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Abstract: In several previous publications the author has presented the theory that protons and 
neutrons and other baryons are the chromo-magnetic monopoles of Yang-Mills gauge theory and 
used that to deduce the up and down current quark masses from the tightly-known Q=0 
empirical electron, proton and neutron (EPN) masses with commensurately high precision.  This 
is then used as a springboard to closely fit a wide range of empirical nuclear binding and fusion 
energy data, and to obtain the proton and neutron masses themselves within all experimental 
errors.  This paper systematically pulls all of this together and a) establishes that this way of 
defining current quark masses constitutes a valid measurement scheme, b) lays out the empirical 
support for this theory already established via observed nuclear binding and fusion energies as 
well as the proton and neutron masses themselves, c) solidifies the interface used to connect the 
theory to these empirical results and for the first time uncovers a mixing between the up and 
down current quark masses, and d) presents clearly how and why the underlying theory is very 
conservative, being no more and no less than a deductive mathematical synthesis of Maxwell's 
classical theory with both the electric and magnetic field equations merged into one, Yang-Mills 
gauge theory, Dirac fermion theory, the Fermi-Dirac-Pauli Exclusion Principle, and to get from 
classical chromodynamics to QCD, Feynman path integration. 
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1. Introduction: Is there a Valid Method for Defining Quark Masses with 
High Precision? 
 
 In two earlier peer-reviewed publications [1], [2] the author demonstrated within parts 
per 105 AMU and better precision how the binding and fusion energies of the 2H, 3H, 3He and 
4He light nuclides as well as the binding energy of 56Fe could be explained as a function of only 
two parameters, namely, the current masses of the up and down quarks, found with extremely 
high precision in AMU to be mu = 0.002 387 339 327 u and md = 0.005 267 312 526 u, see [10.3] 
and [10.4] and section 4 of [2] as well as section 12 of [1].  Using the conversion 1 u = 931.494 
061(21) MeV [3] this equates with some loss of precision [4] to mu = 2.223 792 40 MeV and md 
= 4.906 470 34 MeV, respectively.  In an International Patent Application published at [5], this 
analysis was extended to 6Li, 7Li, 7Be, 8Be, 10B, 9Be, 10Be, 11B, 11C, 12C and 14N with equally-
high precision.  And in [6] this analysis was extended using the Fermi vev vF=246.219651 GeV 
and the Cabibbo, Kobayashi and Maskawa (CKM) mass and mixing matrix as two additional 
parameters, to explain the proton and neutron masses MN = 939.565379 MeV and MP = 
938.272046 MeV [7] completely within all known experimental errors. 
 
 Yet, there is one underlying point which has not been sufficiently explained in any of 
these prior papers: the Particle Data Group (PDG) lists these two current-quark masses to be to 

0.7
0.52.3 MeVum +

−=  and 0.5
0.34.8 MeVdm +

−=  with large error bars of almost 20% for the down quark 

and almost 50% for the up quarks, “in a mass-independent subtraction scheme such as MS  
[modified minimal subtraction] at a scale 2GeVµ ≈ .”  [8] (Here we shall use Q rather than µ. 

Note that MS  and similar renormalization schemes are used to absorb divergences from 
perturbative calculations beyond leading order.)   In other words, the PDG values are extracted 
for a given renormalization scale Q and are actually a function of this scale and of the 
renormalization scheme.  So although these mu = 2.223 792 40 MeV and md = 4.906 470 34 MeV 
found by the author are well-placed near the center of these PDG error bars, the claimed 
precision raises the question: can we really talk about and understand these quark masses with 
such high precision in a fashion which is independent of renormalization scale and scheme?  
More plainly put: is there some sensible way to make the simple declarative statement that “the 
Q=0 up and down quark masses are X and Y,” with X and Y being some mass-energy numbers 
which have an extremely small error bar due to nothing other than the accuracy of our measuring 
equipment?  Is there a sensible, definite, unambiguous, very precise scheme we can use to define 
the current quark masses, consistent with empirical data, which scheme is renormalization scale-
independent? 
 

Specifically, the author’s prior findings that mu = 2.223 792 40 MeV and md = 4.906 470 
34 MeV, which when represented in AMU has a precision close to a billion times as tight as the 
PDG error bars, even if mathematically correct in relation to the nuclear energies with which 
these quark masses are then interrelated, presuppose an understanding of how these quark masses 
are to be physically defined and measured.  Without such an understanding, the author’s prior 
work is incomplete, and to date, the author has not directly and plainly presented and articulated 
this understanding. 
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The intention of the present paper is to remedy this deficiency by making clear that the 
mass defects found in nuclear weights which are related in a known way to nuclear binding and 
fusion / fission energies, are in fact a sort of “nuclear DNA” or “nuclear genome” the proper 
decoding of which teaches about nuclear and nucleon structure and the masses of the quarks in a 
way that has not to date been fully appreciated.  In contrast to the nuclear scattering schemes 
presently used to establish quark masses, which are all based on renormalization-dependent, 
energy scale-dependent experiments involving scattering of nuclides and nuclei, the scheme 
which has been implicitly used by the author which this paper will now make explicit, is one in 
which the up and down current quark masses are defined at Q=0 directly in terms of the Q=0 
empirical electron, proton and neutron (EPN) masses (really the electron mass and the neutron 
minus proton mass difference) via two “primary relationships” (3.1) and (3.2) infra, and 
thereafter enjoy a number of very accurate relationships with a range of light nuclide binding and 
fusion energies and related defects in nuclear weights.  In this “EPR scheme” which is supported 
by the observed mass defects, the up and down current quark masses are defined by and seen to 
be related to objective, very precise, experiment-independent, scale-independent, long-known 
energy numbers that have been experimentally found and catalogued for the nuclear mass 
defects, weights, binding energies, and fusion / fission  energies. 
 

The problem we confront, which we will elaborate in section 2, is that all scattering 
experiments essentially bombard a target and then use forensic analysis of the known 
bombardment and the found debris to learn about the nature of the target prior to bombardment.  
In contrast, nuclear mass defects require no bombardment of anything, and are no more and no 
less than an experiment-invariant expression of nuclear weights and of the energies which are 
missing from the nuclear weights against if one were to simply add up the weights of their 
protons and neutrons when seen in a free state.  In this context, the prevailing scheme for 
characterizing quark masses has wide error bars because it is based on “bombing” the nuclides 
and nuclei and so yields results which depend on the specific bombing runs carried out, while the 
scheme to be elaborated here has very high precision because it is a “weighing” scheme which 
uses only nuclide and nuclear weights and the free electron mass to define the current quark 
masses and so inherits the precision with which these weights are known and also inherits the 
benefit of not being experiment-dependent.  So the scheme to be articulated here has very tight 
error bars because it is based on non-intrusive nuclear “weighing” rather than highly-intrusive 
nuclear “bombing,” and because nuclear weights themselves are very precisely known and do 
not vary by experiment while scattering experiments introduce renormalization and scale issues 
which make it difficult to establish an approach for specifying the masses of confined quarks 
with the same precision as the masses of free particles.  Before reviewing this problem more 
deeply in section 2, let us briefly summarize the remainder of this paper. 
 

In section 3 we introduce two “primary relationships” emerging from the underlying 
theory that protons and neutrons and other baryons are the chromo-magnetic monopoles of 
Yang-Mills gauge theory, through which the current quark masses are defined in the Q�0 limit 
based on the Q�0 electron rest mass and the Q�0 neutron minus proton mass difference (EPN 
scheme).  We then lay out the three primary questions to be reviewed in the balance of the paper: 
1) given the confinement of quarks which means that a free quark can never be directly measured 
in the Q�0 limit, is this a valid measurement scheme for defining current quark masses?; 2) if 
this is a valid measurement scheme, is there clear “secondary” support from other empirical data 
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beyond the EPN masses, such as from nuclear weights and binding energies? and 3) is the theory 
that protons and neutrons and other baryons are the chromo-magnetic monopoles of Yang-Mills 
gauge theory based on firm, conservative, well-tested and widely-regarded theoretical 
foundations, and does it provide a clear and precise interface between theory and experiment? 

 
In section 4 we answer the first question, showing how this is indeed a legitimate and 

unambiguous measurement scheme.  In sections 5 and 6 we answer the second question.  Section 
5 reviews how the empirical side of the theoretical-to-empirical interface leads to new 
understandings of phenomena such as quark confinement and nuclear binding, the binding 
energies of light Hydrogen and Helium nuclides, and the proton minus neutron mass difference 
which is then elevated to the primary relationship (3.2).  Section 6 reviews the evidence that the 
primary relationships obtained from this theory obtain precise secondary empirical support from 
a broad range of nuclear data.  In the remainder of the paper we answer the third question.  
Sections 7 and 8 review the interface between the underlying theory and its empirical validation 
with a degree of specificity not previously presented, and in section 8 this includes uncovering a 
form of mixing between the up and down current quark masses which does not appear to have 
previously been found.  Section 9 concludes with a very concise review of how one gets to from 
the underlying theory to the theoretical side of the theoretical-to-empirical interface, and makes 
clear how this is not a new theory, but is a new yet fully-deductive and inexorable synthesis of 
Maxwell (both the magnetic and electric charge field equations), Yang-Mills, and Dirac theories, 
the Exclusion Principle for fermions, and to cross over from classical to quantum theory, 
Feynman path integration.  So for someone with requisite scientific skepticism to believe and 
accept that protons and neutron and other baryons are Yang-Mills chromo-magnetic monopoles 
requires no more and no less from than the belief that all of these component theories are correct, 
the belief that when mathematics is correctly applied to combine input component theories which 
themselves are also correct, the result of that mathematical synthesis will be equally correct, and 
the belief that when the results of such a synthesis find widespread empirical validation, the 
entire enterprise must be earnestly regarded.  
 
2. Running Couplings, Vertical Confinement and Horizontal Freedom 
Asymptotes, Dimensional Transmutation, and the Q�0 Limit in QCD 
 
 The electromagnetic interaction and the electron which is a most important fermion 
source of this interaction furnish the best starting point for analyzing the questions about 
renormalization and ambiguity posed in the introduction.  Maxwell’s electrodynamics when 
extended into non-abelian domains by Yang-Mills gauge theories and when SU(3)C is the 
particular Yang-Mills group chosen for consideration, is the template that one customarily uses 
to study strong chromodynamic interactions.  And the electron which is an elementary spin ½ 
fermion subsisting in a U(1)em singlet following electroweak SU(2)W × U(1)Y symmetry breaking 
is the template best used to draw a contrast with quarks which also have spin ½, which are also 
regarded as “elementary” (at least to the same degree and in the same manner as electrons are 
elementary), but which form an SU(3)C color triplet. 
 
 It is also important to keep in mind that Quantum Chromodynamics (QCD) is a branch of 
elementary particle physics insofar as it is used to describe the strong interactions between 

colored (R, G, B) quarks such as up and down quark flavors, via bi-colored (e.g., RG) gluons, 
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all confined within a baryon.  Meanwhile, nuclear physics is used to describe color-neutral 
baryons such as the proton and neutron baryon flavors with a wavefunction 
R G B RGB GBR BRG RBG BGR GRB∧ ∧ ≡ + + − − −  that is antisymmetric under color 
interchange.  And the nuclear interactions of these baryons are mediated via color-neutral 

mesons with a wavefunction RR+GG+BB that is symmetric under color interchange and which 
have short range but are not confining, such as the pion-flavored mesons originally predicted by 
Yukawa [9].  Although the elementary particle physics of colored quarks and bi-colored gluons 
and the nuclear physics of antisymmetric color-neutral baryons and symmetric color-neutral 
mesons are often lumped together as one discipline in loose discourse, they are in fact distinct 
disciplines bridged via so-called hadronic physics in a fashion that to this date is still not fully 
understood.  In many ways understanding baryons as the chromo-magnetic monopoles of Yang-
Mills theory strengthens the understanding of this hadronic bridge between elementary 
chromodynamic particle physics and nuclear physics to advance unification among all of these 
physics disciplines by showing how the masses of quarks which are elementary and colored are 
interrelated with the masses and binding energies of nucleons and nuclei which are not 
elementary and are color-neutral. 
 
 It should also be kept in mind that the author’s thesis first published in [1] that baryons 
are the chromo-magnetic monopoles of Yang-Mills gauge theory is closely tied to the fact that 
baryons have a color wavefunction [ ] [ ] [ ]R G B=R G,B G B,R B R,G∧ ∧ + +  which is 

antisymmetric under color interchange, while magnetic monopoles F F Fσ µν µ νσ ν σµ∂ + ∂ + ∂  where 

the strength tensor F Fµν νµ= −  is antisymmetric whether abelian or non-abelian have a spacetime 

index symmetry [ ] [ ] [ ], , ,σ µ ν σ µ ν µ ν σ ν σ µ∧ ∧ = + +  which is analogously antisymmetric 

under spacetime index interchange.  In the former case there are three colors and in the latter 
three spacetime indexes, and in both cases the interchange symmetry is antisymmetric in 
identical fashion.  The physically-meaningful link between these alike color and spacetime 
symmetries which demonstrates that baryons are the chromo-magnetic monopoles of non-
Abelian gauge theory – i.e., the connection which advances us from like-symmetries to the 
formal identification of chromo-magnetic monopoles with baryons – is established in section 5 
of [1] and deepened in section 10 of [10] which is presently under review at Physical Review D 
as manuscript DK11244, through the application of the Fermi-Dirac-Pauli Exclusion Principle. 
 
 Now, when we talk about the electromagnetic interaction, we can readily state that the 
dimensionless “running” coupling of this interaction is measured to be the rather precise  αem = 

2 / 4e cπ ℏ  = 1/137.035 999 074 for low probe energies, where e is the electric charge strength, 
and specifically, that this “fine structure” number is the horizontally-asymptotic value of αem as 
the renormalization scale 0Q →  with Q plotted horizontally and the function αem(Q) plotted 
vertically.  We also know that as the renormalization scale Q is increased, so too is the strength 
of this interaction, which in quantum field theory is an important distinguishing feature between 
an abelian interaction and a non-abelian interaction.  So for example, when WQ M≈ , we also 

have αem ≈  1/128.  [3]     
 

Likewise, when we talk about the mass of the electron, we can state that me = 0.510 998 
928 ± 0.000000011 MeV, [11] which expresses an extremely high measurement precision 
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limited only by the accuracy of our laboratory equipment.  But just as the running coupling αem is 
a function of renormalization scale Q so too is the measured electron mass me.  So when we 
make the foregoing statement as to the energy number associated with the electron mass we are 
implicitly stating that this is the horizontally-asymptotic value of this mass for 0Q → .  At any 
deep probe scale, this mass is also expected to “run” just like the running coupling / charge 
strength.   So whether stated explicitly or understood implicitly, we are defining the mass and 
electric charge strength of the electron based on what is asymptotically observed at Q = 0, and 
with this definition we are able to express both αem and me with a high precision limited only by 
our measuring instrumentation.  But we are only able to do this because the natural world 
obliges us by providing a running electromagnetic coupling and a running electron mass which 
are in fact horizontally-asymptotic in the 0Q →  limit. 
 

So the question now arises: if we can define charge strength and mass in this way for 
electromagnetic interactions and electrons can we not do the same for strong interactions and 
quarks?  That is, why can’t we just define the running strong coupling αs and the up and down 
and other quark masses based on their horizontally-asymptotic values as the renormalization 
scale 0Q → ? 
 
 The answer is evident from the very asking of this question: we cannot establish a 
definition for the quark charges and masses similar to that for the electron charges and masses 
precisely because quarks are confined and not free.  Quarks are not free particles in the same 
manner as electrons.  They are only asymptotically free [12] deep inside a nucleon from which 
they can never be individually removed.  Quantum Electrodynamics (QED) is abelian while 
QCD is non-abelian, so the running coupling curves are flipped in their qualitative features over 
the Q domain axis.  In QCD the running coupling αs and quark masses mq approach a horizontal 
asymptote, not as 0Q → , but as Q → ∞ , or at least as Q reaches some very large energy 
associated with the horizontal asymptotic freedom observed deep inside a nucleon via deep 
inelastic scattering (DIS).  So notwithstanding their similarities because they are both rooted in 
Maxwell’s electrodynamics the confining nature of SU(3)C as a non-abelian interaction is what 
makes strong interactions qualitatively different from U(1)em electromagnetic interactions which 
are abelian.  And notwithstanding the similarities of quarks to electrons as spin ½ fermions 
which are equally-elementary the confinement of quarks within nucleons is what makes them 
qualitatively different from electrons (and leptons generally). 
 
 The parameter QCDΛ  at which dimensional transmutation occurs in QCD provides a good 

quantitative vehicle to discuss these qualitative differences.  Referring to Figure 9.4 of [13] 
reproduced as Figure 1 below for the reader’s convenience, QCDΛ  specifies the energy-

dimensioned domain value of a vertical asymptote approached by the dimensionless function 

( )s Qα  at QCDQ = Λ  from right-to-left along the QCDQ > Λ  domain.  For example, for a six-flavor 

quark model in the MS  scheme, as laid out in [9.24a] of [13] and the associated discussion, this 
vertical asymptote is determined to be situated at QCD 90.6 3.4 MeVΛ = ±  which is one order of 

magnitude left of the leftmost domain of Figure 1.  And as Q grows larger beyond the rightmost 
domain of Figure 1, there is also a horizontal asymptote associated with asymptotic freedom.  So 
in contrast to an abelian interaction like QED the horizontal asymptote appears in the large-Q 
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rather than the 0Q →  domain and so is qualitatively flipped.  Via the conversion constant 
.197 326 9718GeV fmc =ℏ  [3] which in natural units 1c= =ℏ  may be rewritten as 

11GeV 5.067 730 939 fm−=  one is able to deduce using the median value QCD .0906 GeVΛ =  

that ( )1 1
QCD .0906 GeV .0906 5.0677 fm .4591 fm 1/ 2.1780 fm− −Λ = = × = = .  So in the six-flavor 

quark model the deBroglie length associated with this vertical asymptote of confinement at QCDΛ  

is QCD/ 2.1780 fmr cΛ ≡ Λ =ℏ , i.e., just over 2 Fermi in length dimension. 

 
Figure 1: The Running Strong Coupling (reproduced from PDG’s [13], Figure 9.4) 

 
So while we are able in QCD to talk about the running of the strong coupling 
2 / 4s sg cα π= ℏ  and strong charge sg  acting between quarks for QCDQ > Λ  as illustrated in 

Figure 1, it makes no sense to talk about the running of sα  for QCDQ < Λ  or especially for 

0Q →  as we are able to do for emα  in QED.  In fact, when we do experiments in the low-energy 

QCDQ < Λ  domain we are no longer observing strong interactions between quarks confined 

within a nucleon with a strength measured by sα .  Rather, we are observing nuclear interactions 

between nucleons.  Further, these nuclear interactions are observed to have a very short range 
and with a strength exponentially diminishing to zero beyond separations of a few Fermi in 
length.  For example, because of this exponential strength diminution, nuclei heavier than about 
56Fe start to manifest inherent instability because protons and neutrons a.k.a. nucleons within the 
same nucleus become situated far enough apart as to be beyond the range at which the nuclear 
force can  hold them in the nucleus.  So in contrast to the strong interaction between quarks in 
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the six-quark model which has a short range on the order of 2.1780 fmrΛ =  which grows 

vertically-asymptotically stronger and becomes infinite so as to enforce confinement as 

QCDQ → Λ  from right-to-left the nuclear interaction is short range because it grows 

exponentially-smaller for QCDQ < Λ  from right-to-left and exponentially attenuates to zero 

strength beyond a distance of several Fermi. Thus, as we move laterally across the vertical 
asymptote at the energy QCDΛ  and its length equivalent rΛ  we are implicitly crossing the 

disciplinary boundary between the strong elementary particle physics of quarks and the nuclear 
physics of nucleons and the assemblies thereof known as nuclei.  That is the boundary sought to 
be bridged by hadronic physics. 
 

Consequently, while in QED we can define 1/137.035 999 074 as the dimensionless 
strength of αem for 0Q =  because electrodynamics is an abelian interaction which thereby has a 
horizontal asymptote as 0Q → , we cannot employ a similar definition in QCD.  Because of 
QCD’s non-abelian character the horizontal asymptote of QED as 0Q →  is flipped to the 

horizontal asymptote of asymptotic freedom for QCDQ Λ≫  and the “low energy” domain is 

bounded on the left by a vertical asymptote at QCDQ = Λ .  The Q�0 limit for αs is effectively 

meaningless in QCD because as Q�0 the only pertinent interaction is the nuclear interaction 
between nucleons and not the strong interaction between quarks.  And that nuclear interaction, 
being short-range with exponential attenuation, has zero strength at 0Q =  rather than a finite 
number like the meaningful αem = 1/137.035 999 074 found in electrodynamics.  So instead of 
characterizing the strong interaction strength starting with a dimensionless value of 0sα =  at 

0Q =  like we use αem = 1/137.035 999 074 for QED we define the strong interaction via the 

transmuted energy-dimensioned parameter QCDΛ  at which there is a vertical asymptote toward 

which sα → ∞  from right to left as in Figure 1.  And then for QCDQ > Λ  sα  depends very 

definitively on the energy scale Q and in addition it depends on the specific renormalization 
scheme used to absorb the higher-order perturbative divergences.   
 

In sum: The dimensionally-transmuted energy number QCD .0906 GeVΛ =  in six-quark 

QCD serves the exact same role for QCD as does the dimensionless number αem = 1/137.035 999 
074 for QED in establishing the leftmost domain of the running couplings αs and αem.  For QED, 
the “fine structure” number 1/137.035 999 074 tells us the dimensionless magnitude of αem as 

0Q →  for which nature obliges us because the running coupling for an abelian interaction 
actually does approach a horizontal asymptote as 0Q → .  But nature does not similarly oblige 
us for a non-abelian interaction such as QCD.  In QCD, at the low-energy boundary of the 
meaningful domain, for six quarks, there is a vertical asymptote for which sα → ∞  at 

QCD .0906 GeVΛ =  and αs has no meaning for QCD0 Q< < Λ  because that is the domain of 

nuclear interactions between baryons not strong interactions between quarks.  So we are 
compelled to use the energy dimensioned number QCD .0906 GeVQ = Λ =  to tell us the Q at 

which the dimensionless number αs approaches its low-energy vertical asymptote.  Therefore, 
while the 0Q →  limit is meaningful for QED because 1/137.035 999emα →  in this limit the 
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meaningful limit for QCD is QCD .0906 GeVQ → Λ =  because sα → ∞  in this limit.  The 0Q →  

limit still does have meaning, but at least based on initial appearances, not for strong interactions 
between and among quarks.  It has meaning for nuclear interactions between and among 
baryons, although at this limit there is no nuclear interaction because of the exponential 
attenuation of the nuclear interaction strength. 
 

Now we have laid out sufficient background to return to the problem of whether, and if 
so, how it is possible to define the up down and other current quark masses in the Q�0 limit 
with a precision commensurate to that for the free-particle electron, proton and neutron masses. 
 
3. Primary Relationships among the Up and Down Current Quark 
Masses, and the Electron, Proton and Neutron Masses, and the Three 
Questions they Raise 

 
In QED we are able to use the 0Q →  limit to define the electron rest mass me = 0.510 

998 928 ± 0.000000011 MeV because there is a horizontal asymptote at αem = 1/137.035 999 in 
this limit and because electrons are free particles which can have their attributes such as mass 
and charge and spin measured directly and with precision.  But in QCD the 0Q →  limit appears 
to be taken off the table and the low-energy limit for meaningful discourse appears to be 

QCD .0906 GeVQ = Λ =  at which sα → ∞  and quarks are confined.  Plainly put: it is impossible 

to take a quark out of a baryon and measure its mass mq in the 0Q →  limit in the same way that 
we would measure an electron mass.  Thus, to try to define current quark masses based on their 
measured values ( )0qm Q=  would appear to make no sense because this is a measurement 

which it is physically impossible to ever take for an individual quark.  How can we define a 
quark mass mq based on its value at 0Q =  when it impossible to ever take such a measurement at 

0Q = ?  We would be using a definition that can never be experimentally validated. 
 

