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Abstract

It is an intuitive but general conviction that black holes (BHs) result
in highly excited states representing both the �hydrogen atom� and the
�quasi-thermal emission� in quantum gravity. Here we show that such an
intuitive picture is more than a picture, discussing a model of quantum BH
somewhat similar to the historical semi-classical model of the structure
of a hydrogen atom introduced by Bohr in 1913. Our model has impor-
tant implications on the BH information puzzle and on the non-strictly
random character of Hawking radiation. It is also in perfect agreement
with existing results in the literature, starting from the famous result of
Bekenstein on the area quantization.

This paper improves, clari�es and �nalizes some recent results that,
also together with collaborators, we published in various peer reviewed
journals.

Preliminary results on the model in this paper have been recently
discussed in an Invited Lecture at the 12th International Conference of
Numerical Analysis and Applied Mathematics.

1 Introduction

Realizing a complete theory of quantum gravity, which will unify general rel-
ativity and quantum mechanics, is unanimously considered one of the most
important tasks in the framework of theoretical physics. In fact, such a funda-
mental result will permit to obtain a better understanding of the universe. A
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key point of this issue is to realize a de�nitive model of quantum BH as BHs
are generally considered theoretical laboratories for ideas in quantum gravity.
It is indeed an intuitive but general conviction that, in some respects, BHs are
the fundamental bricks of quantum gravity in the same way that atoms are the
fundamental bricks of quantum mechanics. This analogy suggests that the BH
mass should have a discrete spectrum. In this paper, we show that the such an
intuitive picture is more than a picture. Considering the natural correspondence
between Hawking radiation [1] and BH quasi-normal modes (QNMs) [2�4], we
show that QNMs can be really interpreted in terms of BH quantum levels dis-
cussing a BH model somewhat similar to the semi-classical Bohr model of the
structure of a hydrogen atom [5, 6]. This issue has important consequences
on the BH information puzzle [37] and on the non-strictly random character
of Hawking radiation.. In fact, showing BHs in terms of well de�ned quantum
mechanical systems, having an ordered, discrete quantum spectrum, looks con-
sistent with the unitarity of the underlying theory of quantum gravity and with
the idea that information should come out in BH evaporation. A fundamental
feature of the Bohr-like model that we are going to analyse is the discreteness of
the BH horizon area as the function of the QNMs principal quantum number,
which is consistent with various models of quantum gravity where the spacetime
is fundamentally discrete [43, 44].

Preliminary results on the Bohr-like model for BHs have been recently dis-
cussed in an Invited Lecture at the 12th International Conference of Numerical
Analysis and Applied Mathematics [42].

2 Tunnelling mechanism, non-strictly black body

spectrum and e�ective temperature

We start recalling that an elegant and widely used explanation for Hawking ra-
diation [1] is today the tunnelling mechanism [10�16]. Let us consider an object
that is classically stable. If it becomes unstable from a quantum mechanical
point of view, tunnelling is naturally suspected. Thus, the mechanism of par-
ticle creation by BHs [1] can be described as tunnelling arising from vacuum
�uctuations near the BH horizon [10�16]. If a virtual particle pair is created
just inside the horizon, the virtual particle with positive energy can tunnel out
and materialize outside the BH as a real particle. In the same way, if a virtual
particle pair is created just outside the horizon, the particle with negative en-
ergy can tunnel inwards. In both situations, the particle with negative energy is
absorbed by the BH. Thus, the BH mass decreases and the particle with positive
energy propagates towards in�nity. The consequent emission of quanta appears
as Hawking radiation. Working with G = c = kB = ~ = 1

4πε0
= 1 (Planck

units), in strictly thermal approximation the probability of emission is [1, 10,
11]

Γ ∼ exp(− ω

TH
), (1)

where ω is the energy-frequency of the emitted particle and TH ≡ 1
8πM is the
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Hawking temperature. Taking into account the energy conservation, i.e. the
BH contraction which enables a varying geometry, one gets the fundamental
correction of Parikh and Wilczek [10, 11]

Γ ∼ exp[− ω

TH
(1− ω

2M
)], (2)

where the additional term ω
2M is present. We have recently �nalized the tun-

nelling picture of Parikh and Wilczek showing that the probability of emission
(2) is indeed associated to the two distributions [16]

< n >boson= 1
exp[4π(2M−ω)ω]−1

< n >fermion= 1
exp[4π(2M−ω)ω]+1 ,

(3)

for bosons and fermions respectively, which are non-strictly thermal. By intro-
ducing the e�ective temperature [2�4, 16]

TE(ω) ≡ 2M

2M − ω
TH =

1

4π(2M − ω)
, (4)

one rewrites eq. (4) in a Boltzmann-like form similar to eq. (1)

Γ ∼ exp[−βE(ω)ω] = exp(− ω

TE(ω)
), (5)

where exp[−βE(ω)ω] is the e�ective Boltzmann factor, with βE(ω) ≡ 1
TE(ω) .

