting from 
completed fundamental interactions). The justification is based on Eq. (12)’s a) validity 
between mass-carrying entities (i.e., events and mass particles) in GR and QM and b) 
equivalence to Eq. (6) in stochastic SR.  
 

APPENDIX I: LOOKUP TABLE FOR  AND   
 
 (TABLE I.)  
 

me

2me

φ =
βR

1 3
3 2

E+− E+−

2me

 
φ βR
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TABLE I. Relation between ‘rational ’ and .  
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– 

Proper 
event-size 

 ( ) 

Observable 
event-size 

 ( ) 

Event 
observability 

 

Equivalent 
speed a 

 

‘Complete’ 
interactional 

redshift b  
z  

1 1/2 1/2  ~ 0.932 

3/2 
1/2 1/3  ~ 1.414 
1 2/3  ~ 0.618 

2 

1/2 1/4  ~ 1.806 

1 2/4  ~ 0.932 

3/2 3/4  ~ 0.488 

5/2 

1/2 1/5  ~ 2.146 
1 2/5  ~ 1.189 

3/2 3/5  ~ 0.732 

2 4/5  ~ 0.414 
etc.      

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– 

 a See Eq. (6).  
 b See Eq. (12).  
 
 
 

 
φ βR

 σ PP    σOB    
φ βR

1/ 3
2 / 4

1/ 5
3 / 5
2 / 6
1/ 7
4 / 6
3 / 7

2 / 8
1/ 9



D.-H. Gwo (Jason), 10/10/2014  

   21 

APPENDIX J: βR  AS PSEUDO OBSERVABLE  
 
 As an “observable,” βR  violates the principle of relativity, for the following 
reasons.  
 First, being a single event, the generalized observer must (locally) ‘own’ its 
observables. The observer ‘encounters’ the elementary particle, not the event (along with 
its βR ). For being nonlocal to the observer, βR  cannot be the (observer-owned) 
observable.  
 Second, the numerical reference of an observable ought to be of the event’s intrinsic 
property; as a reference for βR ,  neither (nominal) stationarity nor the statistical speed 
of light is a property intrinsic and specific to the event.  
 Outside SR,  is meaningless.  
 

APPENDIX K: NO OBSERVABILITY AT DAWN OF TIME  
 
 In the standard cosmological model [4,5,11], we have  
 

    1+ z = a(tC0 )
a(tC )

,       (K1) 

 
where z is the cosmological redshift, a(tC )  the Friedmann scale factor of then (at cosmic-
time tC ), and a(tC0 )  that of now (at cosmic-time tC0 ). Along with Eq. (K1) and  
1, Eq. (12) turns into  
 

    
 
φ(tC ) =

2
a(tC )

2 + a(tC )
−2 ,     (K2) 

 
showing how the observability of the cosmic history has been fading away over cosmic-
time and approaching zero, as tC  [and a(tC ) ] (backward) approaching zero. Equation 
(K2) indicates 0+ observability expected of the extreme onset of the Big Bang, agreeing 
nothing is observable ‘before’ it.  
 

APPENDIX L: ROC IN GR  
 
 Per Eqs. (D4)–(D6),  
 
   1+ βR

2( ) 1+φ( ) = 2       (L1) 

 
holds in the limit of zero Δ(cR ).  [Notice Eq. (L1) involves φ , not  

φ .] Namely, the law of 
ROC is inherent to ‘classical’ SR (which this limit is characteristic of)—so is the law, in 
the form of Eq. (12), to GR, because ‘classical’ SR anchors GR, within the limit per se.  

βR

a(tC0 ) =
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 On the other hand, ‘classical’ SR shows flaws in accommodating quantum 
uncertainties [see Appendix C and comments after Eq. (4)]. In this sense, stochastic SR 
anchors GR (and QM), even before reaching the limit of zero  The law of ROC [in 
the form of Eq. (12)] is inherent to quantum gravity and, in the local limit of zero Δ(cR ),  
to GR.  
 

APPENDIX M: CORRECTION ON STAR MAGNITUDE  
 
 In astronomy, cosmic object’s observed-magnitude m (underscored for distinction 
from mass m) relates to its absolute magnitude M [5] as  
 

   m = M + 2.5 log10
FM
F

⎛
⎝⎜

⎞
⎠⎟

,     (M1) 

 
where F is the observed flux from the object, and FM  the expected observed flux as if the 
same object were at ten  parsec (pc) from the observer, which is the defining condition of 
M. Both F and FM  follow the inverse-square law, with the effective distance corrected 
with cosmological GR [4] that presumes no ROC with our observation.  
 To reflect the ROC, Eq. (M1) becomes  
 

   
 
m = M + 2.5 log10

FM×  φ(z10  pc )
F×  φ(z)

⎛

⎝⎜
⎞

⎠⎟
    (M2a) 

      
 
≅ M × + 2.5 log10

FM×

F×  φ(z)
⎛
⎝⎜

⎞
⎠⎟

     (M2b) 

      
 
= m× −  2.5 log10

φ(z)( ) ,     (M2c) 
 
with subscript × indicating ‘as if no ROC associated with our observation,’ and  

φ  being 
the multiplicative correction for the ROC. The ≅  sign in Eq. (M2b) is practically an =  
sign, as  

φ(z10  pc )  is exceedingly close to value one and barely affects the scale of the 
absolute magnitude—so M ×  substitutes for M .  From Eq. (M2b) to (M2c) is an 
application of the ‘× version’ of Eq. (M1). It is unfortunate the current literature has 
mistaken F×  for F, FM×  for FM , and then m×  for m.  
 Combining Eqs. (12) and (M2c) gives  
 

  m(ROC;  z) = m(No ROC;  z)+ 2.5 log10
(1+ z)2 + (1+ z)−2

2
⎛
⎝⎜

⎞
⎠⎟

,  (M3) 

 
where m(ROC;  z) ≡  m(z)  and m(No ROC;  z) ≡  m× (z) . Because Type-Ia supernovae 
are a type of standardizable ‘candles’ and therefore share a common M, Eq. (M3) results 
in Eq. (15), as the cosmic critical-expansion curve in terms of m  vs. z.  

Δ(cR ).
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