But as we do for free electrons it is possible to take 0Q =  mass measurements for 
baryons such as protons and neutrons, and indeed, we know very precise values for these 
measurements, namely MP = 938.272046±0.000021 MeV and MN = 939.565379±0.000021 MeV 
[7].  So while we certainly cannot directly measure quark masses ( )0qm Q= , we are able to 

directly measure baryon (B) masses ( )0BM Q = .  And of course baryons contain quarks, and 

protons and neutrons which are the most abundant and stable flavors of baryon contain the up 
and down flavors of quark.  So the question arises whether it might be possible to measure 

( )0qm Q=  not directly but indirectly by inference from the direct measurements of ( )0BM Q =  

which are well known with some substantial degree of precision, and whether this precision 
might then be inherited by the indirectly-defined ( )0qm Q= . 

 
As we shall now start to explore this is indeed possible if as stated in the introduction we 

employ a scheme based on non-intrusive nuclear “weighing” rather than the highly-intrusive 
nuclear “bombing” of scattering experiments.  Moreover, once we have defined the up and down 
current quark masses based on indirect inference from nuclear weights rather than direct 
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inference from deep nuclear scattering it becomes possible with high precision to use these quark 
masses to also explain the empirical binding energy and nuclear weight and mass defect and 
fusion energy data of multiple light nuclides which data has heretofore never been given a 
satisfactory explanation.  This in turn serves to validate the initial indirect inference of quark 
masses from nuclear weights.  Theoretically, all of this is rooted in and emerges from the 
author’s theory in [1] as further developed in [10] that baryons are the chromo-magnetic 
monopoles of Yang-Mills gauge theory. 
 

In this previous work by the author the up and down quark masses are indirectly inferred 
from the 0Q =  electron mass and from the 0Q =  neutron minus proton mass difference using 
the following two relationships which for now will simply be stated and which we shall later in 
sections 7 and 8 explain and support based on the thesis that baryons are the chromo-magnetic 
monopoles of Yang-Mills gauge theory.  First, as initially found in [11.23] of [1] the difference 
between the up and down current quark masses is related to the electron rest mass according to: 
 

( )
3
22

3d u e

π
m m m− = . (3.1) 

  
Second, as initially found in [A15] and [7.2] and section 10 of [2], the difference between the 
neutron and proton masses is related to the up and down current quark masses and the electron 
mass, and via (3.1) through which we can eliminate em , exclusively to the up and down current 

quark masses according to: 
 

( ) ( )
3 3
2 2

2 3 3 2

2 2

µ d d u µ d

N P u e u

m m m m m m
M M m m m

π π

− +
− = − − = − . (3.2) 

 
We shall regard (3.1) and (3.2) above to be exact relationships not only Q = 0 but for all Q, 
which is to say we shall take these to be both exact and Q-invariant.  And we shall use these 
relationships as the starting point to obtain many other relationships – most very close to 
empirical data albeit still approximate – intended to contradict or validate our treatment of (3.1) 
and (3.2) as exact Q-invariant relationships.  For these reasons, simply to provide a shorthand for 
discourse we shall henceforth refer to (3.1) and (3.2) above as the “primary mass relationships” 
among the up and down current quark masses, and the electron, proton and neutron masses.  It 
will be appreciated, because em  in (3.1) is known with very high precision and because 

N PM M−  in (3.2) is known with similarly high precision, that when we take (3.1) and (3.2) 

together, and if we do regard these as exact Q-invariant relationships as just discussed, that we 
can combine these to deduce um  and dm  with commensurately-high precision. 

 
 This calculation is performed in section 10 of [2] using the median empirical values 

0 000 548 579 909 uem .=  [11], 1.008 664 916 0 uNM =  and 1.007 276 466 8 uPM =  [7] which 

all have been experimentally measured to ten or more digits of precision in AMU.  So using 
these values in (3.1) and (3.2) above leads us to deduce in [10.3] and [10.4] of [2] to the same 
ten-digit precision as the proton and neutron masses that: 
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0 002 387 339 3 2.223 792 40 eu M Vum .= = , (3.3) 

0 005 267 312 5 4.906 470 34 eu M Vdm .= = . (3.4) 

 
As noted in the introduction, the median electron mass to the same precision level in MeV is me 
= 0.510 998 93 MeV.  Certainly (3.3) and (3.4) converted to MeV fit well within the PDG error 
bars which inform us that the empirical 0.7

0.52.3 MeVum +
−=  and 0.5

0.34.8 MeVdm +
−=  [8].  So we at 

least know that there is no direct empirical contradiction to these masses (3.3) and (3.4) from 
this particular empirical data. 
 
 Starting from (3.3) and (3.4) as deduced from the primary mass relationships (3.1) and 
(3.2) there are three questions which now need to be explored which will occupy the balance of 
the development in this paper: 
 
1) Legitimate, Unambiguous Measurement Scheme: Can we make such a precise statement 
as to the masses of the up and down quarks, given: the wide PDG error bars 0.7

0.52.3 MeVum +
−=  

and 0.5
0.34.8 MeVdm +

−= ; that these error bars reflect that quark masses are thought to be dependent 

upon the renormalization scheme and the renormalization scale Q; that quarks are confined and 
so can never have their 0Q =  masses directly measured in the same way we are able to measure 
the electron mass 0Q = ; and that the only domain within which it even starts to make sense to 

talk about directly measuring a quark mass is the domain where QCDQ ≥ Λ ?  Indeed, these wide 

error bars emerge because it is widely perceived that QCDQ ≥ Λ  is the only domain in which it 

makes sense to talk about current quark masses and because as seen in Figure 1, measurement in 
this domain – invariably via scattering experiments at various depths – is so highly-dependent 
upon the scale Q and the renormalization scheme we use.  In short, can we use (3.3) and (3.4) as 
precise statements about the 0Q =  up and down quark masses, in view of all the issues just 
reviewed in section 2? 
 
2) Clear Secondary Empirical Support: If we can legitimately assert (3.3) and (3.4) to be the 

0Q =  up and down quark masses by overcoming the “measurement” challenges of point 1 and 
section 2 above, are (3.3) and (3.4) supported by empirical particle data?  This is a 
straightforward question as to whether nature supports (3.3) and (3.4) based on energies we 
observe when we do experiments.  As noted the results mu = 2.223 792 40 MeV and md = 4.906 
470 34 MeV certainly are not contradicted by PDG’s 0.7

0.52.3 MeVum +
−=  and 0.5

0.34.8 MeVdm +
−= ; 

indeed they sit fairly near the mean of this data.  But it would be desirable to see if (3.3) and 
(3.4) can be supported by additional empirical data beyond the electron, neutron and proton 
masses from which they were deduced via (3.1) and (3.2), via what we shall refer to as 
“secondary empirical relationships.”  Specifically, if (3.3) and (3.4) are indeed correct valuations 
for the up and down current quark masses on a 0Q =  scale, and because the neutron,  proton and 
electron masses are already related to these via (3.1) and (3.2), it seems plausible that other 
energies of interest, namely the binding, fusion, mass defect and nuclear weight energies of light 
nuclides such as hydrogen and helium and lithium and beryllium, etc., might also be related to 
and be secondary functions of these exact same 0Q =  quark masses.  In other words, if (3.3) and 
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(3.4) are legitimately-defined 0Q =  quark masses then these masses will always be the 0Q =  
quark masses whether these quarks are in a free proton are neutron or, for example, are in a 
proton or neutron inside of an alpha particle (4He nucleus), or in a proton or neutron inside an 
56Fe nucleus, or are deep within the bowels of a lead or a uranium nucleus, etc.  And that means 
that we should be able to specify the observed nuclear data for any and all types of nuclei solely 
as a function of these two quark masses.  This provides ample latitude for empirical 
contradiction.  But at the same time if a substantial number of nuclides can indeed have their 
nuclear data parameterized using secondary relationships based exclusively on the two masses 
(3.3) and (3.4), this would represent compelling empirical support for these results. 
 
3) Solid Theoretical Foundation and Clear Theoretical-to-Empirical Interface: If we can 
legitimately assert (3.3) and (3.4) to be the 0Q =  up and down quark masses and if we can find 
secondary support for these mass values from a broad array of nuclear data then we get to the 
third question: what is the overarching theory, does that theory make sense within the overall 
framework of theoretical physics, and what is the interface by which we connect the theory to the 
means by which it can be empirically tested?  As stated, the overarching theory first laid out in 
[1] and further developed and refined in [10] asserts that baryons are the color-neutral chromo-
magnetic monopoles of non-Abelian Yang-Mills gauge theory and that mesons are the non-
vanishing magnetic field quanta which net flow across closed surfaces of these monopoles.  It is 
from this theory that the primary mass relationships (3.1) and (3.2) were initially discerned, and 
upon which the 2H, 3H, 3He and 4He [2] and 6Li, 7Li, 7Be, 8Be, 10B, 9Be, 10Be, 11B, 11C, 12C and 
14N [5] binding energies can be explained exclusively as a function of the two masses (3.3) and 
(3.4), via a series of secondary relationships, to at least parts per hundred thousand AMU in all 
cases.  And it is from this theory, once the Fermi vev vF=246.219651 GeV and the Cabibbo, 
Kobayashi and Maskawa (CKM) mass and mixing matrix are also admitted as parameters 
alongside of these two quark masses, that the proton and neutron masses [6] can be fully 
explained within all known experimental errors. 
 
 So for the balance of this paper, we shall address each of these questions in turn. 
 
4. Does Deduction of Very Precise Q = 0 Up and Down Current Quark 
Masses from the Q = 0 Electron, Proton and Neutron (EPN) Masses Establish 
a Legitimate Measurement Scheme?      
 
 As discussed at the start of section 3, because quarks are confined it is impossible to ever 
measure their 0Q =  masses directly because to access a quark in the six quark model (which 
clearly looks to be what nature chooses and which we shall henceforth regards as nature’s 
choice) one must provide an impact energy at least on the order of QCD .0906 GeVQ = Λ = .  In 

other words, to directly detect of any attributes of an individual quark – and indeed its very 
existence – one must supply an impact energy north of about 90 million electron volts.  So 
whatever quark attributes we observe at Q = 90 MeV and higher will by definition not be the 

0Q =  attributes of the observed quark.  This is the measurement problem which leads to the 

large error bars 0.7
0.52.3 MeVum +

−=  and 0.5
0.34.8 MeVdm +

−= wherein the quark masses are dependent 

upon the chosen measurement scheme and once a scheme is chosen on the choice of Q, given 
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that 0Q =  quark attributes appear to not be measurable because quarks are confined, not free, 
particles.  That is, it is supposed that we cannot define a Q = 0 quark mass because we can never 
directly measure a Q = 0 quark mass. 
 
 But in (3.1) and (3.2) we have chosen a measurement scheme by which the up and down 
quark masses are inferred indirectly from the 0Q =  electron, proton and neutron masses.  Just 

like minimal subtraction MS and modified minimal subtraction MS , (3.1) and (3.2) do represent 
a measurement scheme for quark masses albeit a different scheme from the usual.  The question 
here is whether this is different scheme is a legitimate and unambiguous measurement scheme. 
 
 As already noted in the introduction, any time that we do an experiment for which 0Q >  
we are necessarily doing a scattering experiment, which is to say we are bombarding a target in 
some fashion and discerning information about the target via forensic analysis of the post-
bombardment debris coupled with knowledge of the bombardment we employed.  No matter 
how it is couched in its specifics any experiment with 0Q >  is by definition causing an impact 
with the target we seek to study and in the course of obtaining information about the target we 
are necessarily altering the target.  Thus when we use several different Q at several different 
times we have to prepare for the possibility that what we are measuring about the target will take 
on several different values with no one particular value being any more correct or unique than 
any other value.  Thus we will have error bars stemming from more than just the limitations of 
our measuring equipment, and that is what shows up in the PDG error bars.  As said in section 1, 
such an experiment entails bombing the target not weighing the target. 
 
 Conversely, merely taking the weight of a body is the quintessential 0Q =  experiment, 
whether that body is a person or a baseball, or an electron, proton or neutron.  Subject to the 
caveat in the next paragraph we do not have to impact a body in order to weigh that body; we 
merely place it on a scale and then rely upon the equivalence of gravitational and inertial mass.  
So we are able to say that at 0Q =  the mass of the electron is 0 000 548 579 909 uem .= , period.  

And we are similarly able to say that at 0Q =  the masses of the proton and the neutron are 

1.008 664 916 0 uNM =  and 1.007 276 466 8 uPM = , period.  We do not need to talk about the 

measurement scheme and we do not need to talk about the renormalization scale Q other than to 
understand that by definition we are using 0Q = .  Of course we have the option if we wish to 
study how these masses may vary from their 0Q =  values for various 0Q ≠ .  But 0Q =  does 
provide a uniqueness which is not provided by any other Q, with the possible exception of 

QCD .0906 GeVQ = Λ =  which happens to coincide with the confining sα = ∞  and so presents 

other measurement challenges because it is a divergent and highly non-perturbative region of the 
Q domain. 
 
 Now of course someone who is familiar with experiments used to obtain the above-
recited electron, proton and neutron masses will understand the caveat that nobody can really put 
one of these particles on a scale and “weigh” that particle in the same manner that we can weigh 
ourselves or weigh a macroscopic object.  The experiments used to establish these masses 
themselves do have some 0Q ≠  scattering aspect.  However, the electron, proton and neutron 
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are all free particles unlike quarks, and their masses approach asymptotic values as 0Q → .  So 
by doing enough experiments on these free particles – even with some impact – it is possible to 
deduce the asymptote that is approached by the masses of each of these particles.  Therefore, the 
precision with which the experimental community has succeeded taking such asymptotic 
measurement is effectively expressed by the mass values and associated experimental errors for 

em , PM  and NM   given in [11] and [7].  The same can also be said for measurements of the 

masses of composite nuclides, such as 2H, 3H, 3He, 4He, etc. 
 
 So when we take the expressions (3.1) and (3.2), plug in the 0Q =  “weights” of the 
electron, proton and neutron, and thereby deduce (3.3) and (3.4) for the up and down current 
quark masses, what we have discerned – albeit indirectly – must also be regarded as the 0Q =  
“weights” of these two quarks.  This is a different scheme from the minimal subtraction schemes 
which are usually employed to specify quark masses and other running attributes of the quarks 
but it is still a scheme and we need to determine if it is a valid scheme.  So let us explore this. 
 

Momentarily, suppose we were not aware of (3.1) and (3.2).  Suppose simply that we 
were able to establish some pair of valid relations which express the up and down quark masses 
in relation to the electron, proton and neutron masses such that these two quark masses were 
uniquely fixed once these other three masses were fixed.  Then by employing the 0Q =  values of 
the electron, proton and neutron masses we would necessarily be deducing the 0Q =  values of 
the up and down quark masses and we would have a legitimate measurement scheme.  The point 
here is that this “weighing, not bombing” scheme is not wedded to the specifics of (3.1) and (3.2) 
but rather to the question whether any valid relationships which might uniquely output the up 
and down quark masses once the 0Q =  electron, proton and neutron masses are given can in 
principle be said to yield legitimate values for the 0Q =  quark masses. 
 
 Understood in this manner, it should be clear that it is perfectly legitimate as a matter of 
defining a measurement scheme to specify 0Q =  confined quark masses in relation to the known 
masses of other particles which are free and which can be observed asymptotically in the low-Q 
energy domain, if such relationships exist and can be found.  So the real question becomes 
whether there do in fact exist some valid relations in nature by which the up and down quark 
masses can be uniquely deduced from the electron, proton and neutron masses (or any other free 
particle 0Q =  masses), and if so, what those relationships are and whether (3.1) and (3.2) are in 
fact those relationships.   
 

We may also approach this by contradiction: To argue that a scheme in which Q=0 up 
and down current quark masses are defined using the Q=0 electron, proton and neutron (EPN) 
masses or any other free particle masses is invalid in principle one would have to argue that there 
are not and cannot exist in nature, any Q-invariant relationships whatsoever relating these up and 
down current quark masses to the EPN or other free particle masses.  Current quark masses, one 
would have to argue, cannot bear any precise relationships to free particle masses because the 
former are confined and the latter are not.  Strong and nuclear interactions cannot be unified, one 
would argue, because the former is about confined quarks and the latter is about free nucleons 
and nuclei.  What happens for the quarks inside a proton or neutron cannot bear any precise 
relationship to the proton or neutron itself, or an outside electron in the very same atom, one 
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must argue.  The logical culmination would have to be a “never the twain shall meet” argument 
that one cannot – even in principle – have relationships like (3.1) and (3.2) anywhere in nuclear 
and strong interaction physics.  For, if such Q-invariant relationships were to be found, then the 
use of the Q=0 EPN masses in these relationships would necessarily yield the Q=0 up and down 
masses.  This should make clear that so long as valid relationships in the nature of (3.1) and (3.2) 
are possible – and there appears no basis for stating that they are impossible – then a weight-
based rather than scattering-based measurement scheme such as EPN would be valid, albeit 
different.  The only question then left is whether (3.1) and (3.2) are indeed actual relationships 
among the up and down masses and the EPN masses.  That becomes an empirical question about 
how well these relationships and other related relationships match observed data and a 
theoretical question about the basis upon which those relationships are rested. 
 
 If it should turn out that (3.1) and (3.2) are valid relationships, then (3.3) and (3.4) are 
indeed the 0Q =  masses of the up and down quarks and the measurement scheme for defining 
these quark masses in this way is perfectly legitimate.  Further, by having these two mass values 
(3.3) and (3.4) we would now know the quark masses with a precision that is close to a billion 
times more precise than what we learn from 0.7

0.52.3 MeVum +
−=  and 0.5

0.34.8 MeVdm +
−=  based the 

MS  scheme.  It is the foregoing elaboration of how the quark masses 0 002 387 339 3 uum .=  

and 0 005 267 312 5 udm .=  can be legitimately defined from the proton, neutron and electron 

masses with a precision vastly exceeding the PDG data based on MS , which was absent from 
the authors prior work.  The forgoing should remedy this deficiency.  And it should also be very 
clear that a second mass-definition scheme which allows the quark masses to be defined close to 
a billion times more accurately than a first scheme is manifestly preferable to the first scheme, so 
long as that second scheme is unambiguous, contradicted by empirical data, and has solid 
theoretical roots.   
 

Because this scheme defines 0Q =  up and down current quark masses in (3.3) and (3.4) 
from the relationships (3.1) and (3.2) using the 0Q =  electron (E), proton (P) and neutron (N) 
masses we shall refer to this as the EPN measurement scheme with an EPN-0 definition for the 
up and down quark masses.  Of course relationships such as (3.1) and (3.2) should apply at all Q.  
So if one were to know how each of ( )em Q , ( )PM Q  and ( )NM Q  run as a function of Q, one 

could then use (3.1) and (3.2) to further derive ( )um Q  and ( )dm Q , or vice versa.  In this way 

the EPN scheme provides a consistent and unambiguous basis for first defining the up and down 
quark masses at 0Q =  based on three masses em , PM  and NM  which are each known at 0Q =  

with very high precision.  And it avoids the pitfalls and ambiguities of having to define quark 
masses based on scattering probes inside the nucleons which necessarily make these masses a 
function of our experiment. 
 
 Now, with the measurement question of how best to define the current quark masses 
addressed we next turn to question whether (3.3) and (3.4) are indeed the correct physical 0Q =  
quark masses.  If they are then this in turn would validate the relationships (3.1) and (3.2) and the 
theory from which these are obtained.  Certainly the fact that masses (3.3) and (3.4) fit well 
within 0.7

0.52.3 MeVum +
−=  and 0.5

0.34.8 MeVdm +
−=  provides preliminary credence for these masses 
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by failing to invalidate these masses.  But this is a starting point not an endpoint.  Now we arrive 
at the second question posed in section 3, whether the quark masses (3.3) and (3.4) have clear 
secondary empirical support from other nuclear data.  As we shall now review in the next two 
sections, this empirical support is abundant. 
 
5. Origins of the Primary Mass Relationships used in the EPN 
Measurement Scheme 
 

In section 3, we simply stated the primary mass relationships (3.1) and (3.2).  Now it is 
appropriate to begin discussing their physical origins which are found in the thesis that baryons 
are the chromo-magnetic monopoles of Yang-Mills gauge theory.  First, let us just lay out some 
general physics background. 
 

It is well-known that ( )( )/T gµν µ µν
νφ φ= ∂ ∂ ∂ ∂ −L L  is the canonical energy-momentum 

tensor for a given field ϕ  with associated Lagrangian density L .  If we require the spatially-

integrated Lagrangian 3L d x= ∫∫∫L  to be stationary under small field variations then the 

( )( )/µ
νφ φ∂ ∂ ∂ ∂L  term can be neglected and this becomes T gµν µν= − L .  So in flat spacetime 

with 100 =g  we have L−=00T .  Therefore the total energy E of the system associated with L  

will be 00 3 3E T d x d x L= = − = −∫∫∫ ∫∫∫L , and more simply, E L= − . 

 
Now, in abelian electrodynamics the Lagrangian density associated with a pure gauge 

field F µν  is given by 1
4 F F µν

µν= −L  and so 3 31
4E L d x F F d xµν

µν= − = − =∫∫∫ ∫∫∫L  will specify 

the energy arising from the pure gauge field terms.  In Yang-Mills gauge theory the field strength 
may still be written with Fµν  as shorthand, but it contains additional internal symmetry structure 

which must be understood.  Particularly, for any simple unitary gauge group SU(N) there are a 
set of generators iλ  with 21... 1i N= −  forming a closed group and commuting according to 

,i j ijk kifλ λ λ  =  , conventionally normalized to 2 1
2Tr iλ = .   Each of these generator matrices 

has rank 2 with an N×N dimensionality so to be fully explicit we must represent these matrices 
by i

ABλ  with , 1...A B N= .  So in reality the field strength Fµν  is a shorthand for 
i i

AB ABF Fµν µνλ= , where the “adjoint form” iF µν  consists of 2 1N −  individual 4×4 field strength 

tensors and the “matrix form” ABFµν  is an N×N internal symmetry matrix of 4×4 field strength 

tensors.  The pure-gauge field Lagrangian density represented in the matrix form is now

( )1
2 Tr F F µν

µν= −L  with the doubling of the coefficient owing to the generator normalization 

and so the energy for the pure Yang-Mills gauge field is 31
2 TrE F F d xµν

µν= ∫∫∫ . 

 
Now if we want to be as explicit as possible then rather than using the trace (Tr) notation 

we can use the matrix form ABFµν  and explicitly show the index contractions which yield this 

trace, namely, ( )1 1
2 2Tr AB BAF F F Fµν µν

µν µν= − = −L .  That is, the trace is formed first by taking 
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an inner product AB BCF F µν
µν  which yields a new N×N internal symmetry matrix.  Then we 

contact the A and C indexes to obtain AB BAF F µν
µν .  It is by this latter contraction that we obtain 

the trace, and more specifically, the inner product trace.  But mathematically there is a second 
trace available from F F µν

µν  and that is the outer product trace which for any two matrices A 

and B is given by ( ) ( ) ( )BABA TrTrTr =⊗ .  So using explicit indexes the outer product trace is 

AA BBF F µν
µν .  Thus if we wish to be as general as possible we should entertain the possibility of 

constructing the pure Yang-Mills gauge field Lagrangian density using some linear combination 
of both the inner product trace AB BAF F µν

µν  and the outer product trace AA BBF F µν
µν . 