Thus, the e�ective temperature replaces the Hawking temperature in the equa-
tion of the probability of emission [2�4, 16]. We recall that there are various
�elds of science where one takes into account the deviation from the thermal
spectrum of an emitting body by introducing an e�ective temperature which
represents the temperature of a black body that would emit the same total
amount of radiation. We introduced the concept of e�ective temperature in BH
physics in [3, 4] and used it in [2�4, 16, 17] and, together with collaborators,
in [18, 19]. The e�ective temperature depends on the energy-frequency of the

emitted radiation and the ratio TE(ω)
TH

= 2M
2M−ω represents the deviation of the

BH radiation spectrum from the strictly thermal feature [2�4, 16]. The intro-
duction of the e�ective temperature permits the introduction of other e�ective
quantities. Considering the initial BH mass before the emission, M , and the
�nal BH mass after the emission, M −ω, one introduces the BH e�ective mass

and the BH e�ective horizon [2�4, 16] as

ME ≡M −
ω

2
, rE ≡ 2ME , (6)

during the BH contraction, i.e. during the emission of the particle [2�4, 16].
Such e�ective quantities are average quantities [2�4, 16]. In fact, rE is the
average of the initial and �nal horizons while ME is the average of the initial
and �nal masses [2�4, 16]. The e�ective temperature TE is the inverse of the
average value of the inverses of the initial and �nal Hawking temperatures (before
the emission TH initial = 1

8πM , after the emission TH �nal = 1
8π(M−ω) )[2�4, 16].
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3 Quasi-normal modes as black hole quantum lev-

els

One considers Dirac delta perturbations [2�4, 16] which represent subsequent ab-
sorptions of particles having negative energies which are associated to emissions
of Hawking quanta in the above discussed mechanism of particle pair creation.
BH response to perturbations are QNMs [2�4, 7, 17�20], which are frequencies of
radial spin-j perturbations obeying a time independent Schröedinger-like equa-
tion [2�4, 20]. They are the BH modes of energy dissipation which frequency is
allowed to be complex [2�4, 20]. The intriguing idea to model the quantum BH
in terms of BH QNMs arises from a remarkable paper by York [21]. For large
values of the quantum �overtone� number n, where n = 1, 2, ..., QNMs become
independent of both the spin and the angular momentum quantum numbers
[2�4, 7, 20, 23, 24], in perfect agreement with Bohr's Correspondence Principle

[22], which states that �transition frequencies at large quantum numbers should
equal classical oscillation frequencies�. In other words, Bohr's Correspondence
Principle enables an accurate semi-classical analysis for large values of the prin-
cipal quantum number n, i.e, for excited BHs. By using that principle, Hod has
shown that QNMs release information about the area quantization as QNMs
are associated to absorption of particles [23, 24]. Hod's work was re�ned by
Maggiore [7] who solved some important problems. On the other hand, as
QNMs are countable frequencies, ideas on the continuous character of Hawking
radiation did not agree with attempts to interpret QNMs in terms of emitted
quanta, preventing to associate QNMs to Hawking radiation [20]. Recently, the
authors of [25�28] and ourselves and collaborators [2�4, 17�19] observed that
the non-thermal spectrum of Parikh and Wilczek [10, 11] also implies the count-
able character of subsequent emissions of Hawking quanta. This issue enables a
natural correspondence between QNMs and Hawking radiation, permitting to
interpret QNMs also in terms of emitted energies [2�4, 17�19]. In fact, Dirac
delta perturbations due to discrete subsequent absorptions of particles having
negative energies, which are associated to emissions of Hawking quanta in the
mechanism of particle pair creation by quantum �uctuations, generates BH
QNMs [2�4, 17�19]. On the other hand, the correspondence between emitted
radiation and proper oscillation of the emitting body is a fundamental behavior
of every radiation process in science. Based on such a natural correspondence
between Hawking radiation and BH QNMs, one can consider QNMs in terms of
quantum levels also for emitted energies [2�4, 17�19].