 
With this general background in mind we start with an ABFµν  which is carefully 

developed for the chromo-magnetic monopoles of Yang-Mills gauge theory in [10.1] of [1] and 
which is more deeply developed in [10.4] of [10].  This ABFµν  employs the gauge group SU(3)C 

of strong chromodynamic interactions with colors R, G, B, which means that the internal 
symmetry matrices have a 3x3 dimensionality, see, e.g., the matrix [9.20] of [10] which 
explicitly shows this.  We then represent a (duu) proton by assigning the R quark color to the 
down quark flavor and the G and B quark colors to the up quark flavors via the assignments 
R ; G ; Bd u u→ → →  and a (udd) neutron by an analogous assignment R ; G ; Bu d d→ → → .  
This is all detailed in sections 7 and 8 of [1] and the second half of section 10 in [10].  Finally, as 
laid out in sections 9, 11 and 12 of [1] we calculate an energy 31

2 TrE F F d xµν
µν= ∫∫∫  using the 

outer product trace 31
2 AA BBE F F d xµν

µν= ∫∫∫  for each of the so-represented proton and neutron.   

 
For the moment we simply show the result, and in sections 7 and 8 we shall show the 

calculations which lead to this result.  It turns out that these respective energies following 
calculation, showing both the matrix form and the scalar expression after the outer product trace 
is taken, see (12.4) and (12.5) of [1], are: 

 

( ) ( )

( ) ( )

3 3
2 2

3 3
2 2

0 0 0 0
4 41

Tr 0 0 0 0
2 2

0 0 0 0

2 Tr 2

d d

d u d u
P u u

u u

P P P AA P BB

m m
m m m m

E m m

m m

K K K K

π π

π π− −

   
    + +

= ⊗ =   
   
   
   

≡ ⊗ =

, (5.1) 

( ) ( )

( ) ( )

3 3
2 2

3 3
2 2

0 0 0 0
4 41

Tr 0 0 0 0
2 2

0 0 0 0

2 Tr 2

u u

u u d d
N d d

d d

N N N AA N BB

m m
m m m m

E m m

m m

K K K K

π π

π π− −

   
    + +

= ⊗ =   
   
   
   

≡ ⊗ =

. (5.2) 

 



J. R. Yablon 

20 
 

In the final lines of each of the above, we denote the matrix appearing twice in (5.1) as P ABK   

and twice in (5.2) as N ABK .  We also point out that as elaborated in sections 2 through 4 of [6] 

that these matrices K can be used to restate the Koide mass relationships [14] which is why we 
choose the symbol “K” for these.  We further point out as elaborated in the rest of [6] that by 

supplementing the energy square roots um  and dm  with Fv  where vF=246.219651 GeV is 

the Fermi vev one can make extended use of these “Koide matrices” to explain the proton and 
neutron masses themselves. 
 

If we then take the difference N PE E−  between (5.2) and (5.1) the expression we get is 

 

( )
( )3

2

3

2
N P d u eE E m m m

π
− = − ≡ , (5.3) 

 
where we define (really, hypothesize) this to be equal to the electron rest mass.  It will be seen 
that this is just another way of writing (3.1).  So this is how the first primary mass relationship 
(3.1) comes about.  Why do we make this hypothesis?  The reasons are partly empirical and 
partly theoretical. 
 

Originally in [1] the author approached (5.1) and (5.2) by calculating N PE E−  using the 

PDG data 0.7
0.52.3 MeVum +

−=  and 0.5
0.34.8 MeVdm +

−=  and found that .228
.190.476 MeVN PE E +

−− =  

which nicely contains the electron rest mass .511 MeVem =  pretty much near the center of the 

error bar.  This was the first plausible point of contact that was made from the theory that 
baryons are the chromo-magnetic monopoles of Yang-Mills gauge theory to empirical data.  This 
made theoretical sense because a neutron decaying into a proton via Energyn p e ν+ −→ + + +  

and a down quark decaying into an up quark via Energyd u e ν−→ + + +  would – at least at a 

“linear” or “lowest order” level – support a relationship of the form N P d u eE E m m m− ∝ − ∝  in 

(5.3).  Which is to simply state that factoring out all the non-linear behaviors of nucleons, the 
difference between a proton and a neutron or between an up quark and a down quark is an 
electron.  So given both this empirical concurrence and the ...n p e+ −− = +  and ...d u e−− = +  
decay sensibilities (5.3) was elevated into a hypothesized relationship relating the electron rest 
mass to the down minus up quark current mass difference and to the difference between some 
neutron energy number and some proton energy number, to be confirmed or contradicted based 
on additional empirical data.  Subsequent theoretical development in section 9 of [10] 
demonstrated that (5.1) through (5.3) are in fact all relationships taken in the zero-order abelian 
field theory limit of Yang-Mills gauge theory.  And subsequent empirical development which 
will be detailed below and in the next section appears to validate rather than refute (5.3) and to 
show that this abelian limit appears to govern what is observed in nuclear binding and fusion 
events and the nuclear mass defects. 
 
  Now, we turn to the origins of the second primary relationship (3.2) and for this we must 
begin to discuss nuclear binding energies.  While (5.3) was the first plausible point of contact 
between theory and experiment uncovered by the author it was (5.1) and (5.2) themselves which 
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opened up fertile new vistas via some extremely compelling connections to nuclear binding 
energies.  We now explain how this is developed. 
 
 If (5.1) and (5.2) represent some to-be-determined energies associated with the proton 
and neutron then it is certainly a good idea to calculate these energies.  We may do so using 

0.7
0.52.3 MeVum +

−=  and 0.5
0.34.8 MeVdm +

−=  from PDG which is what the author first did in [12.4] 

and [12.5] of [1].  But rather than retread this same ground let us use the much-more-precise 
masses (3.3) and (3.4) which are be the correct quark masses if (3.1) and (3.2) are valid 
relationships, since that is what we are testing at present.  So if we use (3.3) and (3.4) in each of 
(5.1) and (5.2) and then also apply 1 u = 931.494 061(21) MeV we may calculate to ten 
significant digits in AMU and seven significant digits in less-precise MeV [4] that: 
 

( )
3
2

0.001837 399 7 u 1.711 5
4

26 9 M
4

V
2

ed u d u
P

m m m m
E

π

+ +
= = = , (5.4) 

( )
3
2

0.002 387 693 9 u 2.224 1
4

22 7 M
4

V
2

eu u d d
N

m m m m
E

π

+ +
= = = . (5.5) 

 
 Now at first sight, these energies are a bit mysterious.  After all MN = 939.565379 MeV 
and MP = 938.272046 MeV so these energies are certainly not the proton and neutron masses 
themselves.  But we know that the proton and neutron contain three quarks each, that the current 
masses of the quarks contribute only slightly to the overall proton and neutron masses, and that 
the remainder of the mass is generated through extensive non-linear interactions involving 
quarks and gluons.  So let us strip out all of these interactions and focus solely on the current 
quark masses which, when properly summed together, should represent something of a “zero 
order” value for the proton and neutron masses.  Continuing to use the masses (3.3) and (3.4) the 
sums Σ  of these current quark masses, for the duu proton and udd neutron respectively, are:  
 
 

0 0 0 0

2 Tr 0 0 0 0

0.010 023 9911 u 9.337 2

Tr

0 0 0 0

88 2 MeV

d d

P u d u u P P P AB PBA

u u

m m

m m m m K K K K

m m

   
   

Σ = + = ⋅ = ⋅ =   
   
  



= =


  

, (5.6) 

0.0129129643 u 12.0283496

0 0 0 0

2 Tr 0 0 0 0 Tr

0 0 0

MeV

0

u u

N d u d d N N N AB N BA

d d

m m

m m m m K K K K

m m

   
   

Σ = + = ⋅ = ⋅ =   
   
  



=


  

=

. (5.7) 
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We note that these sums 2 =TrP u d P Pm m K KΣ = + ⋅  and 2 TrN d u N Nm m K KΣ = + = ⋅  employ the 

inner product trace of the same Koide matrices for which the outer product trace was taken in 
(5.1) and (5.2). 
 
 These energy numbers deepen the mystery further because one would expect the 
predicted energies (5.4) and (5.5) to at least be as much as the masses (5.6) and (5.7) and yet they 
are substantially less.  That is, some of the mass we expect to see in (5.6) and (5.7) is “missing” 
from (5.4) and (5.5) in very much the same way that some of the mass one might expect to see 
by combining two nuclides if we naively add their separate masses together goes missing in the 
mass defect and is released as fission energy.  So now the question becomes: how much mass has 
gone missing in (5.5)?  We can easily calculate this missing energy difference E∆ = Σ −  for each 
of the proton and neutron by subtracting (5.4) from (5.6) and (5.5) from (5.7) as was first done 
using the PDG data in [12.6] and [12.7] of [1] but is now done using (3.3) and (3.4), to obtain: 
 

( )
( )

3
2

3
2

0.008186 591
4 4

2
2

4 u 7.625 7

Tr 2 Tr

613 MeV

=

d u d u
P P P u d

P P P P

m m m m
E m m

K K K K

π

π −

=
+ +

∆ = Σ − = + − =

⋅ − ⊗

, (5.8) 

( )
( )

3
2

3
2

0.010 525 270 4 u 9.804 226 8 Me
4 4

2
2

Tr 2 Tr

Vu u d d
N N N d u

N N N N

m m m m
E m m

K K K K

π

π −

=
+ +

∆ = Σ − = + =

⋅=

−

− ⊗

. (5.9) 

 
We see that these missing masses ∆  combine both the inner and outer product traces of the 3x3 
Koide matrices in (5.1), (5.2), (5.6) and (5.7). 

 
We may then easily calculate that the average of these two missing energies 

( )1
2 8.714 9941MeVP N∆ + =∆ , and it is this number which starts to reveal some very deep 

empirical connections.  For, if we refer to the well-known empirical curve for the binding energy 
per nucleon which is reproduced below as Figure 2, and if we keep in mind that most nuclides 
have roughly the same number of protons as neutrons but with larger proportion of neutrons over 
protons as the nuclides get heavier, we see that this number is very close to the peak per-nucleon 
energy at about 8.75 MeV per nucleon.  In particular we know that the heaviest nuclides do give 
up approximately 8.75 MeV per nucleon in order to bind together which very closely tracks the 
missing energy ( )1

2 8.714 9941MeVP N∆ + =∆ .  Plainly put: (5.9) predicts that about 8.75 MeV 

of energy goes missing on average from a nucleon and Figure 2 tells us that about 8.75 MeV of 
energy really is missing on average from nucleons near the peak of the nuclear binding table.  
Both energies are just about the same, and both energies are “missing” energies.  

 
It is this observation, first reported in section 12 of [1], which caused the author to 

initially suspect that these missing masses are very closely related to nuclear binding.  And to be 
clear, the author had no a priori suspicion that these missing masses might be related to nuclear 
binding.  This was just an exploratory exercise.  Had the result of the foregoing calculation been 
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( )1
2 20 MeVP N =∆ + ∆ , or ( )1

2 3 MeVP N =∆ + ∆ , or some other number, then this would not 

have implicated nuclear binding and mass defects as the source of this missing mass.  It is only 
because the missing mass was theoretically predicted to be ( )1

2 8.714 9941MeVP N∆ + =∆  and 

this is so close to the peak of the nuclear binding curve, that these missing masses were first 
suspected to be related to the mass defect and nuclear binding.  So here, the matching of a 
theoretical prediction to empirical data gave birth to a new theoretical understanding that was 
unanticipated at the outset and that was driven by numerical empirical energy data. 

 

 
Figure 2: Empirical Binding Energy per Nucleon 

 
 Once this connection is discerned, it becomes interesting to actually use (5.8) and (5.9) to 
examine the binding energies of nuclides right near the peak of Figure 1.  The two best examples 
are 56Fe and 62Ni which have two of the highest per-nucleon binding energies of all the nuclides 
in nature.  The former has 26 protons plus 30 neutrons with a median empirical binding energy 
of 492.253892 MeV [15], and the latter has 28 protons and 34 neutrons with an empirical 
binding energy of 545.2590 MeV (calculated from [16]).  So if we use (5.8) and (5.9) to 
ascertain how much mass is “missing” from each of these nuclides we find that: 
 

( )56 492.396 598 5 MeV versus 492.253 892Fe 26 3  MeV obse ve0 r dP N∆ = ∆ + ∆ = , (5.10) 

( )62 546.865 028 4 MeV versus 545.259 0Ni 28  MeV observed34P N∆ = ∆ + ∆ = . (5.11) 

 
So for 56Fe the observed binding energy is 99.9710% of the theoretical missing mass ( )56Fe∆  

and for 62Ni this same percentage is 99.7063%.  And if one does a similar calculation for all of 



J. R. Yablon 

24 
 

the other nuclides near 56Fe and 62Ni it turns out – importantly – that no nuclide reaches or 
exceeds 100% and that the very highest percentage is the one just shown for 56Fe.  This means 
that (5.8) and (5.9) – in some manner that needs to be understood – are establishing the upper 
empirical per-nucleon limit which is observed in the nuclear binding curve in Figure 1.  Clearly 
then, the results in (5.10) and (5.11) validate that (5.8) and (5.9) are revealing something very 
real and very deep about nuclear binding, which gives further credence to the validity of the 
relationships (5.1) and (5.2) and thus the primary mass relationship (3.1) a.k.a. (5.3) with which 
these are integrally interconnected. 
 
 From here, we shall avoid repetition and instead refer the reader to the primary reference 
[2] in which the author first deciphers and explores the meaning of these results in detail.  But 
the most important highlights which do need to be conveyed in the context of the present paper, 
specifically to explain the origins of the primary mass relationship (3.2) presently under 
consideration, are the following: 
 
1) Nuclear Binding and Quark Confinement: The energies (5.8) and (5.9), in physical 
reality, are “latent binding energies” of the free proton and neutron, respectively.  What does this 
mean?  When a proton or a neutron is free, i.e., not bound to any other nucleon, then the entirety 
of this latent binding energy is used to confine quarks within the nucleon.  But when a proton or 
neutron is fused and bound into a nucleus with at least one other nuclide, some – but never all – 
of the latent binding energy in (5.8) / (5.9) is released as fusion energy, the mass of the fused 
nucleus as a whole becomes less than the sum of the masses of all its separate nucleons, this is 
what underlies the mass defect, and this lost mass / energy goes into the binding energy fusing 
together the nucleus, all in a sort of energetic nuclear “see saw” between confinement and 
binding.  So the quarks inside free nucleons are most tightly confined, the quarks inside nucleons 
inside tightly bound nuclei such as 56Fe are least-tightly confined but still confined nonetheless, 
and this is why the percentages from (5.10) and (5.11) and from any other nuclide one may 
choose to similarly calculate are always less than 100%.  For 56Fe which at 99.9710% channels a 
higher percentage of its latent binding energies than any other nuclide into actual nuclear 
binding, there is still a small 0.0290% share of its latent binding energy amounting to 0.142706 
MeV (less than 1/3 the mass of a single electron) which does not get released.  This small reserve 
instead remains behind to continue confining all of the quarks within the 56Fe nuclides.  Because 
no nuclide ever uses up more than 100% of its latent binding energies for actual binding, but 
always reserves at least some energy for confinement, quarks are always confined.  Quarks 
inside the nucleons of 56Fe are less-tightly confined than the quarks inside any other nuclide 
(which is a basis for understanding the “first EMC effect” [17]), but they do assuredly remain 
confined.  The peak in Figure 2 at 56Fe at which sits at 99.9710% of what it would take to de-
confine quarks, is one very direct way in which nature displays confinement.   Indeed, the fact 
that the observed binding energies in (5.10) and (5.11) and any other nuclides are always less 
than the total latent binding energies reveals the energy-based explanation for why quarks 
always remain confined.  
 
2) Observed and Latent Nuclear Binding Energies: In general, for a nuclide with Z protons 
and N neutrons hence A Z N= +  nucleons the latent binding energy which we denote by A

Z B  is 

calculated from (5.8) and (5.9) using: 
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A
Z P NB Z N= ⋅ ∆ + ⋅ ∆ . (5.12) 

 
So for example, (5.10) and (5.11) may be represented as specific application of this formula for 

( )56 56
26 FeB = ∆  and ( )62 62

28 NiB = ∆ .  And the percentage ratios discussed earlier are 
56 56
26 0 26 99.9710%/B B =  and 62 62

28 0 28 99.7063%/B B = .  These latent binding energies A
Z B  thereby 

establish upper limits for actual, observed binding energies which we denote generally as 0
A
Z B  

with the 0 subscript.  But as 56Fe demonstrates, these limits are never reached or exceeded, that 
is, 0

A A
Z ZB B< , or alternatively, 0 10 %/ 0A A

Z ZB B< , always.  So this now leads us to ask how it is 

that we can explain the specific observed binding energies 0
A
Z B  for all the nuclides.  This is 

especially of interest for the lightest nuclides which have the lowest 0 /A A
Z ZB B ratios and for 

which the observed binding energies to date have not yet been satisfactorily explained.  So, what 
do we now know to help us figure this out? 
 
3) The Binding and Fusion Energy “Toolkit”: We know that the latent binding energies 
A
Z P NB Z N= ⋅ ∆ + ⋅ ∆  employ linear combinations of (5.8) and (5.9) and these in turn involve 

inner and outer product traces of the matrices (5.1), (5.2), (5.6) and (5.7).  The elements of these 

matrix products in turn are very limited to only the energy numbers um , dm , u dm m , the 

foregoing divided by ( )
3
22π , and integer multiples of all these.   We take the conservative and 

very stringent view that every single observed nuclear binding energy 0
A
Z B  must be constructed 

out of some combination of the foregoing energy number “toolkit” and “structurally sensible” 
integer multiples thereof which in turn means that the observed 0

A
Z B  must all be functions of the 

0Q =  up and down quark masses (3.3) and (3.4).  This is stringent because it gives us no room 
to adjust anything.  If we cannot consistently construct the observed binding energies from these 
energy numbers with some fairly high degree of precision, which means as functions of the up 
and down quark masses – viewed as parameters – and nothing more, then this approach is 
contradicted.  But if we can construct a fair number of observed binding energies in this way 
then that would lend solid empirical support to this approach.  We know that the latent binding 
energies A

Z P NB Z N= ⋅ ∆ + ⋅ ∆  come readily packaged so for any given nuclide we should 

consider both adding to and subtracting from a pertinent A
Z B , i.e., we should ask how much its 

binding energy either exceeds or falls below some A
Z B .  That is, how much is released for 

nuclear binding, and how much is held in reserve for quark confinement?  We should also 
sensibly include in our “toolkit” scalar traces of the Koide matrices, namely, 

Tr 2P d uK m m= +  and Tr 2N u dK m m= +  multiplied by um  or dm .   Finally, to 

extend this approach we should consider matching these energy numbers not only to binding 
energies but also to the energies released during various fusion or fission and other decay 
reactions.  From here, with toolkit assembled, the task of characterizing individual observed 
binding energies 0

A
Z B  involves elbow grease, a good spreadsheet or computer program, and 

educated trial and error.  In this venture, one is using empirical data in combination with the 
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foregoing toolkit to try to discern systematic but hidden theoretical patterns in the nuclear 
binding energies – in broad scope, seeking to “decode” the nuclear “genome.”  
 
4) Hydrogen-2: The easiest place to start is with the 2H deuteron consisting of one proton 
and one neutron.  In AMU the observed binding energy is 2

1 0 0 002 388170100 uB .= . We then 

refer to our energy number “toolkit” um , dm , u dm m , the foregoing divided by ( )
3
22π , and 

integer multiples of these.  But we need not search very far.  From (3.3) the mass of the up quark 
is 0 002 387 339 3 uum .= .  The difference is 21

7
0 8.308 10 uuB m −− ×= , which is to say, the 

accuracy is to better eight parts per ten million AMU.  It should be pointed out that in [1] the 
author originally hypothesized that the deuteron binding energy is exactly the same as the up 
quark masse due to how close they in fact appeared to be.  That is, the author originally 
employed 21 0 uB m=  rather than (3.2) as a primary mass relationship in combination with (3.1).  

Then, on this basis, over the course of the development in sections 1 through 9 of [2] the author 
was able for the first time to derive the primary mass relationship (3.2) with eight parts per ten 
million AMU accuracy.  Once this (3.2) had been derived, for the reasons elaborated at length in 
section 10 of [2], the author shifted hypotheses and advanced (3.2) to a primary, exact mass 
relationship while withdrawing 21 0 uB m= , so that the sub-parts-per-million AMU error was 

shifted from (3.2) to 21 0B .  It must also be pointed out that this error is outside of experimental 

error margins because 2
1 0B  is known with greater than ten-digit accuracy, and so it still warrants 

further understanding.  Nonetheless, the match is surely close enough to warrant attention.   
 
5) Helium-3 and Helium-4: From there we seek to explain some other light nuclide binding 
energies in like fashion based on the foregoing toolkit, particularly hydrogen and helium 
isotopes.  For the highly stable alpha particle – the 4He nucleus – it was found through trial and 
error that the observed binding energy 4

2 0 0 030 376 586 5 uB .=  is less than the latent binding 

energy 4
2 0.037 465 212 u2 2 2P NB = ⋅ ∆ + ⋅ ∆ =  by approximately 2 u dm m .  So we then 

calculate 4
2 02 2 2 0.030 373 002 0 uP N u dm m B⋅ ∆ + ⋅ ∆ − = ≈ , to find that this differs from the 

observed alpha binding energy by under four parts per million AMU.  The integer factor 2 used 

with u dm m  is “structurally sensible” because the alpha particle has 2 protons and 2 neutrons, 

i.e., 2 neutron / proton pairs.  And this overall expression for 42 B  is structurally sensible because 

just like the alpha particle itself, it is completely symmetric under both P N↔  and u d↔  
interchange.  This is first developed in detail in section 5 of [2] and the numerical results are 
recalibrated in section 10 of [2] after (3.2) is used to replace 21 0 uB m=  as a primary mass 

relationship. 
 
 For the 3He nucleus (helion) with observed binding energy 3

2 0 0.008 285 602 8 uB =  we 

calculate 3
2 0Tr 2 0.008 320 783 9u P u u dm K m m m B= + = ≈  by employing the trace of the Koide 

proton matrix Tr 2P d uK m m= +  from our toolkit.  Having 2d um m+  involved here is 

“structurally sensible” because 3He has one neutron (one extra down quark) and two protons 
(two extra up quarks).  This differs from the empirical data by under four parts per hundred 
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thousand AMU after recalibration in section 10 of [2] and was first developed in detail in section 
6 of [2]. 
  
6) Hydrogen-3 and the Neutron minus Proton Mass Difference: It was in the course of 
attempting to obtain a binding energy for the 3H triton that the author finally discovered the mass 
relationship (3.2) which was then advanced to a primary exact relationship in section 10 of [2].  

While 2
1 0 uB m≈ , 4

2 0 2 2 2P N u dB m m≈ ⋅ ∆ + ⋅ ∆ −  and 3
2 0 2 u u dB m m m≈ +  for 2H, 4He and 3He 

respectively could be ferretted out relatively straightforwardly using binding energies, latent 
binding energies (5.12) and the toolkit from point 3, finding 3

1 0B  for 3H proved to be impossible 

working with binding energies alone.  So at that point in time as detailed in the appendix of [2] 
we begin to consider certain nuclear fusion reactions to see if the energies released in these 
reactions might provide a close empirical connection to the point 3 toolkit.  And we also begin to 
make use of the general mass defect relationship 
 

0 0
A A
Z P N ZB Z M N M M= ⋅ + ⋅ −  (5.13) 

 
through which one can related the observed binding energy 0

A
Z B  to the observed nuclear mass 

(weight) 0
A
Z M  for any nuclide with Z protons, N neutrons and A Z M= +  nucleons.  (Note: the 

free proton mass 1
1PM M=  and the free neutron mass 1

0NM M= .) 