Let us discuss the model. For large values of the principal quantum number
n, i.e, for excited BHs, and independently of the angular momentum quantum
number, the QNMs expression of the Schwarzschild BH which takes into account
the non-strictly thermal behavior of the radiation spectrum is obtained replacing
the Hawking temperature with the e�ective temperature in the standard, strictly
thermal, equation for the quasi-normal frequencies as [2�4]
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ωn = a+ ib+ 2πin× TE(|ωn|)

w 2πin× TE(|ωn|) = in
4M−2|ωn| ,

(7)

where a and b are real numbers with a = (ln 3)×TE(|ωn|), b = π×TE(|ωn|) for
j = 0, 2 (scalar and gravitational perturbations), a = 0, b = 0 for j = 1 (vector
perturbations) and a = 0, b = π × TE(|ωn|) for half-integer values of j. An
intuitive derivation of eq. (7) can be found in [3, 4]. We rigorously derived such
an equation in the Appendix of [2]. In any case, it is better to further clarify
this fundamental point. The Schwarzschild line element is [16, 39]

ds2 = −(1− 2M

r
)dt2 +

dr2

1− 2M
r

+ r2(sin2 θdϕ2 + dθ2). (8)

Historical notes to this notion can be �nd in [39]. The Schwarzschild radius
(event horizon) is given by rH = 2M [16, 39] and 1

4M is the BH surface gravity.
We note that, due to the non strictly black body behavior of the spectrum,
the Hawking temperature shows a discrete behavior in time. Therefore, the
introduction of the e�ective temperature does not degrade the importance of
the Hawking temperature [2�4, 16�19]. This is why, as the Hawking temperature
changes with a discrete character in time, the e�ective temperature represents, in
a certain sense, the value of the Hawking temperature during the emission of the
particle [2�4, 16�19]. In other words, the introduced e�ective temperature takes
into account the non-strictly black body character of the radiation spectrum and
the non-strictly continuous character of subsequent emissions of particles.

Let us introduce [16]

βE(ω) ≡ 1

TE(ω)
= βH

(
1− ω

2M

)
, (9)

where βH ≡ 1
TH

. One uses Hawking's periodicity arguments [16, 40, 41], to
write down the euclidean form of the metric as [16]

ds2E = x2

[
dτ

4M
(
1− ω

2M

)]2 +

(
r

rE

)2

dx2 + r2(sin2 θdϕ2 + dθ2). (10)

The line element (10) is regular at x = 0 and r = rE . τ is treated as an angular

variable having period βE(ω) [16, 40, 41]. One replaces the quantity
∑
i βi

}i

M2i

in [40] with the quantity − ω
2M [16]. Following the analysis in [40] in detail the

e�ective Schwarzschild line element is obtained as [16]

ds2E ≡ −(1− 2ME

r
)dt2 +

dr2

1− 2ME

r

+ r2(sin2 θdϕ2 + dθ2), (11)

and we can also easily show that rE in eq. (10) is the same as in eq. (6)
[16]. The e�ective surface gravity is in turn de�ned as 1

4ME
. Thus, the BH
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dynamical geometry during the emission of the particle is taken into account by
the e�ective line element (11) [16]. Although this does not mean that one can
immediately replace TH(M) with TH(M − ω

2 ) in eq. (7), but the e�ective line
element (11) permits to introduce the e�ective equations [2�4](

− ∂2

∂x2
+ V (x)− ω2

)
φ, (12)

V (x) = V [x(r)] =

(
1− 2ME

r

)(
l(l + 1)

r2
+ 2

(1− j2)ME

r3

)
(13)

and

x = r + 2ME ln
(

r
2ME

− 1
)

∂
∂x =

(
1− 2ME

r

)
∂
∂r .

(14)

In order to simplify the following equations, here we also set

2ME = rE ≡ 1 and m ≡ n+ 1. (15)

We stress that the Planck mass mp is equal to 1 in Planck units. Then, one
rewrites (7) as

ωm
m2
p

=
ln 3

4π
+
i

2
(m− 1

2
) +O(m−

1
2 ), for m� 1, (16)

where now mp 6= 1. Setting

ω̃m ≡
ωm
m2
p

, (17)

eqs. (7), (12), (13) and (14) read

ω̃m =
ln 3

4π
+
i

2
(m− 1

2
) +O(m−

1
2 ), for m� 1, (18)(

− ∂2

∂x2
+ V (x)− ω̃2

)
φ, (19)

V (x) = V [x(r)] =

(
1− 1

r

)(
l(l + 1)

r2
− 3(1− j2)

r3

)
(20)

and
x = r + ln (r − 1)

∂
∂x =

(
1− 1

r

)
∂
∂r

(21)

respectively.
Now, if one replies the same rigorous analytical calculation in the Appendix of
[2] or the analogous calculation by Motl in [20] but starting from eqs. (19),
(20) and (21) and satisfying purely outgoing boundary conditions both at the
e�ective horizon (rE = 2ME) and in the asymptotic region (r = ∞), the �nal
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result will be, obviously and rigorously, eq. (7). A key point has to be clari�ed.
One could take position against the above analysis claiming that ME and rE
(and consequently the tortoise coordinate and the Regge-Wheeler potential) are
frequency dependent. But we note that eq. (15) translates such a frequency
dependence into a continually rescaled mass unit in the discussion in the Ap-
pendix of [2]. It is simple to show that such a rescaling is extremely slow and
always included within a factor 2. Thus, it does not in�uence the analysis in
the Appendix of [2]. In fact, we note that, although ω̃ in the analysis in the
Appendix of [2] can be very large because of de�nition (17), ω must instead
be always minor than the BH initial mass as BHs cannot emit more energy
than their total mass. Inserting this constrain in eq. (6) one gets the range of
permitted values of ME(|ωn|) as

M

2
≤ME(|ωn|) ≤M. (22)

Thus, setting 2ME(|ωn|) = rE(|ωn|) ≡ 1(|ωn|) one sees that the range of per-
mitted values of the continually rescaled mass unit is always included within a
factor 2. On the other hand, the countable sequence of QNMs is very large, see
the discussion below and [2, 3]. This implies that the mass unit's rescaling is
extremely slow. Therefore, the reader can easily check, by reviewing the discus-
sion in the Appendix of [2] step by step, that the continually rescaled mass unit
did not in�uence the analysis.

Let us discuss another argument which emphasizes the correctness of the
analysis in the Appendix of [2]. We can choose to considerME as being constant
within the range (22). In that case, we show that such an approximation is very
good. Eq. (22) implies indeed that the range of permitted values of TE(|ωn|) is

TH = TE(0) ≤ TE(|ωn|) ≤ 2TH = TE(|ωnmax |), (23)

where TH is the initial BH Hawking temperature. Then, if we �x ME = M
2 in

the analysis, the approximate result is

ωn ' 2πin× 2TH . (24)

On the other hand, if one �xes ME = M as in thermal approximation, the
approximate result is

ωn ' 2πin× TH . (25)

We see that both the approximate results in correspondence of the extreme
values in the range (22) have the same order of magnitude. Thus, �xing 2ME =
rE ≡ 1 does not change the order of magnitude of the �nal (approximated) result
with respect to the exact result. In particular, setting TE = 3

2TH the uncertainty
in the �nal result is 0.33, while in the result of the thermal approximation (25)
the uncertainty is 2. Hence, even if one considers ME as constant, the result in
the Appendix of [2] is more precise than the thermal approximation of previous
literature. Thus, the derivation of eq. (7) is surely correct.
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Eq. (7) has the following elegant interpretation [3, 4]. QNMs determine the
position of poles of a Green's function on the given background and the Eu-
clidean BH solution converges to a non-strictly thermal circle at in�nity with
the inverse temperature βE(ωn) = 1

TE(|ωn|) [3, 4]. Then, the spacing of the poles

in eq. (7) coincides with the spacing 2πiTE(|ωn|) = 2πiTH( 2M
2M−|ωn| ), expected

for a non-strictly thermal Green's function [3, 4].
Now, we improve the analyses in [2�4]. In those works we found the physical
solution for the absolute values of the frequencies (7) only for scalar and gravi-
tational perturbations and, strictly speaking, the results of [2�4] hold true only
for j = 0, 2. It is instead of fundamental importance to show that the analysis
works for arbitrary j as in that case the quantum of area obtained from the
asymptotics of |ωn| is an intrinsic property of Schwarzschild BHs and it does
not depend on the spin content of the perturbation. The key point is that as
a, b � |2πin × TE(|ωn|)|, for large n the leading asymptotic behavior of |ωn|
is given by the leading term in the imaginary part of the complex frequencies.
Considering the leading asymptotic behavior of (7) one gets the solution in terms
of of |ωn| as

|ωn| = M ±
√
M2 − n

2
. (26)

Again, BHs cannot emit more energy than their total mass. Thus, the physical
solution is the one obeying |ωn| < M , i.e.

En ≡ |ωn| = M −
√
M2 − n

2
. (27)

En is interpreted like the total energy emitted by the BH at that time, i.e. when
the BH is excited at a level n [2�4].