 
First, we consider the fusion Energy3

1
2
1

1
1 +++→+ + νeHHH of a proton and a deuteron 

into a triton and ask: how much energy is released?  Empirically, this energy is observed to be 
1 2 3
1 1 1Energy 0.004 780 386 2 ueM M M m= + − − = .  Dipping into the toolkit we find a close 

connection using 0.004 774 6 8 6 u2 7um =  which differs from the observed fusion energy by 

5.7076×10-6 u, i.e., just under six parts per million AMU.  And the factor of 2 makes some 
structural sense because we are fusing two nuclides.  So we make the close association 

( )1 2 3
1 1 1Energy ... 2 uH H H m+ → + ≈ .  After some calculations using (5.13) and leading to [A9] in 

[2] we obtain the expression 3
1 0 3N P u eB M M m m≈ − + +  for the 3H binding energy, which 

requires us to find the neutron minus proton mass difference N PM M−  which is the primary 

relationship (3.2). 
 

For this we do a second study, this time of the fusion Energy2
1

1
1

1
1 +++→+ + νeHHH  of 

two protons into a deuteron.  Again we ask: how much energy is released?  The observed 
empirical energy is 2

1Energy 2 0.000 451141 0 uP eM M m= − − = .  We again return to trial and 

error with the toolkit, this time dipping into the ( )
3
22π  divisor to find that 

( )
3
22 2 0.000 450 4241 uµ dm m / π = .  This differs from the empirical fusion energy by 

7.169×10-7 u and so has an accuracy of better than one part per million AMU.  So we make the 

close association ( ) ( )
3
21 1 2

1 1 1Energy ... 2 2µ dH H H m m / π+ → + ≈ .  Thereafter, we arrive in 
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[A15] of [2] at ( ) ( ) ( )
3 3
2 22 / 2 3 2 3 / 2N P u e µ d u d µ d uM M m m m m π m m m m m π− = − − = − + − , 

which is the primary mass relationship (3.2).  With this we complete the explanation of how the 
second primary relationship (3.2) for the neutron minus proton mass difference is obtained. 

 
Of course, when (3.2) was first obtained in [A15] of [2] this was as an intermediate step 

that was necessitated to reduce 3
1 0 3N P u eB M M m m≈ − + +  to obtain the binding energy for the 

3H triton, which has the empirical value 3
1 0 0.009105 585 4 uB = .  So we then completed the 

calculations in the appendix of [2] using all of these results to arrive in [A17] at the approximate 

expression ( )
3
2 3

1 04 2 / 2 0.009 099 0471 uu µ dm m m π B− = ≈  for the triton bending energy, which 

differs from the observed value by 6.5383×10-6 u,  just under seven parts per million AMU.   
 

7) Recalibration of Mass Relationships: As just discussed, the primary mass relationship 
(3.2) was first uncovered as a byproduct in the course of pursuing the triton binding energy.  But 
based on the initial hypothesis in place at the time that 21 0 uB m= , this relationship (3.2) itself 

predicted a neutron minus proton mass difference which was off by a few parts per ten million 
AMU.  Then, for the reasons detailed in section 10 of [2] the author withdrew 21 0 uB m=  as a 

primary relationship and instead hypothesized (3.2) to be a primary, exact relationship among the 
electron, proton and neutron masses.  It is with this hypothesis that (3.2) joined (3.1) as a 
“primary mass relationship” which was then used in accordance with the EPN-0 quark mass 
definition to deduce very precise quark masses (3.3) and (3.4) which have been used in the 
development here ever since.  With this shift in hypothesis, all other mass / energy relationships 
previously developed were recalibrated to reflect this revised hypothesis. 
 
6. Is there Clear Secondary Empirical Support for the Deduced Q = 0 Up 
and Down Current Quark Masses? 
 
 Having shown how the primary mass relationships (3.1) and (3.2) are obtained we now 
return to the second of the three questions posed in section 3 namely whether these primary mass 
relationships (3.1) and (3.2) and the very precise 0Q =  up and down current quark masses (3.3) 
and (3.4) deduced therefrom can be supported by other “secondary relationships” rooted in 
nuclear data, or whether there are contradictions to be found. 
 

When discussing in general whether a theory is “valid” or has “support” one must keep in 
mind that for scientific work, one can never truly “validate” a theory.  One can simply show that 
at multiple places where the theory might be open to contradiction, no contradiction is found.  
This takes place at two levels: the empirical level, and the theoretical level. 

 
At the empirical level, the question is whether efforts to make contact with empirical data 

are contradicted or not contradicted: do the experiments rule out the theory, or do they fail to rule 
out the theory?  If a sufficient number of efforts are made to contradict and no contradictions 
found then the weight of those “failures to contradict” start to translate into “empirical support” 
for the theory.  But there is no objective, scientific measurement as to when there are enough 
failures to contradict so as to constitute theoretical validation.  That is a subjective judgment 
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which must first be made by individual scientists and then, eventually, by the scientific 
community as a whole.   

 
At the theoretical level, the question is whether a proposed theory is consistent with, i.e., 

not contradictory to, other settled theories and theoretical elements which have advanced to the 
point of having gained wide acceptance in the scientific community based on multiple failures to 
contradict those settled theories.  There are other corollary questions related to this: whether the 
theory economical, which in a conservative view of science might be reframed as whether the 
theory requires brand new notions to be injected into the theoretical discourse of the community, 
or whether the theory can be rested solely on novel synthesis of well-established and well-settled 
theories and theoretical elements to uniquely and unambiguously deduce new results and new 
explanations for previously-unexplained observational data.  From a conservative scientific 
stance the latter (synthesis of settled science) is preferable while the former (brand new notions) 
is not ruled out but should be used as a last resort when there is no apparent way to succeed by 
restricting oneself to combining known elements in novel ways.   

 
In this section, we shall discuss empirical support, which is the second of the three 

questions posed in section 3.  In the final three sections we shall discuss theoretical support, 
which is the third and final of the three questions posed in section 3 
 
 The findings regarding the 56Fe and 62Ni latent binding energies (5.11) and (5.12) and the 
fitting of the mass number “toolkit” to the 2H,3H, 3He and 4He binding and fusion energies in 
section 5 appear to provide preliminary support for the view that (3.3) and (3.4) are correct quark 
masses and therefore (3.1) and (3.2) are correct relationships as well as for the view that the 
“toolkit” energies can in fact be used to fit observed nuclear binding and fusion energies.  
Specifically, we hypothesized that the latent binding energies (5.8) and (5.9) and toolkit 
components thereof should be able to provide the exclusive basis for fitting empirical binding 
and fusion energy observational data.  Then when we applied this hypothesis to 2H, 3H, 3He and 
4He we were indeed able to fit energy numbers for all four of these nuclides to better than parts 
per hundred thousand AMU, which means that this hypothesis was uncontradicted by these four 
nuclides’ binding and fusion energies.  Now we shall review this empirical support together with 
additional empirical support, as catalogued below. 
 
 Thus far, we started out by hypothesizing (3.1) and (3.2) to be valid, exact, Q-invariant 
relationships, and thereby hypothesizing (3.3) and (3.4) to be valid, very precise up and down 

0Q =  quark masses.  Based on this, the author has to date been able to deduce the following 
non-contradictory, supporting empirical results: 
 
1) Hyrdrogen-2 and -3, Helium-3 and -4 Binding Energies: Secondary relationships for the 
2H, 3H, 3He and 4He (1s shell) nuclide binding energies strictly terms of um  and dm  with very 

close matches to parts per 105, 106 or even 107 AMU.  Respectively, these secondary 

relationships are: 2
1 0 uB m≈  (section 5, point 4); ( )

3
23

1 0 4 2 / 2u µ dB m m m π≈ −  (section 5, point 6); 
3
2 0 2 u u dB m m m≈ +  (section 5, point 6); and in view of the latenbt binding energies (5.8) and 

(5.9),4
2 0 2 2 2P N u dB m m≈ ⋅ ∆ + ⋅ ∆ − (section 5, point 6).  This means that 2H, 3H and 3He 
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respectively release energies of about um , ( )
3
24 2 / 2u µ dm m m π−  and 2 u u dm m m+  from quark 

confinement to nuclear binding, while 4He retains an energy of about 2 u dm m  for quark 

confinement and releases all the remaining latent binding energy for nuclear binding. 
 
2) Deuteron and Triton Fusion Energies: Interrelated to the point 1 secondary relationships 
and the primary relationship (3.2), an ( )1 2 3

1 1 1Energy ... 2 uH H H m+ → + ≈  for the fusion energy 

released when a fusing proton and a deuteron into a triton and 

( ) ( )
3
21 1 2

1 1 1Energy ... 2 2µ dH H H m m / π+ → + ≈  for the fusion energy released when fusing two 

protons into a deuteron (section 5, point 6). 
 
3) The Nuclear Binding Peak near 8.75 MeV: The relationships (5.8) and (5.9) for P∆  and 

N∆  which represent “missing energy” and which have a value of ( )1
2 8.714 9941MeVP N∆ + =∆  

which is right at the peak of the empirical nuclear binding curve in Figure 2 which also 
represents a “missing energy” from composite nuclides. 
 
4) Iron-56 and other Tightly-Bound Nuclides: Based on (5.8) and (5.9), the relationship 

( )56Fe 26 3 492.396 598 eV0 5 MP N∆ = ∆ + ∆ =  in (5.10) which is extremely close to the 

empirical 56
26 0 492.253 892 MeVB = , such that 56 56

26 0 26 99.9710%/B B = .  This, and other 

relationships such as (5.11) which are deduced via (5.12) provide the basis for recognizing that 

P∆  and N∆  are latent energies available to be used for binding which confine quarks in free 

nucleons but which are partially released as fusion energies for nuclear binding in a percentage 
that varies for each type of nuclide but never exceeds 100% and is greatest for 56Fe than for any 
other nuclide.  This enables us to understand quark confinement on an energetic basis and 
explain the first EMC effect [17] whereby quarks inside bound nuclei are observed to be less-
confined than those in free nucleons. 
 
 All of the foregoing provide secondary empirical validation to the view that (3.1) and 
(3.2) are empirically-valid relationships, and that (3.3) and (3.4) are therefore empirically-valid 
quarks masses.  But there are further supporting empirical results as well: 
 
5) Solar Fusion: By combining the 2H, 3H, 3He and 4He binding results in point 1 above with 

( )1 2 3
1 1 1Energy ... 2 uH H H m+ → + ≈  and ( ) ( )

3
21 1 2

1 1 1Energy ... 2 2µ dH H H m m / π+ → + ≈  for the 

fusion events in point 2 above, it is possible as detailed in section 9 of [2] to accurately express 
the 26.73 MeV energy observed to be released during a single solar fusion event by the 
relationship [9.8] of [2]: 
 

( )

( )
3
2

1 4
1 2Energy 4 2 (12.79 ) 2 (5.52 ) 2 (.42 ) 4 ( ) 2

2 22 12
4 6 2 26 73

2

d u u d
u d u d

H e He MeV MeV MeV e

m m m m
m m m m .  MeV

π

γ γ γ γ ν−⋅ + → + + + + +

− −
= + − + =

. (6.1) 



J. R. Yablon 

31 
 

  
Like the other binding and fusion results this is also expressed wholly and exclusively in terms of 
the same two parameters: the up quark mass (3.3) and the down quark mass (3.4). 
 
6) Stable Neutron-Rich Nuclides: The fact that the latent binding energy of the neutron in 
(5.9) is greater than that of the proton in (5.8) by a factor of 1.284 295 230 4/N P∆ ∆ =  teaches 

that a neutron inherently carries 28.42% more latent binding energy than does a proton.  This 
explains the clear empirical evidence that for all nuclei heavier than helium the stable isotopes 
always have either equal numbers of protons and neutrons N=Z or are neutron-rich N>Z.  If one 
has a given nucleus and seeks to fuse on an extra proton or neutron, it is clear that a neutron 
which can contribute more latent energy which can be used for nuclear binding will have an 
easier time becoming and staying bound than a proton which contributes less energy. 
 
7) Lithium-6 and -7 and Beryllium-7 and -8: Thus far we have only examined the 2H, 3H, 
3He and 4He binding energies.  But there is further support available from some heavier nuclides 
as well.  To date, the author has characterized eleven additional nuclides 6Li, 7Li, 7Be, 8Be, 10B, 
9Be, 10Be, 11B, 11C, 12C and 14N with equally-high precision, exclusively as a function of the up 
and down quark masses, via the toolkit of section 5 point 3.  All of these derivations are detailed 
at length in [5], so we shall simply summarize them here. 
 

The detailed derivations for 6Li, 7Li, 7Be, 8Be, which are 2s shell nuclides, are contained 
in section 13 of [5] and are exceptionally revealing in terms of the requirement that the integer 

multiples of the um , dm , u dm m  and these divided by ( )
3
22π  must be “structurally sensible.”  

We have already applied this in points 5 and 6 of section 5 for the hydrogen and helium 
derivations, but when applied to Li and Be, this requirement provides deep empirical support. 
 

The respective binding energies for 6Li, 7Li, 7Be, 8Be are found in [13.21] and [13.12] of 
[5] to be: 
 

( ) ( )
3
26

3 0 7 6 2 10 10 0.034 336 4279 u2 2 u d u d u d u dB m m m m m m m m π≈ + − + − − − = . (6.2) 

( ) ( )
3
27

3 0 0.042105 716 08 6 2 11 u2 2  2u d u d u d u dB m m m m m m m m π≈ + − + + − = . (6.3) 

( ) ( )
3
27

4 0 7 6 2 10 8 0.040 356 362 0 u9 2u d u d u d u dB m m m m m m m m π≈ + − + − + − = . (6.4) 

( )1.58
4 0 0.060 633 250 94 4 2 3 2  2 u/P N u d u dB E E m m m m π≈ ⋅ ∆ + ⋅ ∆ − − = . (6.5) 

 
The respective empirical values out to seven digits are 6

3 0 0.034 347 1 uB =  (difference of 
51.07 10  u−− × ); 7

3 0 0.042130 3 uB =  (difference of 52.45 10  u−− × );  7
4 0 0.040 3651 uB =

(difference of 68.74 10  u−− × ), and 8
4 0 0.060 6 8u54B = (difference of 52.16 10 u−− × ).  So as 

with H and He, these all have accuracy to parts in 105 or 106 u. 
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 Now, while the existence of the coefficients 6, 7 and 8 multiplying the quark masses 
provides some “structural sensibility” for nuclides with 6, 7 or 8 nucleons, the deep and striking 
structural sensibility emerges from the fusion relationships which were used in section 13 of [5]  
to establish (6.2) through (6.4) above.  Specifically, to arrive at (6.2) for 6Li we used the fusion 
reaction 4 6

2 32 EnergyHe p Li e ν++ → + + +  for which the empirical energy to seven digits is 

0.002 033 5 u, and after using the toolkit and “structurally-sensible” integer multiples, it is 
found in [13.3] of [5] that: 
 

( ) ( )1.54 6
2 3Energy 2 Energy 9 / 0.002 026 4 2 uu dHe p Li e m mν π++ → + + + ≈ = , (6.5) 

 
which has the coefficient 9 and differs by 67.1 10 u−− × .  To arrive at (6.3) for 7Li we developed 

the β +  decay reaction 7 7
4 3 EnergyBe e Li ν+ → + +  for which the empirical energy is 

0.000 925 3 u.  Using the toolkit and “structurally-sensible” integer multiples, we found in 
[13.9] of [5] that: 
 

( ) ( )1.57 7
4 3Energy Energy 6 / 2 0.000 909 5 uuBe e Li mν π+ → + + ≈ = , (6.6) 

 
which has the coefficient 6 and differs by 51.58 10 u−− × .  And to arrive at (6.4) for 7Be we 

worked with the reaction 6 7
3 4 EnergyLi p Be+ → +  which has an empirical energy of 

0.006 018 0 u.  Here, we found in [13.6] of [5] that: 
 

( ) ( )1.56 7
3 4Energy Energy 0.006 018 / 2 19 9 udLi p Be m π+ → + ≈ = , (6.7) 

 
which has the coefficient 18 and differ by 61.9 10 u−× .  These three coefficients, 9, 6 and 18 not 
only yield very close results to parts per 105 or 106 but also provide structural sensibility and 
begin to teach us deeply about nuclear structure and the “nuclear genome.” 
 
 When we build the 6Li nucleus by fusing 2 nucleons with an alpha particle in (6.5), we 
are creating a nucleus with 9 up quarks and 9 down quarks, i.e., with 9 up / down quark pairs.  

And what is the toolkit number that gets us from 4He to 6Li?  ( )1.5
9 / 2u dm m π .  How better to 

formally state that there are 9 up / down quark pairs than with ( )1.5
9 / 2u dm m π , and to state that 

both the beginning and end-products 4He and 6Li are absolutely symmetric under P N↔  and 
u d↔  interchange.  In (6.6) we have the isotopic β +  decay from unstable proton-rich 7Be to 

stable neutron-rich 7Li for which the toolkit gives us ( )1.5
6 / 2um π .   (Keep in mind point 6 where 

we explained based on latent binding energies why nature favors extra neutrons over extra 
protons for anything heavier than He.)  In this reaction a proton is being traded for a neutron, but 
the unchanging nucleus during thus reaction is the underlying stable 6Li nucleus with is an 
isotope of 7Li and an isotone of 7Be.  This structural piece of the nucleus which does not change 
is the underlying 6Li with 6 nucleons.  So what is the coefficient here?  Why, it is 6.  In (6.7) we 
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are adding a proton to 6Li, and the toolkit yields ( )1.5
18 / 2dm π .  Why 18?  The nucleus at the 

root of this fusion event is 6Li which contains 18 quarks.  It is also interesting to observe that the 

three main toolbox elements u dm m , um  and dm  are each used in these decays via  

( )1.5
9 / 2u dm m π , ( )1.5

6 / 2um π  and ( )1.5
18 / 2dm π  and that the 6Li nucleus common to all three 

reactions appears to drive these coefficients. 
 
 All of this suggests that when any nuclear transition occurs and some energy is being 
released there is definitive set of energy “dosages” which are released or otherwise used in the 
process, and which are allocated discretely to each of the quarks or quark pairs or nucleons, etc.  

So for 4 6
2 32 ...He p Li+ → +  with ( )1.5

9 / 2u dm m π , each of the nine quark pairs gives up an 

single energy dosage ( )1.5
/ 2u dm m π  to be able to establish the 6Li with the start of new proton 

and neutron shells overlaid on the alpha nucleus, that is, to “entice” an extra proton and neutron 

to join the alpha core.  For 7 7
4 3 ...Be e Li+ → +  with ( )1.5

6 / 2um π  each of the six nucleons – three 

protons and three neutrons – in the 6Li core gives up a single energy dosage ( )1.5
/ 2um π  to the 

β +  decay.  And for 6 7
3 4 ...Li p Be+ → +  with ( )1.5

18 / 2dm π , every single quark in the 6Li core 

needs to give up a single ( )1.5
/ 2dm π  energy dosage to “entice” the proton into the core.   

 
Applying this new understanding retrospectively to point 2, we now see that to create a 

deuteron which is symmetric under P N↔  and u d↔  interchange, via the most basic fusion 

reaction ( ) ( )
3
22

1Energy ... 2 2µ dp p H m m / π+ → + ≈ , each proton has to contribute a

( )
3
22µ dm m / π  dosage of energy which dosage is similarly symmetric.  And to create a triton 

via ( )1 2 3
1 1 1Energy ... 2 uH H H m+ → + ≈  each of the proton and the deuteron must contribute an 

energy does valued at um .  This provides a deeper picture of what it means to say that the 

“toolbox” elements need to be used with coefficients which are “structurally sensible.”  We 
come to understand that when we observe some fusion or fission energy released during some 
reaction, this energy originates from a collection of discrete “dosages” of the toolbox energies in 
relation to the structural elements of the involved nuclei.   
 
 We also see that the method of fitting the toolkit to observed fusion or β  decay energies 
(versus fitting to binding energies) is extremely important in building up larger nuclides.  In 
section 13 of [5], we started with the 4He nucleus and built that into 6Li which is diagonally-
adjacent upper left to lower right in the nuclide table, per (6.5).  Then we added a proton as in 
(6.7) and built this into its isotone 7Be.  Then we diagonally beta-decayed this upper right to 
lower left into 7Li as in (6.6).  Once lighter nuclides are so-characterized, we have the ability to 
“weave” over from one nuclide to horizontally or vertically-adjacent nuclides by examining their 
decay energies, and then convert over to binding energies via (5.13).  This stepwise approach to 
building up nuclei provides some sense of confidence that the binding energies obtained are 
validly-related to real physical events. 
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Further, we see from the 4He binding energy  42 0 2 2 2P N u dB m m≈ ⋅ ∆ + ⋅ ∆ −  and from 

the 8Be binding energy ( )1.58
4 0 4 4 2 32 / 2P N u d u dB E E m m m m π≈ ⋅ ∆ + ⋅ ∆ − −  that the 

evenZ N= =  nuclides appear to form something of a nuclear “backbone” which are N P↔  
and u d↔  invariant, and that their binding energies are perhaps best uncovered by first using 
(5.12) ascertain their latent binding energies, then using the toolkit to see how much of this latent 
energy is retained for confinement, and throughout being guided by the N P↔  and u d↔  
symmetry of these nuclides.   

 
So the basic approach to “decoding the nuclear genome” is to first establish the diagonal 

evenZ N= =  “backbone” nuclides which have full nuclear shells and then branch over to 
nearby nuclides.  For the backbone nuclides we first calculate the latent binding energy via 
(5.12) which uses (5.8) and (5.9).  Then we use the toolkit to find out how much of this latent 
binding energy (5.12) goes unused for nuclear binding and is instead reserved for quark 
confinement.  Once we have established a backbone nuclide we then “weave” our way over to 
nearby nuclides using pertinent fusion reactions while making use of the various emergent 
integer dosage coefficients to provide clues about the nuclear substructure and which elements 
within the nucleus are emitting what energy dosages. 
 
8) Stability of Helium-4 over Beryllium-8: By now having close fits for both 84 0B  and 4

2 0B  

with the ratio 8 4
4 0 2 0 1.99/ 6 052 2B B =  based on (6.5) and point 5 of section 5, we implicitly 

explain that why 8Be is unstable and always decays rapidly into two 4He nuclei.  This is another 
important empirical feature of nuclear physics which does not contradict this approach. 
 
9) Boron-10: Further empirical validation is obtained through characterizing the 10B, 9Be, 
10Be, 11B, 11C, 12C and 14N nuclides as the author has previously done in section 14 of [5].  We 
shall not repeat those derivations here because they are available at the original source [5].  But 
the patterns which stated to emerge for 6Li, 7Li, 7Be, 8Be do appear in for some of these even-
heavier nuclides.  An excellent example of this is the 8 10

4 52 EnergyBe p B e ν++ → + + +  reaction, 

which is analogous to 4 6
2 32 EnergyHe p Li e ν++ → + + +  as summarized in (6.5).  The 

empirically-released energy in this reaction is 0.006 9210 u.  And as found in [14.3] of [5], 
which is symmetric under u d↔  interchange as expected for any Z N=  nuclides, we obtain: 
 

( ) ( )1.58 10
4 5Energy 2 Energy 15 / 2 0.006 923 4 uu d u dBe p B e m m m mν π++ → + + + = + = , (6.8) 

 
which differs from the empirical energy by 62.4 10 u−× .  What is extremely striking is that the 

creation of 6
3Li  with 9 up / down quark pairs from 4

2 He contained a ( )1.5
9 / 2u dm m π  term 

shown in (6.5), and the creation of 10
5B  with 15 up / down quark pairs from 8

4 Be contains a 

exactly the same term, but now  ( )1.5
15 / 2u dm m π .  This cannot be mere coincidence.  This 

reveals a very definite and meaningful data pattern.  As with 4 6
2 32 ...He p Li+ → + , each quark 

pair in the 8 10
4 52 ...Be p B+ → +  contributes a single ( )1.5

/ 2u dm m π  energy dosage, except now 
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there are more quark pairs – 15 rather than 9 – to make such a contribution.  But the new feature 

in (14.3) is that there is also a single overall u dm m  dosage.  Because structural sensibility is 

important in discerning which possible relationships are true signals of physical reality and 
which are merely misleading noise, we need to closely look at the structure of the nuclides 
involved.  Earlier, 63Li  opened up a new 2s shell for a protons and a neutrons alike, but in 2s, the 

orbital angular momentum is l=0 as it is for 1s.  Now, however, 10
5B  is opening up a new 2p shell 

for a proton and a neutron, and these shells have l=1.   So to create this shell, so as to sustain 
both a proton (extra up quark) and a neutron (extra down quark) in an l=1 state, we need some 

additional energy.  The u dm m  term appears to tell us that the l=1 proton contributes the um  

and the l=1 neutron contributes the dm  to this u dm m  energy does an the price for entry into the 
10B nuclide and maintenance in an orbital state.   
 

In sum: equation (6.8) is telling us that to create 10B from 8Be plus two nucleons, each of 

the 15 up/down quark pairs in the target 10B must contribute an ( )1.5
/ 2u dm m π  dosage and the 

neutron / proton pair which opens up 2p must further contribute u dm m  to maintain an orbital 

angular momentum.  This is identical to what happens to create 6Li from 4He plus two nucleons, 
except that 10B needs some additional energy to fill an l=1 orbital while 6Li does not.  Again: 
decoding the nuclear genome. 
 
10) Carbon-12: The 12C nuclide is seat of biological life and the chosen standard of nuclear 
weight measurement with an isotopic mass exactly equal to 12 u by definition.  It is also is of 
keen interest in terms of confirming certain patterns already seen for the 4He and 8Be which are 
the first three nuclides with evenZ N= = .  This 12C sits on the nuclear backbone and so 
following the basic approach states at the end of point 7 above we go straight to (5.12) with 

6Z N= =  to obtain the latent binding energy and then see how much is subtracted away, i.e., 
held in reserve to confine quarks rather than bind the nucleus.  The empirical binding energy 
12
6 0 0.098 939 8 B u= .  What we discern in [14.30] of [5] is that: 

 

( ) ( ) ( )1.512
6 0 6 6 1 0.098 92  u2 0/ 8 7P N u d u dB E E m m m m π≈ ⋅∆ + ⋅∆ − + − + = . (6.9) 

 
The empirical difference is 53.10508 10  u−− × .  Thus far the u d↔ -symmetric energy number 

we have used is u dm m , yet the above makes clear that u dm m+  is a good tool to add to the 

toolkit (by corollary it is already there because um  and dm  are already there, but it helps to be 

cognizant of the equally-weighted sum u dm m+  especially for u d↔ -symmetric nuclides).  The 

coefficient 12 clearly makes structural sense: there are after all, 12 nucleons in 12C, so each 

nucleon is responsible for one of the ( ) ( )1.5
/ 2u dm m π+  energy dosages.  But like 10B, 12C has 

nucleons in the 2p shell and so must sustain yet another proton and neutron in an l=1 orbital 

state.  So in the same way that u dm m  sustained the first proton / neutron pair in the l=1 orbital 

for 10B in (6.8), u dm m+  sustains the second proton / neutron pair in the l=1 orbital for 12C in 



J. R. Yablon 

36 
 

(6.9).  This also establishes a very definite and meaningful data pattern.  We now think of the 
toolkit, physically, as representing energy dosages.  As we map the nuclear genome, the dosages 
we uncover are telling us which quarks, quark pairs, protons and neutrons, proton / neutron pairs, 
shells etc. in various shells are contributing energy – and how much energy – to bind together the 
nucleus and maintain the requisite orbital l and magnetic m quantum states.  
 

For the remaining 9Be, 10Be, 11B, 11C and 14N nuclides which the author has also 
characterized, we will take no further space here, but refer the reader to section 14 of [5]. 
 
11) The Proton and Neutron and Constituent Quark Masses: A very important empirical 
validation comes through using an extension of the foregoing approaches to explain the observed 
proton and neutron masses MN = 939.565379 MeV and MP = 938.272046 MeV themselves, in 
relation to these very same quark masses, within all experimental errors.  This was the central 
result in [6], which will be summarized here.  The next section will then turn to the underlying 
theory that baryons are the chromo-magnetic monopoles of Yang-Mills gauge theory. 
 
 It will be understood from basic algebra that if we know the difference A-B between any 
two numbers A and B and also know their sum A+B then we can then deduce these two separate 
numbers.  Because we already know the neutron minus proton mass difference N PM M−  in 

relation to the up and down quark masses from the primary relationship (3.2), we are one step 
away from knowing the proton and neutron masses themselves if we can also determine 

N PM M+ .  So the objective is to deduce the sum of these two masses.  Once that is the 

objective, there is an important symmetry benefit that we have already seen with the Z N=  
nuclides: we expect that N PM M+  which represents baryons with a combined total of three up 

and three down quarks must be symmetric under u d↔  interchange.  This greatly restricts the 

toolkit elements we may use to either u dm m  products or u dm m+  sums (or perhaps 2 2
u dm m+  

which will make its first natural appearance in (7.19)). 
 
 The problem we have, however, is that the proton and neutron masses are at least two 
orders of magnitude larger than mu = 2.223 792 40 MeV and md = 4.906 470 34 MeV, so the 
“sensible integer multiples” approach does not help us here.  But we know from electroweak 
theory that the Fermi vev vF=246.219651 GeV is used to set the mass scale for certain observed 
masses, notably the masses for the W and Z bosons, and we might expect on general principles 
that this vev will also turn up in the proton and neutron masses.  So knowing that we are going to 

need u d↔  symmetric constructs such as u dm m to obtain N PM M+ , and entertaining the 

possibility of employing Fν  as an additional energy square root to supplementum  and dm  

which we are already using, we perform an exploratory calculation in [3.8] of [18] to 

encouragingly find that the construct 901.835259 MeVu dv m m⋅ =  lands within about 3% of 

the actual proton and neutron masses.  To use a golf analogy, this places the ball on the green; 
now we need to figure out how to hit it into the cup. 
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 The next step was to employ ( ) ( )2 1 1 1 2 2
3 3 3 3 3 3diag diag 0, , , , 1, , ,F F Fv Q vΦ = = − − − −  which 

is a Fermi vacuum in the adjoint presentation for elementary fermions which were grouped into 
an ( ) ( )( ), , , , , , ,R G B R G Bu d d e d u uν  octet in the fundamental representation of an SU(8) Grand Unified 

Theory (GUT) that the author had used to break the electroweak symmetry and which naturally 
explained the existence of three fermion generations and CKM mixing and so answered Rabi’s 
long ago quip about the muon, “who ordered that?”  Plainly put: the electric charges 2 1

3 3,Q = + −   

of the up and down quarks needed to enter 901.835259 MeVu dv m m⋅ =  in the form of Fv Q. 

 
 So supplementing the Koide matrices K which were first discussed at (5.1) and (5.2) 
above with the quark electric charge magnitudes via FΦ , the author in [5.8] of [6] constructed 

and then calculated the following inner product trace between a first Koide-type  matrix with the 
duu (proton) charges and mass, and a second matrix the udd (neutron) charges and masses: 
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=

 (6.10) 

 
which was understood to apply to all but the current quark mass sum 3 3u dm m+  associated with 

N PM M+ .  Upon adding this sum( )3 u dm m+  to (6.10) it was found in [5.10] of [6] that: 

 

( )224
9 1878.961415 MeV3N P F u d u dM M v m m m m+ ≈ + + = . (6.11) 

 
which differs from the observed 1877.837 425 MeVN PM M+ =  by a scant 0.0599%.  This 

placed the golf ball inches from the cup. 
 
 The balance section 6 of [6] was devoted to closing this gap.  In sum, it was found in 
[6.6] of [6] (see also [5.14] of [6]) that the exact N PM M+  includes a mixing angle 1θ  and a 

phase δ  parameter which also need to be in (6.11) growing out of the fact that the up and down 
quarks have oppositely signed electric charges neglected when we only used magnitudes in 
(6.10), and that the complete expression is: 
 

( ) ( )( )224
193 exp cosN P F u d u dM M v m m i m mδ θ+ = + + . (6.12) 

 
In [6] it was then deduced in [6.28] that 1 0.947454co 2s 124θ =  from the empirical N PM M+  

and in [6.30] that 0δ =  by mathematical identity.  The latter result tells us that there are no CP-
violating effects associated with neutron and proton, which is validated by the empirical data that the 
mass of the antiproton is equal to that of the proton, and similarly for the neutron, see, e.g., [19], [20].  
The former result boils down and bundles up the problem of explaining the proton and neutron masses 
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within all experimental errors, to the problem of explaining the value of this deduced “nucleon fitting 
angle” 1 0.947454co 2s 124θ =  within all experimental errors. 

 
 Because this 1θ  and the phase δ  emerged from matrices with were mathematically the 

same as the CKM mixing matrices, it made sense to see if 1 0.947454co 2s 124θ =  could be 

related in some way to the observed CKM mixing angles themselves.  Equations [11.2], [11.3] 
and [11.27] (for empirical magnitude-only data) of PDG’s [21] coupled with [22] tell us that: 
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, (6.13) 

 
and the Jarlskog determinant which is a phase-convention-independent measure of CP violation 
is 0.20 5

0.162.96 10J + −
−= × .  A comparison of the empirical data with 1 0.947454co 2s 124θ =  suggests 

that the determinant V  might be of help.  We see from the product of three separate matrices in 

the first line above that 1ud cs tb us cb td ub cd ts ub cs td us cd tb ud cb tsV V V V V V V V V V V V V V V V V V V= + + − − − =   by 

construction, but this has two parts which we call the “major” and “minor” determinants 

ud cs tb us cb td ub cd tsV V V V V V V V V V
+

= + +  and ub cs td us cd tb ud cb tsV V V V V V V V V V
−

= + +  such that 

1V V V
+ −

= − = .  From the median empirical magnitude-only data, we calculate 

0.947535V
+

=  and 0.052355V
−

= −  thus 0.999889V V V
+ −

= − = , while the CP violating 

aspects of V are captured by 0.20 5
0.162.96 10J + −

−= × .  Then, comparing the data number 

1 0.947454co 2s 124θ =  with 0.947535V
+

= , it begins to appears as if 1cosθ  may in fact be 

synonymous with V
+
.  In fact, when considering the experimental errors in (6.13), then we find 

in [7.4] of [6] that 0.000400
0.00026- 20.947454V +

+
= , i.e., that 0.947273 0.947935V

+
< < .  This places the 

nucleon fitting angle 1 0.947454co 2s 124θ =  predicted from the actual proton and neutron masses 

well within the experimental errors for V
+
. 

 
 So, once again driven by empirical data, we define 1cos Vθ

+
≡  by hypothesis, and this 

connects the CKM matrix with the nucleon fitting angle.  Also using 0δ =  we then rewrite 
(6.12) as:  
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( )( )224
93N P F u d u dM M v m m m m V

+
+ = + + . (6.14) 

 
Now, this proton plus neutron mass sum becomes specified within all experimental errors.  
When (6.14) is then solved together with the primary relationship (3.2) for N PM M−  we obtain 

theoretical values for the proton and neutron masses which are a function of only four 
parameters: um  and dm  from (3.3) and (3.4), the Fermi vev, and the major determinant V

+
 

obtained from the CKM mixing matrix.  Solving in combination with the mass difference of the 
primary relationship (3.2) then yields the separate masses in [6.31] and [7.6] of [6], namely (it is 

also convenient at times to employ the shorthand 224
9 F u d u dv m m M M≡ , see [5.14] of [6]): 

 

( )( ) ( ) ( )( )3
221 24

2 93 3 2 3 / 2N F u d u d u d µ d uM v m m V m m m m m m m π
+

= + + + − + − , (6.15) 

( )( ) ( ) ( )( )3
221 24

2 93 3 2 3 / 2P F u d u d u d µ d uM v m m V m m m m m m m π
+

= + + − + + − , (6.16) 

 
This then provides the basis in [8.3] through [8.6] of [6] for obtaining the so-called “constituent” 
quark masses (which we shall refer to as “contributive” quark masses) in which the current quark 
masses are combined with all of their associated non-linear behaviors to specify their separate 
contributions on the order of 310 to 320 MeV to the overall observed free nucleon masses. 
 
12) Charm, Strange, Top and Bottom-Flavored Baryon Masses: If the proton and neutron can 
be expressed in terms of the up and down current quark masses as we see in (6.14) then this 
suggests that other flavors of baryon containing c, s, t and b quarks can similarly be expressed 
once these second and third generation quark flavors are included.  In this regard, the 
culmination of the development leads in [6.17] of [6] to a “mass and mixing matrix”:  
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(6.17) 

 

which includes the shorthand definitions 2
, , , ,3u c t F u c tM v m≡  and 1

, , , ,3d s b F d s bM v m≡  for 

“vacuum-amplified” quark masses containing the current quark masses amplified by the Fermi 
vev and attenuated by their electric charge magnitudes.  The mathematics in the above was 
developed in the original parameterization of the Kobayashi and Maskawa matrices but can be 
developed if desired in the standard parameterization appearing in (6.13).  If we examine the 
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special case for which we set the c, s, t, b masses equal to 1, set 2 3 0s s= =  and take the trace, 

then in view of the above shorthands for , ,u c tM  and , ,d s bM  we obtain 

( ) ( )( )21 24
19 9Tr 3 exp cosF u d u d N Pv m m i m m M Mδ θΘ = + + = + .  This is identical to the N PM M+  

sum in (6.12), and this means that the proton and neutron masses are embedded in Θ  as a 
special case.  Thus, it must be considered that upon further study, this matrix will help provide 
an explanation of the various c, s, t and b flavored baryons.  It should be kept in mind for any 
study in this direction, that in (3.2) we defined the up and down current quark masses from the 
proton and neutron masses which are known with much better precisions because they can be 
studied as free 0Q →  particles whereas quarks are confined.  It is to be expected that a similar 
approach will be warranted when it comes to these second and third generation quarks and the 
baryons within which they are confined. 
 
13)  Who Ordered That?  Why are there Three Fermion Generations?: Having just discussed 
the second and third generation quarks and baryons it is worth now going back to Rabi’s original 
quip “who ordered that?” about the muon.  While the second and third generation quarks and 
leptons and their mixing properties have been well-characterized since then, Rabi’s question 
remains unanswered to this day.  Nobody has yet shown the theoretical imperative for having 
three generations, or for the mixing of these generations.  These have been described, but why 
nature manifests itself in this way remains unexplained.  The author in [18] shows how three 
stages of symmetry breaking of the SU(8) octuplet ( ) ( )( ), , , , , , ,R G B R G Bu d d e d u uν  already mentioned 

in point 11 above and integrally used in deriving the proton and neutron masses, leads inexorably 
to the appearance of three generations of CKM-type quark and lepton mixing.  In retrospect, it 
was the author’s unfortunate omission not to reference this finding as to the theoretical 
imperative for three fermion generations in the title of [18].  Unlike what has been discussed in 
points 1 through 12, this is a qualitative, not quantitative concurrence with empirical data.  But it 
is equally important because although well characterized, the raison d’etre for the existence of 
three fermion generations has, until now, remained one the great unexplained empirical 
mysteries of nature. 
 
14) Resonant Nuclear Fusion:  All fundamental science has technological implications which 
may be developed over time, and the foregoing is no exception.  Protons and neutrons bind 
together to form nuclei.  When they do so they release fusion energies and the fused nuclei 
harbor mass defects which are very precise energy numbers which never vary from one 
experiment to the next.  There must be an explanation why, for example, the deuteron always has 
a binding energy of 2.224 52 ± 0.00020 MeV, each and every time, and indeed, why all the 
binding energies shown in Figure 1 and all the energies of the fusion and fission events related to 
these are as they are.  As we have now seen, the explanation rests in the current masses of the up 
and down quarks which these nucleons contain.  Stepping back and applying hindsight, there is 
little else that could account for these energies, because protons and neutrons are no more and no 
less than systems containing quarks and their highly-non-linear interactions.  But if that is the 
case, then as pointed out in section 9 of [2] and more completely elaborated in [5], the binding 
and fusion energy “toolkit” discussed in point 3 of section 5 which specifies the most elemental 
energy dosages released during a fusion event may be not only a theoretical toolkit, but also a 
technological one. 
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 Nikola Tesla, who possessed one of the greatest historical aptitudes for extracting 
technology from science, once stated “if you want to find the secrets of the universe, think in 
terms of energy, frequency and vibration.”  So if the secret we wish to extract from nature is how 
to extract energy via nuclear fusion in the best way possible, and if we think about applying 
vibrations to nuclei and nucleons in resonance with certain energies and frequencies that might 
facilitate fusion better than can be done absent applying this vibration, then the foregoing toolkit 
energies which explain the nuclear binding and fusion data provide possible guidance.  A good 
precedent for this line of reasoning is the use of microwaves or radio waves to excite atoms into 
higher energy states (Hertzian resonances) which formed the basis for lasers and other optical 
“pumping” techniques.  It is on this basis that the author has proposed and filed the international 
patent application [5] for catalyzing “resonant nuclear fusion” by bathing a nuclear fuel in 
gamma radiation at energies established by the discrete energies in the dosage toolkit.  This 
needs to be tested and if viable, developed.  But the testing is very simple:  In experiment 1 carry 
out a given fusion reaction in the “usual” and “ordinary” way and carefully assemble and 
monitor all of the variables, e.g., temperature, power, density etc. which are involved as an 
experimental “control.”  Then in experiment 2 apply gamma radiation proximate the toolkit 
frequencies which are pertinent to that fusion reaction, and change nothing else.  Make certain 
that the only difference is that in experiment 2 the gamma radiation is applied and in experiment 
1 it is not.  See if the fusion moves any of the key variables in a “fusion-favorable” direction.  If 
it does, then the further development of those results may provide the path for more practical and 
widespread applications of nuclear fusion to produce commercial energy.  And, any favorable 
change based on using the toolkit energies would be a further empirical validation of these 
scientific results. 
 
 So for example, consider the simplest fusion event 2

12 Energyp H e ν+→ + + + .  We 

found in section 5 point 6 that this releases an energy ( )
3
22 2 0.000 450 4241 uµ dm m / π =  

which differs from the empirical 0.000 451141 0 uby less than 1 part per million AMU.  Using 
the nuclear structure insights obtained above from Lithium and Boron fusion, this means that 

each of the protons must contribute a single energy dosage ( )
3
2 0.000 22 u251551µ dm m / π = , 

which is about 0.210 MeV, to enable this fusion to occur.   So what we should try to determine is 
whether, if we bathe the hydrogen fuel in gamma radiation near 0.210 MeV, this energy bath will 
provide what is needed to catalyze this fusion more favorably than if we do not provide this bath, 
and whether with proper technological development the fusion energy output can be made to 
exceed the catalytic gamma radiation input. 
 
15) Decoding the Nuclear Genome:  The many ways, the fundamental purpose of this paper 
is to present empirical evidence for the viewpoint that there is in fact a nuclear genome which 
needs to be decoded if humankind is to advance its understanding of nuclear and elementary 
particle physics beyond where it stands at present.  This nuclear genome is physically manifest 
through multiple relationships in which the nuclear masses and mass defects and binding and 
fusion / fission energies are expressed in terms of current quark masses (and for proton and 
neutrons and other baryons themselves the Fermi vev and the CKM quark generation mixing 
matrices, additionally) which quarks masses can be established with the same level of precision 
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as these other mass / energy parameters.  And, all of this can be achieved using an unambiguous 
electron-proton-neutron (EPN) measurement system for defining the 0Q →  quark masses 
notwithstanding the fact that quarks are confined and so can never be directly observed in their 
quiescent  0Q =  states of being. 
 
 This exposition began with the postulated “primary mass relationships” (3.1) and (3.2) 
from which we then deduced 0Q =  up and down quarks masses with a high precision inherited 
from the EPN masses and then posed the three questions 1) whether it is legitimate and 
unambiguous as a measurement system to establish 0Q =  quark masses in this way, 2) whether 
such an approach relating the quark masses to nuclear masses and energies could be validated by 
empirical data and 3) whether and how the thesis that baryons are the chromo-magnetic 
monopoles of Yang-Mills gauge theory provides a firm theoretical foundation upon which all of 
this may be supported, and what is the interface between theory and experiment. 
 
 The evidence presented in this section of parts-per 105, 106 and even 107 AMU empirical 
fits between the up and down quark masses and multiple light nuclide binding energies 2H, 3H, 
3He, 4He, 6Li, 7Li, 7Be, 8Be, 10B, 9Be, 10Be, 11B, 11C, 12C and 14N, very tightly-bound nuclides 
like 56Fe, and even the proton and neutron masses themselves within all experimental errors, 
demonstrate that there really do exist definitive relationships in nature between the up and down 
current quark masses and a plethora of energies observed in the nuclear world, and that the up 
and down quark masses are indeed the masses deduced in (3.3) and (3.4) with a precision close 
to a billion times better than anything that has been achieved to date by defining quark masses 
from the results of nuclear scattering experiments.  If our purpose was to validate the primary 
relationships (3.1) and (3.2) and thus the up and down quark masses (3.3) and (3.4) by showing 
that if these relationships and masses are regarded as true many other nuclear energies could also 
be similarly-related to these masses, then every single one of points 1 through 11 of this section 
contain further examples of secondary nuclear energy relationships which can be expressed in 
terms of the up and down current quark masses, just like the primary relationships (3.1) and 
(3.2), thus providing clear empirical validation, a.k.a. consistent non-contradiction.  Point 12 
suggests possible additional validation (or contradiction) through the study of other baryon 
masses, and it is also very important as we are reminded of in point 13, that this approach allows 
us to finally answer Rabi’s questions about the higher fermion generations, “who ordered that?”  
Per point 14, the ability to better develop nuclear fusion technology could be a potent practical 
benefit, and if testing shows this to be feasible, this would provide additional validation.    
 
 So at this point, the primary relationships (3.1) and (3.2) have been amply validated by 
empirical data, and this validation also demonstrates that the EPN measurement system laid out 
here yields sensible and unambiguous results.  Now the time has arrived to summarize the 
theoretical considerations from which the author originally deduced the mass / energy 
relationships (3.1), (5.1) and (5.2) from which all of the other empirical connections elaborated 
here were developed via comparison with empirical data.  The underlying theory, of course, is 
that protons and neutrons and other baryons are the chromo-magnetic monopoles of Yang-Mills 
gauge theory as originally presented by the author in [1] and thereafter more-deeply developed in 
[10] which for the first time fully lays out the quantum field theory for this via an exact, non-
linear path integration of classical Yang-Mills gauge theory.  In short, we now turn to the third 
question from section 3: is there a firm theoretical foundation upon which all of this may be 
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supported, and what is the interface which connects theory to experiment?  We now review this 
question in the remainder of this paper. 
 
7. Merged Magnetic and Electric Maxwell, Yang-Mills, Dirac, Exclusion, 
Feynman, and the Theoretical / Empirical Interface 
 
 The author’s thesis that the observed baryons are the chromo-magnetic monopoles of 
Yang-Mills gauge theory is what initially led following development in [1] and later deeper 
elaboration in [10] to equations (5.1) and (5.2) and then by subtraction of (5.1) from (5.2), to 
equation (3.1).  These three equations, in turn, became the foundation for all of the empirical 
connections elaborated in the last section which cumulatively provide substantial evidence for 
the validity of the underlying theory, as has been reviewed here.  So it is equations (5.1) and 
(5.2) which are the “interface” between the underlying theory and the ability to prove that theory 
by reference to empirical data.  In the interest of economy we shall leave the details of this 
underlying theory to the original source materials [1] and [10] and focus on how it is that the 
interface equations (5.1) and (5.2) ultimately derive from that theory.  
 
 We start by returning to the question posed in point 3 of section 3: “If we can legitimately 
assert (3.3) and (3.4) to be the 0Q =  up and down quark masses and if we can find secondary 
support from a broad array of nuclear data [which has now been done], then we get to the third 
question: what is the overarching theory, and does that theory make sense within the overall 
framework of theoretical physics, and what is the interface by which we connect the theory to the 
means by which it can be empirically tested?”   
 
 As to theoretical sensibility, the thesis that the observed baryons are the chromo-magnetic 
monopoles of Yang-Mills gauge theory is in fact exceptionally conservative, and is grounded 
solely in widely-accepted, highly-settled, thoroughly-tested science.  Its novelty rests in its 
deductive synthesis of known, accepted and well-validated scientific theories and theoretical 
elements to uniquely and unambiguously deduce new results and new explanations for 
previously-unexplained observational data, such as what was reviewed in the last section.  As 
suggested near the start of section 6, while brand new ideas ought not to be ruled out out-of-
hand, a synthesis of settled science and scientific elements is preferable, and brand new notions 
should only be used as a last resort when there is no apparent way to succeed by restricting 
oneself to combining known elements in unknown ways.  This theory follows the preferable and 
more conservative path by combining in new ways, what is known and well-tested and settled. 
 
 Specifically, setting aside the empirical validations already reviewed, in order to accept 
this theory from a theoretical standpoint, one is required simply to believe and accept no more 
and no less than: a) that Maxwell’s electrodynamics which includes (vanishing) magnetic 
monopoles is a correct theory of nature; b) that Yang-Mills gauge theory which extends 
Maxwell’s electrodynamics to non-abelian domains is a correct theory of nature; c) that Dirac’s 
theory is a correct theory of nature particularly insofar as it relates fermion wavefunctions to 
current densities via Jσ σψγ ψ= ; d) that Dirac-Fermi-Pauli were correct when they asserted that 
multiple fermions within a single system must occupy exclusive states distinguished from one 
another by one or more quantum numbers (the “Exclusion Principle”); and e) for the quantum 
theory of chromodynamics QCD, believing that Feynman’s method of path integration is the 
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correct way to start with a classical field equation in spacetime (configuration space) for a field 

ϕ  with source J and its related Lagrangian density ( ), JϕL  and action ( ) ( )4, ,S J d x Jϕ ϕ= ∫ L , 

and convert this over to a quantum field theory by performing the integration 

( ) ( )exp exp ,Z iW J D iS Jϕ ϕ= = ∫C  and then extracting the quantum field ( )W J  in (Fourier-

transformed) momentum space.  And to cross the threshold from theory to empirical 
confirmation by obtaining the interface equations (5.1) and (5.2), one also needs to believe and 
accept f) that the quarks inside a baryon, although confined, are asymptotically free and can thus 
be treated at least in an approximate manner as free fermions. 
 

If one accepts and believes a) through d), then the inexorable result of merely combining 
all of these together leads one to conclude that the classical magnetic monopoles of Yang-Mills 
gauge theory – specifically the sources of a non-vanishing magnetic field flux 0F ≠∫∫�  across 

closed spatial surfaces – do indeed have the earlier noted antisymmetric R G B∧ ∧  color 

symmetry of a baryon, and that this 0F ≠∫∫�  has symmetric RR+GG+BB color symmetry of a 

meson with 0F ≠∫∫� , all as established in detail in Part I of [10].  This synthesis also teaches 

that employing SU(3)C as the color group of chromodynamics is not a choice, but is required 
(the only choice is how to name the three mandated eigenstates).  So chromodynamics is not a 
theory of first principle, but is a corollary theory emerging inexorably from the synthesis of a) 
through d).   And if one further accepts and believes e), then the quantum theory which emerges 
via theoretical deduction following path integration leads to a running QCD coupling which 
matches up to Figure 1 above within experimental errors, as established generally in section 18 
and specifically in [18.22] and Figure 14 of [10].  Finally, if one accepts f), then it becomes 
possible to use this theory to obtain (5.1) and (5.2) which is the bridge to empirical testing.  But 
the fact that (5.1) and (5.2) and their offspring (3.1) lead to all of the empirical confirmations 
already enumerated here provides comfort that this treatment of quarks inside a baryon as 
approximately-free particles is empirically-valid.  So let us now turn as directly as possible to 
how the interface equations (5.1) and (5.2) are obtained and then work backwards to place that in 
the overall theoretical context.  
 

The starting point for deriving the interface equations (5.1) and (5.2) in the original 
formulation of the baryon / monopole thesis was equation [11.2] of [1].  In the later formulation 
presented in [10], the equivalent starting point is equation [10.4], which is reproduced below: 

 

( )( ) ( )( )
( ) ( ) ( )
eff 0 0

1 1 1

[ ] [ ] [ ]

Tr 0 Tr , 0

R R R R G G G G B B B B

i F G G

p m p m p m

µν µ ν

µ ν µ ν µ νψ γ γ ψ ψ γ γ ψ ψ γ γ ψ− − −

 Σ = Σ  

= − + − + −/ / /
. (7.1) 

 

The notation in ( )( )eff 0
0F µνΣ  is a bit cumbersome so let us simplify this a bit, and also 

remind the reader what this means.  The Σ  in (7.1) simply reminds is of the use of the spin sum 

( )( )2
spins /uu N E m p mΣ = + +/ during the course of the derivation starting with [9.12] of [10].  

If we simply keep in mind that a spin sum was used to get to that point then we can drop the Σ  
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from the notation.  So for the normalization ( )2N E m= +  we may write the spin sum as 

( )uu p m= +/  with the sum being mentally noted, and follow suit for any downstream results. 

 
The ( )( )

0
0  notation developed in section 8 of [10] tells us that that (7.1) is taken in the 

abelian limit of non-abelian gauge theory for which ( )( ) ( ) 12

0
0G k k m i Jτ

µ τ µε
−

= − +  and in 

which we have not recursed Gµ  into itself at all.  As shown in section 7 of [10], a natural 

consequence of the non-linearity of Yang-Mills gauge theory is that when we invert the classical 
Maxwell chromo-electric charge equation between Gµ  and Jµ , we find that ( ),G G Jµ µ µ  is a 

function of itself along with Jµ .  So if we recurse n time before cutting off then we denote this as 

( )( )0
n

Gµ .  To simplify, we shall simply keep the subscript “0” as a reminder that Fµν  above is 

taken at the zero recursive order which is the abelian limit and drop the nested parenthesis.  
 
Finally, the “eff” subscript for “effective” in (7.1) is used to denote that this is the portion 

of the field strength tensor Fµν  which actually net-flows [ ]
eff

, 0F F i G G= = − ≠∫∫ ∫∫ ∫∫� � �  across 

the closed surfaces surrounding the “faux” magnetic sources [ ] [ ], ,P id G G i dG G′ = − = −  of 

Yang-Mills gauge theory.  This is because the term dG  in the complete field strength 

[ ],F dG i G G= −  identically drops out of any expression for F∫∫�  because 0ddG =  because the 

exterior derivative of an exterior derivative is zero in differential geometry which is why in 
electrodynamics, 0F =∫∫�  which combines Gauss’ law for magnetism and Faraday’s law for 

induction.  This is the heart of how baryons are theoretically developed from the monopoles of 
Yang-Mills gauge theory by deductively combining points a) and b) above (Maxwell and Yang-
Mills are both correct theories of nature).  Thus we shall retain the “eff” subscript as a reminder 
of this.  Therefore, ( )( )eff 0

0F µνΣ  above shall now be denoted simply eff 0F µν  to mean the net-

flowing 0F ≠∫∫�  portion of F in the abelian zero-recursive order of Yang-Mills gauge theory. 

 
The final aspect of (11.1) which we have not yet discussed, is that this is a trace equation.  

If we backtrack to an earlier equation such as [9.20] of [1] from which this is descended to write 
this in matrix form prior to taking the trace, then (7.1) can be put in its matrix form:   
 

( )
( )

( )

1

[ ]

1

eff 0 [ ]

1

[ ]

0 0

0 0

0 0

R R R R

G G G G

B B B B

p m

F i p m

p m

µ ν

µν µ ν

µ ν

ψ γ γ ψ

ψ γ γ ψ

ψ γ γ ψ

−

−

−

 −/ 
 = − −/
 
 −/ 

. (7.2) 

 

This is the formal starting point via 31
2 TrE F F d xµν

µν= ∫∫∫  using both inner and outer product 

traces as reviewed in this paper near the start of section 5, for deriving (5.1) and (5.2) which are 
the interface equations leading to all the empirical connections reviewed in section 6.  So let us 
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proceed to show how this connection is made.  This will essentially review section 11 of [1], but 
with additional clarity and the revelation of a type of up and down quark mass mixing not 

previously elaborated.  We begin by looking at the generic expression ( ) 1

[ ]p mµ νψγ γ ψ−−/  in 

(7.2) for each of the three colors of quark. 
 

 First, we separate the propagators ( ) ( ) ( )1 2 2/p m p m p m
−− = + −/ /  into two parts: 

 

( ) ( )1 [ ] [ ]
[ ] 2 2 2 2 2 2

,mp m p
p m

p m p m p m
µ νµ ν µ ν

µ ν

ψ γ γ ψψγ γ ψ ψγ γ ψ
ψγ γ ψ−  +/ / − = = +/ − − −

. (7.3) 

 
Now we expand out the numerator in the latter term using p pσ

σγ=/ , as such: 

 
0 1 2 3

[ ] [ ] [ 0 ] [ 1 ] [ 2 ] [ 3 ]p p p p p pσ
µ ν µ σ ν µ ν µ ν µ ν µ νψγ γ ψ ψγ γ γ ψ ψγ γ γ ψ ψγ γ γ ψ ψγ γ γ ψ ψγ γ γ ψ= = + + +/ . (7.4) 

 
We evaluate each of the independent components 31,23,12,03,02,01=µν  and apply the Dirac 

relation 32105 γγγγγ i=  in various combinations to terms which do not drop out via the [ ],µ ν  

commutator.  Using µνµν η=g  for flat spacetime, one may summarize the result by: 

 
[ ] 5

[ ] 2i α β
µ ν µναβψγ ρ γ ψ ε ρ ψγ γ ψ=/  (7.5) 

 
So we use this as well as the Dirac covariant , 2iµ ν µνγ γ σ  = −   to rewrite (7.3) as: 

 

( )
[ ] 5

1

[ ] 2 2 2 2
2 2

m
p m i i

p m p m

α β
µν µναβ

µ ν

ψσ ψ ε ρ ψγ γ ψ
ψγ γ ψ−− = − +/ − −

. (7.6) 

 
We see therefore that this generic expression contains both a second rank antisymmetric tensor 

µνψσ ψ  and a first rank axial vector 5βψγ γ ψ .  Using chirality language, this means that 

eff 0 eff 0 eff 0V AF F Fµν µν µν= +  in (7.2) admits to a vector (V) and axial (A) separation.   

 
Let us now set aside the axial term eff 0AF µν  and focus on the vector term eff 0VF µν  in the 

2 0p →  limit for which the propagators disappear and the interactions essentially occur at a 
point.  We refer to, e.g., [23] at p. 257, for a similar analysis explaining how the Fermi coupling 
constant FG  really is a point-interaction manifestation of a W vector boson propagator 

( ) ( ) 12 2 2/ /W Wg k k M k Mµν µ ν
−

− −  in the 2 0k →  limit for which 2 2/ 2 / 8F w WG g M= , 

connecting the modern understanding of weak interactions with Fermi’s original conception of β-
decay modelled on electromagnetic interactions.  Using the V portion of (7.6) in (7.2) for 

2 0p →  allows us to now write this matrix as: 
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eff 0

0 0

2 0 0

0 0

R R

R

G G
V

G

B B

B

m

F
m

m

µν

µν
µν

µν

ψ σ ψ

ψ σ ψ

ψ σ ψ

 
 
 
 
 =
 
 
 
 
 

. (7.7) 

 
It is this matrix which is the theoretical point of departure, i.e., interface for connecting with the 
electron rest mass in (3.1) and the various nuclear energies elaborated in sections 3 through 6 of 
this paper.  So now, with the benefit of two years of retrospective perspective including the many 
empirical connections enumerated in section 6, we shall elucidate that connection which was 
originally uncovered in sections 11 and 12 of [1] between (7.7) and observational energy data.  
Note that the trace of the above is 
 

1
eff 02 Tr R G BR G B

V
R G B

F
m m m

µν µν µν
µν

ψ σ ψ ψ σ ψ ψ σ ψ
= + +  (7.8) 

 

which has the BBGGRR ++  color wavefunction of a meson. 
 
 As reviewed at the start of section 5, the energy of pure gauge fields in Yang-Mills theory 

may be deduced by taking 3 1
2 TrE d x F Fµν

µν= ∫∫∫ , and that TrF F µν
µν  may be taken via both and 

outer and an inner product.   We now have an eff 0VF µν  in (7.7) above which flows from the thesis 

that baryons are the chromo-magnetic monopoles of Yang-Mills and specifically from 
synthesizing Maxwell and Yang-Mills and Dirac Theories and Fermi-Dirac-Pauli Exclusion.  So 
we shall use this to deduce the associated energy E. 
 
 First, based on (7.7), we form the outer product trace: 
 
1

eff 0 eff 02 Tr

2

2 2 2

V V

R G BR G BGR G BR B

R R G G B B

R G BR G BG G B RB R

R G G B B R

F F

m m m m m m

m m m m m m

µν
µν

µνµν µν
µν µν µν

µν µν µν
µν µν µν

ψ σ ψ ψ σ ψ ψ σ ψψ σ ψψ σ ψ ψ σ ψ

ψ σ ψ ψ σ ψ ψ σ ψψ σ ψ ψ σ ψ ψ σ ψ

⊗

 
+ + 

 =  
 + + + 
 

. (7.9) 

 
It will be appreciated that this includes the inner product trace, which consists only of the top 
parenthetical line in the above: 
 

1
eff 0 eff 02 Tr 2 R G BR G BGR G BR B

V V
R R G G B B

F F
m m m m m m

µνµν µν
µν µν µνµν

µν

ψ σ ψ ψ σ ψ ψ σ ψψ σ ψψ σ ψ ψ σ ψ 
⋅ = + + 

 
 

.(7.10) 
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So the inner product has pure-color RR, GG and BB products while the outer product 
supplements these with RG, GB and BR cross-color products. 
 
 Next, we refer to sections 7 and 8 of [1] as also reviewed in section 10 of [10] whereby 
for the proton, the RGB colors of quark are respectively assigned to and have the appropriate 
flavor generators for the duu flavors of quark and for the neutron these same colors are assigned 
to and have generators for the udd flavors of quark.  Therefore, (7.7) is used to derive both a 
proton (P) and a neutron (N) field strength: 
 

eff 0

0 0

2 0 0

0 0

d d

d

u u
V P

u

u u

u

m

F
m

m

µν

µν
µν

µν

ψ σ ψ

ψ σ ψ

ψ σ ψ

 
 
 
 
 =
 
 
 
 
 

, (7.11) 

  

eff 0

0 0

2 0 0

0 0

u u

u

d d
V N

d

d d

d

m

F
m

m

µν

µν
µν

µν

ψ σ ψ

ψ σ ψ

ψ σ ψ

 
 
 
 
 =
 
 
 
 
 

. (7.12) 

  
This is the first place at which the up and down current quark masses enter the picture.  This 
means that the outer product traces: 
 

1
eff 0 eff 02 Tr 2 4 4d u ud u ud d ud d u

V P V P
d d u d u u

F F
m m m m m m

µν µν µν
µν µν µνµν

µν

ψ σ ψ ψ σ ψ ψ σ ψψ σ ψ ψ σ ψ ψ σ ψ 
⊗ = + + 

 
 

,(7.13) 

 

1
eff 0 eff 02 Tr 2 4 4u u du u du d du d d

V N V N
u u u d d d

F F
m m m m m m

µν µν µν
µν µν µνµν

µν

ψ σ ψ ψ σ ψ ψ σ ψψ σ ψ ψ σ ψ ψ σ ψ 
⊗ = + + 

 
 

.(7.14) 

 
So if we subtract (7.13) for the proton from (7.14) for the neutron, we find that the difference: 
 

1 1
eff 0 eff 0 eff 0 eff 02 2Tr Tr 2 3 3d ud ud ud u

V N V N V P V P
d d u u

F F F F
m m m m

µν µν
µν µνµν µν

µν µν

ψ σ ψ ψ σ ψψ σ ψ ψ σ ψ 
⊗ − ⊗ = − 

 
 

.(7.15) 
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It is (7.13) which eventually turns into ( ) ( )
3
24 4 / 2P d u d uE m m m m π= + +  in (5.1), (7.14) which 

turns into ( ) ( )
3
24 4 / 2N u u d dE m m m m π= + +  in (5.2), and finally, (7.15) which turns into

( ) ( )
3
23 / 2N P d u eE E m m mπ− = − ≡  (5.3) a.k.a. the primary relationship (3.1).  One should 

closely make these respective comparisons, because these is how the structure of the theory that 
baryons including protons and neutrons are the chromo-magnetic monopoles of Yang-Mills 
gauge theory bleeds through to (5.1), (5.2) and (5.3) which become the basis for all of the other 
empirical relationships heretofore reviewed.   
 

Specifically, as will now be reviewed, when we use (7.13) to (7.15) in 
31

2 TrE F F d xµν
µν= ∫∫∫ , carry out the integration, and then establish the normalization of the 

Dirac spinors by comparing the theoretical energy results to empirical data (“empirical 

normalization,” see [1] after [11.29]), we uncover term mappings 2/u uu u u um mµν µνψ σ ψ ψ σ ψ ⇒ , 
2/d dd d d dm mµν µνψ σ ψ ψ σ ψ ⇒  and /u du d u d u dm m m mµν µνψ σ ψ ψ σ ψ ⇒ , together with the 

( )
3
2

3
2 2π π=  divisor which emerges from the 31

2 TrE F F d xµν
µν= ∫∫∫  integral over three space 

dimensions.  Let us now detail how this is done. 
 

All of (7.13), (7.14) and (7.15) when used as integrands in 31
2 TrE F F d xµν

µν= ∫∫∫  will 

yield one of three distinct terms: 3 21
2 /u uuu u u uE d x mµν µνψ σ ψ ψ σ ψ= ∫∫∫  which is a pure up / up 

term,  3 21
2 /d ddd d d dE d x mµν µνψ σ ψ ψ σ ψ= ∫∫∫  which is a pure down / down term, and 

31
2 /u dud u d u dE d x m mµν µνψ σ ψ ψ σ ψ= ∫∫∫  which is a mixed up / down term.  The factor of 1

2  is to 

account for the overall factors of 2 in (7.13) through (7.15) so we are comparing energy numbers 
to energy numbers.  These are then weighted within the overall energies 31

2 TrE F F d xµν
µν= ∫∫∫  

via the constant coefficients 1, 3and 4 variously appearing in (7.13), (7.14) and (7.15).  And 
these also become the “energy dosages” in the “toolkit” first referred to after (6.7) which 
physically are later understood to be the energy dosages emitted from nuclei during fusion 
events.  So, for example, we earlier spoke after (6.8) of how nine (9) energy dosages 

( )1.5
9 / 2u dm m π  are emitted as energy when 4He is fused with two protons to create 6Li with the 

same number of nine (9) up / down quark pairs, and of how fifteen (15) energy dosages 

( )1.5
15 / 2u dm m π  are emitted when 8Be is fused with two protons to create 10Li with the same 

number of fifteen (15) up / down quark pairs.  What we were really saying when more formally-
specified in terms of the underlying theoretical physics, is that in the former case 
4 6
2 32 EnergyHe p Li e ν++ → + + +  there are nine (9) and in the latter case 
8 10
4 52 EnergyBe p B e ν++ → + + +  there fifteen (15) simultaneous emissions of the energy dosage 

31
2 /u dud u d u dE d x m mµν µνψ σ ψ ψ σ ψ= ∫∫∫ , one such dosage associated with each pair of up and 

down quarks.  So now, let us review how this connection gets made. 
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 Let us start with the generic expression 3 21
2 /E d x mµν µνψσ ψψσ ψ= ∫∫∫  for a fermion 

wavefunction ( )ψ x  and take this to be representative of the up or down quark when used in the 

“pure” terms mentioned just above.  Now, any spatial dependence for this integral over 3d x is 
contained in ( )ψ x  so to go any further with this calculation we must make some supposition as 

to spatial-dependency of ( )ψ x .   We can choose from a range of possible functions, e.g., 

Lorentzian, exponential, Gaussian, etc.  Indeed, any function may be used, whether or not it is 
radially symmetric, provided it is renormalizable and so finitely integrates when placed in 

3 21
2 /E d x mµν µνψσ ψψσ ψ= ∫∫∫ .  As an ansatz to be able to perform some numeric calculation, 

and without limitation as to any other ansatz that another may choose, the author at [9.9]  of [1] 

chose the radially-symmetric Gaussian wavefunction ( ) ( ) ( )( ).75 22 21
02( ) / expr u p m m r rψ π

−
= − −  

where m generically needs to be a number with mass dimensionality and 0r  is the radial 

coordinate of the center peak of the Gaussian.   Further, to give m some meaning in relation to 
the physics being studied, m is chosen in this ansatz to be equal to the rest mass of the fermion.  
Again, this is done simply to be able to do an integral calculation over 3d x with the hope that 
energy numbers which makes sense in relation to something observed might emerge from this 
calculation.  Other exploratory choices for ( )ψ x  are also possible. 

 
 Now, a Gaussian is the standard expression use to represent a minimum-uncertainty 
wave-packet and thus is associated with free particles.  So, one may ask whether this “freedom” 
is suitable for quarks which are confined.  But quarks are in fact asymptotically free, so aside 
from the “edge” region of a nucleon near QCDQ = Λ  as discussed in section 2, a free-particle 

Gaussian would be a good approximation to an “approximately free” fermion such as an 
asymptotically-free quark.  Also, wave-packets such as the foregoing Gaussian with a standard 
deviation comparable to their Compton wavelength /m cλ = ℏ  contain negative-energy 
amplitudes indicating the presence of antiparticles.  But we know that nucleons are teeming with 
quark / antiquark states, exhibited no more clearly than through the manifold of qq  meson jets 
emitted under any substantial scattering impact.  Finally, the Compton wavelengths of the 
current quark masses are on the order of 40 Fermi for the down quark and 85 Fermi for the up 
quark, which exceeds ~ 2 Fermi length scale QCD/ 2.1780 fmr cΛ ≡ Λ =ℏ  of QCDΛ  by more than a 

full order of magnitude and so “bleeds out” from the proton and neutron even though the quarks 
are confined.  But as noted after (6.16), see also the end of section 11 in [1], the constituent i.e. 
contributive quark masses have a standard deviation of less than 1 Fermi which places them well 
within the rΛ  length scale.  And what we learn in sections 5 and 6 is that although the current 

quarks are confined, their mass values are the central drivers of the energies which do pass in and 
out of nuclides and nucleons during fusion and fission events.  So while nucleons do confine 
quarks, they do not confine energies, and the energies they release are driven directly by the 
current quark masses.  Thus one can acquire some qualitative comfort with a Compton 
wavelength that extends beyond rΛ  by over 1 order of magnitude given that the same wavelength 

drives the energies which also bleed out from the nucleons.  So we cease playing “Hamlet” over 
what ( )ψ x  to use, we keep in mind that different ( )ψ x  can be tried and that this might be an 
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interesting exercise, and we go into 3 21
2 /E d x mµν µνψσ ψψσ ψ= ∫∫∫  with a radially-symmetric 

Gaussian and with the Compton wavelengths of the current quarks masses setting the spatial 
spread to see what comes out.  If the results make some approximate empirical sense to some 
degree, then what we have done is seen to be approximately correct to the same degree. If they 
are contradicted, then we must try something else. 
 

 So we set ( ) ( ) ( )( ).75 22 21
02( ) / expr u p m m r rψ π

−
= − −  in 3 21

2 /E d x mµν µνψσ ψψσ ψ= ∫∫∫  four 

times which yields fourth powers of the terms inside ( )rψ  and remove the space-independent 

terms from the integral.  We then make use of the mathematical solution 

( )( ) ( )
3
223 2 3

0exp 2 / 2 /d x m r r mπ− − =∫∫∫  for the Gaussian integral, and finally reduce.  Thus: 

 

( )( )

( )

3
2

3
2

3
23 3 21

02 2 2 2

32

2 3

1
exp 2

1 1

2 2

E d x u uu u d x m r r
m m m

m m
u uu u u uu u

m m

µν µν
µν µν

µν µν µν µν

ψσ ψψσ ψ π σ σ

π σ σ σ σ
π π

−
 = = − − 
 

   = =   
  

∫∫∫ ∫∫∫
. (7.16) 

 

So we see how the this integration converts the pure terms and also injects a ( )
3
22π  divisor via  

( )
3
22/ / 2u uu u u um mµν µνψ σ ψ ψ σ ψ π⇒  and ( )

3
22/ / 2d dd d d dm mµν µνψ σ ψ ψ σ ψ π⇒ .  The ( )

3
22π  

which was laced throughout the empirical calculations in sections 3 through 6 is therefore seen to 

have its fundamental mathematical origins in ( ) ( )
3
23 2exp .5 2 /d x Ax Aπ− =∫∫∫  which is the three-

space Gaussian integral.  And we see that for some different, not-Gaussian, normalizable ( )ψ x  

with a fourth-power integral ( )3d xf M=∫∫∫ x , whatever factor appears in place of ( )
3
22π  would 

be driven by M. 
 
 Because Dirac spinors are a function only of ( ),u m p  and not x, the final term 

u uu uµν µνσ σ  in (7.16) above is a function only of mass m and momentum p.  These Dirac spinors 

are subject to normalization and this normalization can be chosen.  So we should choose the 

spinor normalization such that the energy number in the resultant ( )
3
21

2 / 2E m u uu uµν µνπ σ σ= ⋅  

makes sense in relation to an observed energy or energies.  So we return to (7.15) which contain 
only pure up / up and down / down terms, and so we can make use of (7.16).  Specifically, 
combining (7.15) and (7.16) enables us to write: 
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( ) ( )
3 3
2 2

3 31 1
eff 0 eff 0 eff 0 eff 0 eff 0 eff 02 2

3 3

Tr Tr

2 3 3

3 3
2

2 2

V N V N V N V N V P V P

d ud ud ud u

d d u u

d d d d d u u u u u

E E E d x F F d x F F

d x d x
m m m m

m u u u u m u u u u

µν µν
µν µν

µν µν
µν µν

µν µν µν µν

ψ σ ψ ψ σ ψψ σ ψ ψ σ ψ

σ σ σ σ
π π

∆ ≡ − = ⊗ − ⊗

    
= −    

        

= −

∫∫∫ ∫∫∫

∫∫∫ ∫∫∫

 
 
 
 

. (7.17) 

 
This E∆  represents the energy difference between 3 1

eff 0 eff 0 eff 02 TrV V VE d x F F µν
µν= ⊗∫∫∫  for the 

neutron and proton vector (V), monopole-effective, zero-recursive-order pure field strengths 
(7.12) and (7.11).  And it will be seen that if we normalize the Dirac spinors such that 

1
2d d d d u u u uu u u u u u u uµν µν µν µνσ σ σ σ= = , (7.17) will reduce to: 

 

( )
( )3

2
eff 0 eff 0

3

2
V N V P d uE E E m m

π
∆ = − = − . (7.18) 

 
This is (5.3) a.k.a. the first primary relationship (3.1) upon which all of the empirical results 
from section 3 onward were based.   
 

Now, as was stated after (5.3), and as may be reviewed in section 11 and specifically 
[11.21] of [1], the author first evaluated (7.17) and (7.18) using the PDG data 0.7

0.52.3 MeVum +
−=

and 0.5
0.34.8 MeVdm +

−= and its error bar ranges to deduce that 
∆

.286 MeV<E .704 MeV< , with a 

median value of 
∆

E .495 MeV=  which is only about 3% off from the electron rest mass based 

on PDG data with error bars much larger than 3%.  The author then hypothesized for further 
confirmation which was subsequently successful in the other ways enumerated section 6, that 
this energy eff 0 eff 0V N V PE E E∆ = −  is in fact equal to the electron rest mass because in the zero-

recursion abelian limit where ( )( ) ( ) 12

0
0G k k m i Jτ

µ τ µε
−

= − + , all of the interaction which gives 

rise to the observed neutron minus proton mass difference has been turned off.  Thus (7.18) is a 
relationship which contains only a “signal” for bare current quarks without “noise.”  And with 
only signal and no noise, it is sensible that the neutron “signal mass” would differ from the 
proton “signal mass” by precisely the mass of the electron.    
 

So this data concurrence is what motivated the author to set eff 0 eff 0e V N V Pm E E E∆≡ = −  

by definitional hypothesis, which then mandates 1
2d d d d u u u uu u u u u u u uµν µν µν µνσ σ σ σ= =  for 

normalization because this is what reduces (7.17) to (7.18) which then enables the empirically-
accurate definition eff 0 eff 0e V N V Pm E E E∆≡ = − .  When we then calculate out the consequence of 

this “empirical normalization” we find in [11.29] of [1] that the quark normalization coefficient 
has the form ( )2 1

4!
/ 2N E m m= + , and specifically, that ( )2 1

4!
/ 2u u u uN E m m= +  and 

( )2 1
4!

/ 2d d d dN E m m= +  for the up and down quark spinors respectively based on the 
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conventional spinor definition ( ) ( ) ( ) ( )( )/s s sTu N E mχ χ≡ ⋅ +pσ .  It is also of interest as 

discussed in Figure 3 of [1] that when we empirically match up (7.18) with the electron via 

em E∆≡  the deduced 4! constant in the divisor of the normalization coefficient happens to 

coincide with the precise number of fermions known in nature: 4=3+1 colors of quark plus 
lepton times 3 generations times 2 isospin states up and down. 
 
 Now, if eff 0 eff 0V N V PE E E∆ = −  appears to produce a close empirical result, one might 

expect each of the neutron and proton signal energies eff 0V NE  and eff 0V PE  to also have some 

meaning in relation to something what is observed.  So the next step is to study these energies. 
But as noted after (7.15), the mixed energy 31

2 /u dud u d u dE d x m mµν µνψ σ ψ ψ σ ψ= ∫∫∫  needs to 

now be calculated because these mixed up / down mixed integrands appear in (7.13) and (7.14) 
for the proton and neutron field strengths.  So similarly to (7.16), we use 

( ) ( ) ( )( ).75 22 21
, , , , 02( ) / expu d u d u d u dr u p m m r rψ π

−
= − −  now explicitly quark-labelled because we need to 

distinguish up from down quarks to calculate the mixed energy.  Here, after solving the Gaussian 

and reducing and separately isolating a term u dm m  with mass dimensionality of +1 we obtain: 

 

( )( )( )
3 3
2 2

33 3
22 2

3
2

3
2

31
2

23 2 2
02 2

2 2

2 2

2 2

1
exp

1

u du d
ud

u d

u du d u d
u d u d

u d
u du d

u d u d

u d u d
u du d

u d

E d x
m m

u u u u d x m m r r
m m m m

m m
u u u u

m m m m

m m m m
u u u u

m m

µν µν

µν µν

µν µν

µν µν

ψ σ ψ ψ σ ψ

π π σ σ

π σ σ
π π

σ σ
π

− −

=

   
= − + −   

   

    
=      +     

 
=  + 

∫∫∫

∫∫∫
. (7.19) 

 

Solving this Gaussian start with the mathematical solution ( )( ) 3
2

23 2 3
0exp /d x m r r mπ− − =∫∫∫  

from which we obtain ( )( )( ) ( )
33 22

23 2 2 2 2
0exp /u d u dd x m m r r m mπ− + − = +∫∫∫  by the variable 

substitution 2 2 2
u dm m m→ +  thus ( )

3
23 2 2

u dm m m→ + , i.e., scaling the coefficient.  As a check 

on the calculation we see that in the special case where u dm m m= ≡  the result in (7.19) will 

coincide identically that in (7.16). 
 

 Now, the dimensionless term ( )( )
3
22 2/u d u dm m m m+  from which we have separated the 

+1 dimensional u dm m  looks a bit complicating at first.  But any time an 2 2a b+  shows up 

somewhere in a mathematical expression we can place vectors with lengths a and b at right 
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angles to one another, specify an angle tan /a bθ = , and use 2 2a b+  as the “invariant” 
hypotenuse.  So it looks like there is some angle ( )arctan /u dm mθ =  which needs to be 

understood.  And we also recall that in electroweak theory there are similar expressions of the 
form ( )2 2/u d u dm m m m+ .  Specifically, we recall that sin cosw W y Wg g eθ θ= =  where e is the 

electric charge, wg  the weak charge, yg the weak hypercharge and Wθ  is the weak mixing angle.  

And we recall that in the course of calculating from this one arrives at 

( )2 2sin cos /W W w y w yg g g gθ θ = +  where 2 2 2
Z w yg g g≡ +  is the charge strength of the Z boson 

with a mass 1
2Z F ZM v g=  where Fv  is the Fermi vev.  So the ( )2 2/u d u dm m m m+  above seems 

suggestive that there is an mixing angle analogous to the weak mixing angle that rotates between 
the up and down quark masses.  Let us now explore this connection which the author has not 
presented explicitly in any earlier papers.  As the discussion of this angle proceeds, the reader 
may find it helpful to refer to Figure 3 following (8.16) below. 
 
8. First Generation Quark Mass Mixing 
 
 Analogously to electroweak theory, we postulate a first generation quark mass mixing 
angle θ and mass 1m  defined such that: 

 

1sin cosd um m mθ θ≡ ≡ . (8.1) 

 
So immediately, because tan /u dm mθ = , we may draw a right triangle with um  on the leg 

opposite and dm  on the leg adjacent θ , and thus with 2 2
u dm m+  on the hypotenuse.  Therefore 

2 2sin /u u dm m mθ = + , 2 2cos /d u dm m mθ = +  and thus: 

 

2 2 2
sin cos u d u d

u d

m m m m

m m mζ

θ θ = =
+

 (8.2) 

 
which is identical to the factor to the 3/2 power that appeared in (7.19).  In the above we have 
defined 2 2 2

u dm m mζ ≡ + simply for convenience, and used the Greek zeta to remind us of the 

analogy to the electroweak 2 2 2
Z w yg g g≡ + .  So we can use (8.2) to remove the masses from this 

factor and instead express it in terms of θ .  Doing so we have: 
 

( )
3
2

3
2

31
2 sin cosu du d u d

ud u u d d
u d

m m
E d x u u u u

m m
µν µν

µν µν

ψ σ ψ ψ σ ψ
θ θ σ σ

π
= =∫∫∫ . (8.3) 

 
If (3.3) and (3.4) are indeed the empirical 0Q =  quark masses in the EPN measurement scheme 
discussed section 4, then these can be used to deduce tan θ = 0.453 236 693, therefore the mixing 
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angle θ = 24.381 777 8°.  Additionally, 2 2 0.005 783 u076 5.386 90110 MeVu dm m mζ = + = =  

may be deduced. 
 
 At this point, we have all that we need to return to (7.13) and (7.14), use them as 
integrands in 3 1

2 TrE d x F Fµν
µν= ⊗∫∫∫  for each of the proton eff 0V PF  and the neutron eff 0V NF  

and thereby calculate associated energies eff 0V PE  and eff 0V PE .  Inserting (7.16) for both the up 

and down quarks and (8.3) into (7.14) and (7.15) we obtain: 
 

( )
( )

( )
3
2

3 3 3
2 2 2

3 1
eff 0 eff 0 eff 02

3

Tr

2 4 4

2 4 sin cos 4
2 2

V P V P V P

d u ud u ud d ud d u

d d u d u u

u dd u
d d d d u u d d u u u u

E d x F F

d x
m m m m m m

m mm m
u u u u u u u u u u u u

µν
µν

µν µν µν
µν µν µν

µν µν µν µν µν µν

ψ σ ψ ψ σ ψ ψ σ ψψ σ ψ ψ σ ψ ψ σ ψ

σ σ θ θ σ σ σ σ
ππ π

= ⊗

 
= + + 

 
 

 
 = + +
 
 

∫∫∫

∫∫∫ ,(8.4) 

 

( )
( )

( )
3
2

3 3 3
2 2 2

3 1
eff 0 eff 0 eff 02

3

Tr

2 4 4

2 4 sin cos 4
2 2

V N V N V N

u u du u du d du d d

u u u d d d

u du d
u u u u u u d d d d d d

E d x F F

d x
m m m m m m

m mm m
u u u u u u u u u u u u

µν
µν

µν µν µν
µν µν µν

µν µν µν µν µν µν

ψ σ ψ ψ σ ψ ψ σ ψψ σ ψ ψ σ ψ ψ σ ψ

σ σ θ θ σ σ σ σ
ππ π

= ⊗

 
= + + 

 
 

 
 = + +
 
 

∫∫∫

∫∫∫ .(8.5) 

 

 Next we apply the empirical normalization 1
2d d d d u u u uu u u u u u u uµν µν µν µνσ σ σ σ= =  used 

after (7.18) to associate the deduced energy difference eff 0 eff 0V N V PE E E∆ = −  with the electron 

rest mass via em E∆≡  which results in ( )2 1
4!

/ 2u u u uN E m m= +  and ( )2 1
4!

/ 2d d d dN E m m= + .  

So this means that in the mixed term ( )( ) ( )( )2 1
4!

/ 2 2ud u u d d u dN E m E m m m= + +  turns out to 

be the normalization which emerges from the square root of the product of these individual quark 
normalizations via (8.3), and this in turn means that there is a like-normalization 

1
2u u d du u u uµν µνσ σ =  for the mixed term found in (8.3).  Applying all of these normalizations in 

(8.4) and (8.5) now leads us to: 
 

( )
( )

( )
3
2

3 3 3
2 2 2

3 1
eff 0 eff 0 eff 02 Tr 4 sin cos 4

2 2

u dd u
V P V P V P

m mm m
E d x F F µν

µν θ θ
ππ π

= ⊗ = + +∫∫∫ , (8.6) 

( )
( )

( )
3
2

3 3 3
2 2 2

3 1
eff 0 eff 0 eff 02 Tr 4 sin cos 4

2 2

u du d
V N V N V N

m mm m
E d x F F µν

µν θ θ
ππ π

= ⊗ = + +∫∫∫ . (8.7) 

 

For the special case / 4 45θ π= = ° , we have ( )
3 3
2 2sin cos 1/ 2θ θ = , and these will reduce to: 
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( )
( )3

2

3 1
eff 0 eff 0 eff 02

1
Tr 4 4

2
V P V P V P d u d uE d x F F m m m mµν

µν
π

= ⊗ = + +∫∫∫ , (8.8) 

( )
( )3

2

3 1
eff 0 eff 0 eff 02

1
Tr 4 4

2
V N V N V N u u d dE d x F F m m m mµν

µν
π

= ⊗ = + +∫∫∫ . (8.9) 

  
These are now identical with (5.1) and (5.2), which then led in (5.8) and (5.9) to the 

missing mass average ( )1
2 8.714 9941MeVP N∆ + =∆  at the empirical peak in the nuclear 

binding curve of Figure 2 and the 99.9710% match to the 56Fe binding energy and an 
understanding of how this relates to quark confinement and nuclear binding and to the toolkit 

masses um , dm , u dm m  and the foregoing divided by ( )
3
22π .  This then exploded into the 

plethora of empirical matches enumerated in section 6 culminating in the neutron minus proton 
mass difference in (3.2) which was then elevated into a primary relationship and used in 
combination with (3.1) to deduce the very precise up and down quark masses (3.3) and (3.4).  
And this further led once the Fermi vev Fν  and the CKM mixing matrix are brought to bear, to 

the proton and neutron masses themselves within all experimental errors.  So it is abundantly 
clear that (8.8) and (8.9) can be connected tightly with and indeed are the springboard to a whole 
wealth of nuclear energy data, and thus are empirically-accurate relationships to high degrees of 
precision.  But there is only one problem: to get from (8.6) and (8.7) to the empirically-validated 
(8.8) and (8.9) we employed / 4 45θ π= = ° .  But from the definitions (8.1) and (8.2) and the 
quark masses  (3.3) and (3.4) which are one of the consequences of (8.8) and (8.9), we found that 
θ = 24.381 777 8°, not 45°.  So what do we do? 
 
 We defined θ in (8.1) in a manner which ensured based on the current quark masses (3.3) 
and (3.4) that it would be equal to θ = 24.381 777 8o.  But as we see from (8.8) and (8.9) and all 
the development in sections 5 and 6, it is / 4 45θ π= = °  which in fact matches the empirical 
data.  So if θ so-defined does not match the empirical data, but if we also now know that the up 
and down quark masses do mix over a circle with a hypotenuse radius 

2 2 5.386 90110 MeVu dm m mζ = + =  and that u dm m  is in general multiplied by the factor 

( )
3
2sin cosθ θ  which specializes to ( )

3 3
2 2sin cos 1/ 2θ θ =  for / 4 45θ π= = ° , then that means that 

we need to retain the mass mixing over the circle with mass radius mζ  but change (rotate) the 

definition of our angle to match the empirical data.  That is, the empirical data suggests that we 
are correct that there is a mixing of the up and down masses via a mixing angle, but are incorrect 
about how we defined this angle in (8.1).  So we now need to redefine our angle to match the 
empirical data.  How? 
 
 In addition to θ, let us introduce a new angle ϕ, defined such 0φ =  when the current 
quark masses are (3.3) and (3.4).  That is, we define 0φ ≡  to be the mixing angle associated with 

the 0Q =  current quark masses (3.3) and (3.4), which we now denote by ( )0um and ( )0dm  to 

indicate Q=0.  So likewise by implication, 0φ =  is the associated angle for all of the empirical 
data developed and enumerated in sections 3 through 6.  Then, because (8.2) and (8.3) teach that 



J. R. Yablon 

57 
 

there is a rotation occurring between the up and down quark masses which maintains a 
5.386 9011MeVmζ =  hypotenuse, we shall define ϕ by way of the mixing relationship: 

 

( )
( )
0cos sin

0sin cos
u u

d d

m m

m m

φ φ
φ φ

′     
≡     ′ −    

 . (8.10) 

 
As specified, for 0φ =  this definition produces u um m′ =  and d dm m′ =  which are also the Q=0 

quark masses.  This now replaces the definition of θ in (8.1), which we now withdraw in favor of 
(8.10).  There is, of course, still a rotation between the quark masses of the exact same form 
produced by (8.1), and 5.386 9011MeVmζ =  is still maintained as the hypotenuse of rotation.  

But we are no longer tied to a tan θ = 0.453 236 693 and θ = 24.381 777 8° which is a mismatch 
with the empirical data.  In fact, as we shall shortly elaborate after some further mathematical 
development, it seems that both θ and ϕ need to be understood not as fixed angles, but as 
variable angles with run with Q , i.e., as ( )Qθ  and ( )Qφ , which thus help to specify the 

behaviors of all of the empirical data previously developed as a running function of Q for Q>0.   
 
 Now, with the definitions (8.1) and thus the constraint θ = 24.381 777 8° no longer in 
force, we revert to (8.6) and (8.7) keeping in mind that / 4 45θ π= = °  leads to (8.8) and (8.9) 
and many correct empirical matches.  So we now define / 4θ π φ≡ +  as the general relationship 
between θ and ϕ in each of (8.6) and (8.7), which is to say, we simply define ϕ to be equal to θ 
less 45 degrees.  Via basic trigonometric angle addition formulae we find that  

( ) ( )1
2

sin / 4 cos sinφ φ φπ + = +  and ( ) ( )1
2

cos / 4 cos sinφ φ φπ + = −  and therefore that 

( ) ( ) ( )2 21
2sin cos sin / 4 cos / 4 cos sinθ θ φ φ φ φπ π= + + = − .  Consequently, we may use 

( ) ( ) ( )
33 3 22 2 2 2sin cos 1/ 2 cos sinθ φθ φ= −  in (8.6) and (8.7) to write: 

 

( )
( )( )3

3
2

23 1
eff 0 eff 0 eff 02

2 2cos sin
1

Tr 4 4
2

V P V P V P d u d uE d x F F m m m mµν
µν φ φ

π
= ⊗ = + − +∫∫∫ , (8.11) 

( )
( )( )3

2

3
2

3 1
eff 0 eff 0 eff 02

2 2cos sin
1

Tr 4 4
2

V N V N V N u u d dE d x F F m m m mµν
µν φ φ

π
= ⊗ = + − +∫∫∫ . (8.12) 

 
Now the empirically-supported (8.8) and (8.9) are more transparently visible, and when 0φ = , 
these will reduce identically to (8.8) and (8.9), by design. 
 
 Now that we have simply used a different angle ϕ rotated clockwise by 45° from θ in the 
formulae for eff 0V PE  and eff 0V NE  to translate (8.6) and (8.7) into the more-transparent (8.11) and 

(8.12), we could, if we wish, go back to reintroduce the withdrawn definition (8.1) slightly 
differently, by defining yet a third angle η  in the form of 
 

1sin cosd um m mη η≡ ≡ , (8.13) 
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with the consequence that tan /u dm mη =  and η = 24.381 777 8°, compare after (8.3).  This η is a 

different angle from / 4θ π φ≡ + , and it does specify the empirical /u dm m  ratio for the Q=0 up 

and down current quark masses.  Thus: 
 

2 2 2
sin cosu d u d

u d

m m m m

m m mζ

η η= =
+

 (8.14) 

 
now replaces (8.2), and η = 24.381 777 8° which is the magnitude previously assigned to θ from 
the initial, now replaced definition (8.1).   
 

Then, to see how this η definition transforms as function of θ  we would transform 

1sin cosd um m mη η≡ ≡  to 1sin cosd um m mη η′ ′ ′ ′ ′≡ ≡  and use (8.10) to substitute um′ , and dm′ .   

To relate back to the redefined angle θ we may then also use / 4φ θ π= − , apply the angle 
difference identities and consolidate.  All this teaches that: 
 

( ) ( )
( ) ( )( ) ( ) ( )( )1 1

2 2

sin cos sin cos

cos sin sin cos sin cos

sisin cos sin co csn os

d u d u

d u u d

d u d u d u d u

m m m m

m m m m

m m m m m m m m

η η η η
φ φ η φ φ η

θ θ η θ θ η

′ ′

+

′ ′= ⇒ =
′ ′= − = +

′ ′= − = + −+ −

 (8.15) 

 
Therefore, the mass ratio angle η transforms η η ′→  with changing ϕ and θ and so also runs with 
Q according to: 
 

( ) ( )
( ) ( )

coscos sin
tan

sin

cos
tan

cos s s ni in
u d d uu u u d

d d d u d u d u

m m m mm m m m

m m m m m m m m

θ θφ φη η
φ φ θ θ

− + +′ +′= → = = =
′ − −+ +

 (8.16) 

 
All of the foregoing assignments of the angles ϕ, θ and η and their interrelationships of these 
angles with one another as well as with the quark masses um  and dm  and the circle radius 

2 2
u dm m mζ = +  and the renormalization energy Q  as will be discussed further momentarily, 

are illustrated in Figure 3 below: 
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Figure 3: First Generation Quark Mass Mixing 

 
 Finally, to complete this development so we may turn from mathematics to physics, we 
may also use (8.10) in (8.11) and (8.12) to represent the transformation of the proton and neutron 
energies with Q, ( )eff 0 eff 00V P V PE E′→  and  ( )eff 0 eff 00V N V NE E′→ : 
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−

,(8.17) 
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.(8.18) 
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Similarly, we may even examine how the electron rest mass em E∆=  in (7.18) a.k.a. (5.3) a.k.a. 

the primary relationship (3.1) transforms e em m′→  with ϕ.  Here, we just use (8.10) in (7.18): 

 

( )
( )

( )
( )

( )
( )

( ) ( )( )3 3 3
2 2 2

3 3 3
0 cos sin sin cos

2 2 2
e d u e d u d um m m m m m m mφ φ φ φ

π π π
′ ′ ′= − → = − = − − + (8.19) 

 
 So now we can finally go directly to the relationships (5.1), (5.2) and (3.1) which were 
the springboard for all of the other empirical connections outlined earlier.  We start with um  and 

dm  which by definition are the 0Q =  quark masses which also by the definition (8.10) 

correspond to 0φ = .  So we first ask: what happens when we set 0φ = ?  By (8.10) u um m′ =  and 

d dm m′ =  and so (8.17) through (8.19) immediately reduce to: 

 

( )
( )3

2
eff 0 eff 0

1
4 4

2
V P V P d u d uE E m m m m

π
′ = = + + , (8.20) 

( )
( )3

2
eff 0 eff 0

1
4 4

2
V N V N u u d dE E m m m m

π
′ = = + + , (8.21) 

( )
( )3

2

3

2
e e d um m m m

π
′ = = − . (8.22) 

  
These are the foundational relationships upon which all of the empirical connections in sections 
5 and 6 are based. But there is still a rotation which can occur through a non-zero angle φ  which 
first appeared in (8.3) as / 4θ π φ= +  and in the more general case, the 0Q =  quark masses can 

be rotated via (8.10) through a circle with a mass hypotenuse mζ , the proton and neutron and 

electron energies transform via (8.17) through (8.19), and the mass ratio angle η  transforms via 
(8.16).  Now let’s briefly review what we learn from (8.1) through (8.22), and then let’s talk 
about the broader physics within which all of this fits. 
 
 By noticing that the ( )2 2/u d u dm m m m+  term which first emerged in (7.19) is analogous 

to a like-term ( )2 2sin cos /W W w y w yg g g gθ θ = +  which emerges in electroweak theory once we 

specify sin cosw W y Wg g eθ θ= = , we are noticing that there is a similar type of mixing occurring 

between dm  and um  via some angle θ as there is between wg  and yg  as there is via the 

electroweak mixing angle Wθ  in electroweak theory.  In (8.3) we see how this mixing enters in 

the form of the ( )
3
2sin cosθ θ  factor.  But we see in (8.8) and (8.9) that / 4 45θ π= = °  is the 

specific angle which matches the empirical data, which contradicts the definition (8.1) from 
which we deduce θ = 24.381 777 8° from all of the empirical evidence reviewed earlier.  So 
something must give, and in science, empirical validation certainly takes precedence over how 
we first define an angle which definition can readily be rotated.   
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To reconcile both ends of this seeming contradiction, we separate the appearance of 
sin cosθ θ  in (8.6) and (8.7) from its connection (8.2) to the quark masses because the 
empirically-accurate results differ from (8.6) and (8.7) simply by a rotation in the definition of 
the mixing angle against the quark masses.  In other words, we treat sin cosθ θ  as being 
independent of its original moorings in (8.2), and allow it to be redefined so long as the 

redefinition takes place somewhere on the circle of radius 2 2
u dm m mζ = +  which we now know 

exists mathematically.  So we retain the rotations with radius mζ  which we are tipped off about 

per above, and we use a new angle / 4φ θ π≡ −  to define rotations from the observed current 
quark masses via (8.10) which then enters (8.11) and (8.12) in a fashion that is more transparent 
in relation to the empirical nuclear springboards (8.8) and (8.9).  The original ( )2 2/u d u dm m m m+  

which tipped us off to all of this now is redefined in (8.14) in terms of a new η = 24.381 777 8° 
angle.   

 
But now let us talk about these angles themselves, because there is some interesting 

physics here, and because this bring us back full circle to the start of this paper when we first 
asked whether there was some sensible way to define Q=0 masses for the up and down current 
quarks when the current quarks are confined and so can never be directly observed without 
applying a Q>0, and indeed, a QCDQ > Λ . We established how this could be done with the 

Electron, Proton and Neutron (EPN) scheme in section 4, but have never gotten to the question – 
even with Q=0 masses properly established – of how these masses might run as we move up the 
Q scale. 
 
 When we first defined θ in (8.1), we were defining a simple ratio tan /u dm mθ =  of the 

up quark to the down quark mass at Q=0.  There was nothing in this definition which might tell 
us how these masses run with Q.  But we also saw in (8.3) and especially (8.6) and (8.7) that 
there is some mass mixing going on.  And we know that in the two other known instances of 
mass mixing – via the weak mixing angle Wθ  and via the CKM quark and lepton mixing 

matrices which are shown in (6.13) – these angles are understood to be running functions of Q.  
So we should suspect that the angle θ in (8.6) and (8.7) is a function of Q as well, and we need to 
be alert for ways that this running Q might enter these equations.   
 

The empirically-driven need to withdraw the definition (8.1) and replace it with (8.10) 
solves two problems at once, because it enables the angles to be defined in relation to the masses 
to match up with the empirical data and at the same time it takes advantage of the rotation first 
noticed from ( )2 2/u d u dm m m m+  to explicitly start with the EPN-defined ( )0um  and ( )0dm  

quark masses and then rotate them to um′  and dm′ .  So what do these “primed” masses, and the 

many other “primed” nuclear energies that are functions of these masses, represent?  Since there 
must be only one unique Q=0 mass for a quark or an electron or a proton or an neutron or a 
nucleus, once we now have a um′  and dm′  which are different from ( )0um  and ( )0dm , they can 

no longer be the Q=0 masses.  So all these can be are the 0Q ≠  masses, that is, these must be 

( )u um m Q′ =  and ( )d dm m Q′ = .  This gives us a way to parameterized via ϕ how these masses 

and indeed all of the empirical data run with the energy scale Q.  This is highlighted especially 
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by (8.16) in which we have defined η to replace what was the original role of θ right after (8.1) 
as the arctangent of the up-to-down mass ratio.  We see in (8.16) that η is a running ratio of the 
quark masses, but is not the driving parameter as to running with Q.  Rather, it is ( )Qφ  and 

( ) ( )/ 4Q Qθ π φ= +  which directly drive the running.  So the redefinition to match the empirical 

data also spawns a running ratio angle η which runs with Q but is not the underlying parameter 
for running, and two angles θ and ϕ which are in lockstep with one another differing by a 
constant π/4 which are the underlying driving parameters for the Q-running of everything else.  
We do not in this paper seek to ascertain how, precisely, these angles θ and ϕ run with Q.  We 
merely wish make clear that it appears likely that they do. 
 
 One other point needs to be noted as well.  The fact that the up and down quark masses 
appear to be rotated via (8.10) from what now appears to be some to-be-determined function of 

( )Qφ  suggests that 2 2 5.386 90110 MeVu dm m mζ = + =  is an invariant of this rotation, i.e., 

that ( ) ( )0m m Q mζ ζ ζ′ = =  at all Q.  And we have mentioned on several occasions in this section 

that mζ  is the hypotenuse of this rotation, i.e., the radius of the circle of rotation.  But we need to 

be very careful, because our discussion here is limited to the first quark generation which 
contains the up and down quarks.  When we expand our view to the second and third generations 
and the CKM mixing of these generations, we must keep in mind that the CKM angles ( )12 Qθ , 

( )13 Qθ , ( )23 Qθ  and phase ( )Qφ  are also expected to run with Q, and can also shift mass from 

one generation to another.  So if we rewrite mζ  by 1mζ  to denote that this is the mass radius / 

hypotenuse for the first generation rotation, one should consider the prospect that there are two 
other 2mζ  and 3mζ  radii for the second and third generation with some presently unknown 

relationships among all of them.  (See, however, section 3 of [6] which discusses the Koide 
relationships which provide the best insights known to date for how to characterize the inter-
generational empirical fermion masses, and relates these to matrices displayed here in (5.1) and 
(5.2) which are also another way to express (8.20) and (8.21).)  And one should expect that as Q 
increases, not only does the angle η = 24.381 777 8° change, but so too does the 1mζ  radius.  

Thus, as among the three generations, we might envision three circles of radii 1mζ , 2mζ  and 3mζ  

such that as the angles 1η , 2η  and 3η  are rotated, so to do the radii shift, and as one or two of the 

radii expand, the third one compensates by contracting, all in some presently unknown 
interrelationship.  So these may be less circles than spirals, which likely converge in some way at 
GUT and higher-Q scales. 
 
9. Conclusion: A Century and a Half after Maxwell, Protons and Neutrons 
and other Baryons are Finally Understood to be Yang-Mills Chromo-
Magnetic Monopoles  
 
 What we have detailed in sections 8 and 9 is that (7.7) for eff 0F µν , which is obtained as a 

direct deductive consequence of the thesis that baryons are the chromo-magnetic monopoles of 
Yang-Mills gauge theory, is the theoretical expression which provides the “interface” to be able 
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to make empirical predictions.  One then uses (7.7) in 31
2 TrE F F d xµν

µν= ∫∫∫  to be able to 

deduce energies, and after a full test calculation using a Gaussian ansatz explained after (7.15), 
and the discovery and interpretation of inter-generational mixing between the up and down 
current quark masses reviewed in section 8, one arrives at (8.20) through (8.22) which form the 
basis for the broad range of empirically-accurate relationships developed and enumerated in 
sections 5 and 6.  This is how the theoretical results captured in the monopole-effective, zero-
recursion field strength eff 0F µν  connect to expressions which can be used for empirical validation 

via certain predicted energies driven by the current quark masses.  So in effect, this paper has 
now shown the manner in which (7.7) for eff 0F µν  leads to multiple empirical concurrences with a 

range of nuclear energies which have never been known before.  So now, working backwards, 
we come to the final question as to the theoretical origins and foundations for eff 0F µν  in (7.7). 

 
 The fundamental starting point is to recognize that in classical Yang-Mills theory, there is 

inherently a non-vanishing net flux 0F ≠∫∫�  of a “magnetic field” across closed surfaces, as first 

communicated in [5.6] of [1] and thereafter reiterated in [3.3] of [10].  This is in contrast to 

electrodynamics for which 0F =∫∫�  and so there is no net magnetic flux across closed surfaces, 

so that while electric fields terminate at an electric charge, magnetic fields are aterminal closed 
loops.  As was initially made clear in [2.4] and [2.5] of [10], when expressed in differential 
forms, just as ddA = 0 in electrodynamics where A is the vector potential / photon one-form, 
DDG = 0 in Yang-Mills theory where G is Yang-Mills vector potential one-form which in 
chromodynamics becomes associated with the gluon fields.  The former is an identity of 
differential forms geometry; the latter a Jacobian identity.  So formally speaking there are still no 
elementary magnetic monopoles in Yang-Mills theory either.  But when taken in the integral 
formulations of Gauss and Stokes, there is a non-vanishing “faux” monopole 

[ ] [ ], ,P id G G i dG G′ = − = −  which arises exclusively as a composite object via the non-

commuting nature of Yang-Mills theory which does not exist in electrodynamics ([10] states that 
P idGG′ = − ; this is an error which will be corrected before this paper goes to formal 
publication).  So when expressed in integral form there is also a non-vanishing 

[ ] [ ], , 0F i G G i dG G= − = − ≠∫∫ ∫∫ ∫∫∫� � , and so these magnetic field analogs do net flow across 

closed surfaces.  In electrodynamics everything commutes, so the analogous expression  

[ ] [ ], , 0F i A A i dA A= − = − =∫∫ ∫∫ ∫∫∫� � , and that is why classical Yang-Mills theory gives us 

0F ≠∫∫�  while electrodynamics gives us 0F =∫∫� .   

  
 So if one believes in Maxwell and one believes in Yang-Mills as correct, empirically-
validated theories of nature, then because their logical synthesis inexorably leads to a faux 

magnetic charge density [ ] [ ], , 0P id G G i G dG′ = − = ≠  and an associated 0F ≠∫∫�  which do not 

appear in Maxwell’s theory alone, one must believe that these 0P′ ≠  and  0F ≠∫∫�  exhibit some 

manifestation in the physical universe.  The only question is how these are manifest.  The 
author’s fundamental thesis is that [ ], 0dG G ≠∫∫∫  manifests as baryons and [ ],F i G G= −∫∫ ∫∫� �  
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manifest as the meson and energy fluxes in and out of baryons, for example, through all of the 
nuclear binding and fusion energies reviewed in section 6 here.  It is the field strength F 

appearing in 0F ≠∫∫�  which eventually becomes the eff 0F µν  for which we then calculate 

energies 31
2 TrE F F d xµν

µν= ∫∫∫  for both the proton in (5.1) and neutron in (5.2) and well as the 

difference between the two which becomes the electron rest mass in (5.3).  And it is from these 
energies that the empirical connections elaborated throughout this paper ultimately then emerge. 
 
 So now the question becomes how to “populate” these non-vanishing faux monopole 

entities [ ] [ ], , 0F i G G i dG G= − = − ≠∫∫ ∫∫ ∫∫∫� �  with quarks and show that they manifest as 

baryons.  Referring back to section 7 here, while a) Maxwell for magnetic charges and b) Yang-

Mills get us to these net-flowing magnetic fields 0F ≠∫∫� , it is a) Maxwell for electric charges, 

c) Dirac theory and d) Dirac-Fermi-Pauli Exclusion which when deductively combined with a) 
magnetic Maxwell and b) Yang-Mills demonstrates that  these entities have the correct color 
attributes of baryons and mesons.  This was originally communicated in section 5 of [1].  It was 
later elaborated in section 9 of [10] to establish all of the non-linear features of these monopoles 
and at the same time show the monopole behaviors in the abelian limit as discussed following 
(7.1) here.   
 

Briefly, while the classical field equations for Yang-Mills electric charges 
* * *J D F D DG= =  ordinarily express the current density J as a function of the gauge field G 
namely ( )J G , it is desirable to invert this field equation to instead express G as a function of J, 

i.e., as a function ( )G J .   In this way, by what is effectively a merger of both of Maxwell’s 

classical magnetic and electric field equations into a single equation (“Merged-Maxwell”) one 
can then advance the Yang-Mills non-vanishing net monopole fluxes  to 

( ) ( ) ( ) ( ), , 0F i G J G J i dG J G J   = − = − ≠   ∫∫ ∫∫ ∫∫∫� � .  But by Dirac, we know that current 

densities may in turn be expressed in terms of fermion wavefunctions ( )J ψ  via Jσ σψγ ψ= .  So 

now ( ) ( ) ( ) ( ), , 0F i G G i dG Gψ ψ ψ ψ   = − = − ≠   ∫∫ ∫∫ ∫∫∫� � , and the monopole entities contain 

fermions.  How many fermions?  In the abelian linear approximation, each faux monopole entity 
contains precisely three fermion eigenstates.  At bottom, this emerges from the fact that the faux 
magnetic charge density P′  is a differential three-form.  So if this monopole “system” contains 
precisely three fermion eigenstates, then by the Exclusion Principle, we must place these 
fermions into three distinct eigenstates.  So we use the gauge group SU(3) to enforce exclusion, 
and now the only question is what to name these distinct eigenstates.  So we choose R, G and B, 
call this color, and now the SU(3)C color group of chromodynamics naturally emerges as a 
corollary to merely combing Merged-Maxwell, Yang-Mills, Dirac and the Exclusion Principle 
together all at once.  The rank-3 of the monopole three form converts over into the dimension-3 
of the chromodynamic gauge group, and SU(3)C is seen not as a fundamental theory but as a 
corollary theory rooted in Merged-Maxwell-Yang-Mills-Dirac-Exclusion.   

 
Once color is assigned, as first communicated in section 5 of [1] and thereafter in section 

10 of [10], the faux monopole three form P′  has the R G B∧ ∧  color symmetry of a baryon and 
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the ( )( ) ( )( )eff 0 0
Tr 0 Tr , 0iF G Gµν µ ν Σ = Σ    entity has the color wavefunction BBGGRR ++  of 

a meson.  And in equation [10.4] of [10] for ( )( )eff 0
0F µν  where this BBGGRR ++  meson 

wavefunction first becomes clear, reproduced earlier as equation (7.1) here (see also [5.6] of [1]), 
we also obtain the starting point for connecting the theory to its means of empirical confirmation 
by calculating the energies 31

2 TrE F F d xµν
µν= ∫∫∫ .   The very same equation which reveals to us 

the color wavefunction BBGGRR ++  for the mesons which flow in and out of baryons and 
hold together the nuclei, also gives us the basis for quantitatively studying the energies which 
fuse and bind the nucleons into nuclei.  To see this, just go to (7.7) from which we used 

3 1
2 TrE d x F Fµν

µν= ∫∫∫  to derive energies which led to the empirical results in sections 5 and 6, 

and look at its BBGGRR ++  color-neutral trace in (7.8).  This is the crossroads between theory 
and experiment. 
  
 The one other important finding which emerges in the process of all this, is that because 
of the non-linear features of Yang-Mills gauge theory, when we attempt to express G as a 
function of J we are unable to obtain a simple ( )G J  except in the abelian limit of Yang-Mills 

gauge theory.  In general G is a function not only of J but also of itself, ( ),G J G .  So if we are 

looking for an expression ( )G J  which does not self-feed via ( ),G J G , then as first detailed in 

section 8 of [10], we need to treat ( ),G J G  recursively.  We feed ( ),G J G  into itself as many 

times as we wish – anywhere from zero times to an infinite number of times – and then cut off 
any further feeds by setting a perturbation V to zero.  Doing this “zero times” expresses the 
abelian limit.  On the other hand, self-feeding an infinite number of times is the behavior 
ascribed to nature.  For human beings and their computers doing non-linear calculations to some 
acceptable level of precision, one would recurse a finite number of times, whether 1 or 2 or 5 or 
10, etc. and then study those results.  So this recursive approach enables us to as detailed in 
section 9 of [10] to describe these baryon monopoles in terms of their natural condition with 
infinite recursion, and to also take the abelian limit of zero recursion, as well as to do in-between 
calculation and analysis.  The empirical connections we have developed here to nuclear binding 
energies are all developed from the zero-recursion limit, and their close concurrence with 
empirical data informs us that the observed nuclear binding and fusion energies are expressing 
abelian “signals” from the nucleons which need to be “decoded” as in sections 5 and 6 to teach 
us about the “nuclear genome.”  On the other hand, the complete proton and neutron masses and 
the constituent / contributive quark masses discussed in see point 11 in section 6 tell us about all 
of the non-abelian “noise” which then overlays upon these abelian signals in the infinite 
recursion limit to exhibit the observed properties of nucleons as complete nucleons. 
 
 It will be appreciated that all of the foregoing makes use only of the classical Yang-Mills 
theory.  We have not yet discussed or resorted to quantum Yang-Mills theory.  But because 
Merged-Maxwell-Yang-Mills-Dirac-Exclusion implies SU(3)C, this means we have not yet 
resorted to QCD but only to classical chromodynamics.  So while one might approach the 
empirical questions we have laid out in sections 5 and 6 here under the assumption that they 
cannot be explained except by a quantum field theory, the results here reveal this – perhaps 
surprisingly – to be a false assumption.  All of the empirical results enumerated in sections 5 and 
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6 are based on classical, not quantum Yang-Mills theory.  But when we finally do wish to study 
quantum Yang-Mills theory which via Merged-Maxwell-Yang-Mills-Dirac-Exclusion means 
quantum chromodynamics, the recursion just discussed is an indispensable element.  For, when 
we finally bring Feynman-path integration into the mix as laid out in point e) near the start of 
section 7, we run into the long-standing mathematical problem of how to analytically and exactly 
calculate a path integral for a non-linear classical field theory, which in the context of scalar 
fields is the so-called 4ϕ  problem.  As demonstrated in section 11 of [10], this recursion is the 
precise aspect of Yang-Mills theory which enables us to finally solve this important problem and 
perform an analytically exact path integration to prove the existence of a non-trivial quantum 
Yang–Mills theory on R4 for any simple gauge group G, see [24] page 6.  
 

Once this is achieved, it is possible to obtain the quantum field equations of Yang-Mills 
QCD which are [13.21] of [10] and thereafter to derive the running QCD curve of Figure 1 
within all experimental errors, see section 18 and especially Figure 14 of [10].  So in the simplest 
terms, QCD may now be thought of as no more and no less than Merged-Maxwell-Yang-Mills-
Dirac-Exclusion-Feynman, where it is Feynman via path integration that finally takes a classical 
chromodynamic theory which properly explains a wide range of nuclear energy data including 
confinement when expressed in terms of nuclear energies as in point 1 of section 5, over to a 
quantum QCD theory which explains the running QCD curve which is the fundamental quantum 
evidence of confinement.  All of this combines to provide clear evidence that the non-vanishing 

flows 0F ≠∫∫�  of chromo-magnetic fields across closed spatial surfaces in Yang-Mills gauge 

theory are in fact synonymous with the existence of baryons, including the protons and neutrons 
from which all of the atomic nuclei are constructed. 

 
 During the century and a half since Maxwell and Heaviside first taught that there are no 
magnetic monopoles in electrodynamics these monopoles have been an endless source of 
fascination for physicists wondering whether the natural world contains magnetic monopoles in 
some form, and if so, what form those monopoles might take.  At the same time, although 
Rutherford and Chadwick established the existence of protons and neutrons almost a century 
ago, and while protons and neutrons and their other baryon cousins have been well-characterized 
since, there remains to date no convincing theoretical explanation of what a baryon actually is 
beyond it being some confining bound state of three quarks teeming with gluons and highly-non-
linear quantum interactions.  To this very date, Rabi’s immortal quip, “who ordered that?” 
remains an unanswered question for protons and neutrons.   
 

The answer to Rabi’s question is that the protons and neutrons and other baryons were 
ordered by a deductive synthesis of Merged-Maxwell-Yang-Mills-Dirac-Exclusion-Feynman, 
with the exclusion principle being the combined effort of Fermi-Dirac-Pauli.  The cast of 
characters who placed this order, and the highly-settled and thoroughly-validated nature of the 
theories which they used to do so, make clear that the author’s thesis that baryons are Yang-Mills 
chromo-magnetic monopoles is a highly conservative thesis, grounded in a synthesis of some of 
the most fundamental, widely-accepted and extensively-tested scientific theories.  To believe and 
accept this thesis requires nothing more than a belief that all of these theories are correct, and a 
belief that when the power of mathematics is correctly applied to combine input component 
theories which themselves are also correct, the result of that mathematical synthesis will be 
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equally correct.  The empirical proof enumerated in section 6 appears to firmly validate this 
belief. 
 

So it is with great irony that when future generations look back on the century and a half 
from Maxwell’s time to the present time during which scientists passionately pursued magnetic 
monopoles, they may chuckle in irony over the fact these monopoles in Yang-Mills form were 
mocking our efforts and hiding in plain sight all along, as the protons and neutrons at the heart of 
the material universe. 
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