4 The Bohr-like model

Considering an emission from the ground state (i.e. a BH which is not excited)
to a state with large n = n1 and using eq. (27), the BH mass changes from M
to

Mn1 ≡M − En1 =

√
M2 − n1

2
. (28)

In the transition from the state with n = n1 to a state with n = n2 where
n2 > n1 the BH mass changes again from Mn1

to

Mn2
≡Mn1

−∆En1→n2
= M − En2

=
√
M2 − n2

2 ,
(29)

where

∆En1→n2 ≡ En2 − En1 = Mn1 −Mn2 =

√
M2 − n1

2
−
√
M2 − n2

2
, (30)
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is the jump between the two levels due to the emission of a particle having fre-
quency ∆En1→n2 . Thus, in our BH model, during a quantum jump a discrete
amount of energy is radiated and, for large values of the principal quantum
number n, the analysis becomes independent from the other quantum numbers.
In a certain sense, QNMs represent the "electron" which jumps from a level
to another one and the absolute values of the QNMs frequencies represent the
energy "shells" [2]. In Bohr model [5, 6] electrons can only gain and lose energy
by jumping from one allowed energy shell to another, absorbing or emitting ra-
diation with an energy di�erence of the levels according to the Planck relation
(in standard units) E = hf , where h is the Planck constant and f the transition
frequency. In our BH model, QNMs can only gain and lose energy by jump-
ing from one allowed energy shell to another, absorbing or emitting radiation
(emitted radiation is given by Hawking quanta) with an energy di�erence of the
levels according to eq. (30). The similarity is completed if one notes that the
interpretation of eq. (27) is of a particle, the �electron�, quantized on a circle of
length [3]

L =
1

TE(En)
= 4π

(
M +

√
M2 − n

2

)
, (31)

which is the analogous of the electron travelling in circular orbits around the
hydrogen nucleus, similar in structure to the solar system, of Bohr model [5,
6]. On the other hand, Bohr model is an approximated model of the hydrogen
atom with respect to the valence shell atom model of full quantum mechanics.
In the same way, our BH model should be an approximated model with respect
to the de�nitive, but at the present time unknown, BH model arising from a
full quantum gravity theory.
As En is interpreted like the total energy emitted at level n, considering the
expressions (28) and (29) for the residual BH mass one needs also

M2 − n

2
≥ 0. (32)

In fact, BHs cannot emit more energy than their total mass and the total energy
emitted by the BH cannot be imaginary. The expression (32) gives a maximum
value for the overtone number n

n ≤ nmax = 2M2, (33)

which corresponds to Enmax = M. On the other hand, we recall that, by us-
ing the Generalized Uncertainty Principle, Adler, Chen and Santiago [29] have
shown that the total BH evaporation is prevented in exactly the same way that
the Uncertainty Principle prevents the hydrogen atom from total collapse. In
fact, the collapse is prevented, not by symmetry, but by dynamics, as the Planck
distance and the Planck mass are approached [29]. That important result im-
plies that eq. (32) has to be slightly modi�ed, becoming (the Planck mass is
equal to 1 in Planck units)

M2 − n

2
≥ 1. (34)

9



Thus, one gets a slightly di�erent value of the maximum value of the overtone
number n

n ≤ nmax = 2(M2 − 1). (35)

Then, the countable sequence of QNMs for emitted energies cannot be in�nity
although n can be extremely large [2]. In fact, restoring ordinary units and con-
sidering a BH mass of the order of 10 solar masses, one easily gets nmax ∼ 1076.
On the other hand, we expect further corrections to our semi-classical analysis
when the Planck scale is approached, as we need a full theory of quantum grav-
ity to obtain a correct description of the Planck scale's physics. Here the value
of nmax has been correct with respect to the value that we found in [2]

5 Implications on the area quantization

Setting n1 = n − 1, n2 = n in eq. (30) on gets the emitted energy for a jump
among two neighboring levels

∆En−1→n =

√
M2 − n+ 1

2
−
√
M2 − n

2
. (36)

Bekenstein [30] has shown that the Schwarzschild BH area quantum is4A = 8π
(the Planck length lp = 1.616 × 10−33 cm is equal to one in Planck units). As
for the Schwarzschild BH the horizon area A is related to the mass through the
relation A = 16πM2, a variation 4M in the mass generates a variation

4A = 32πM4M (37)

in the area. Using eqs. (28) and (36) and putting4M = −∆En−1→n (emission)
one gets

4An−1 ≡ −32πMn−1∆En−1→n. (38)

Eq. (38) should give the area quantum of an excited BH for an emission from the
level n− 1 to the level n in function of the quantum number n and of the initial
BH mass. Actually, we �nd a problem using eq. (38). In fact, an absorption
from the level n to the level n− 1 is now possible, with an absorbed energy

∆En→n−1 = −∆En−1→n =

√
M2 − n

2
−
√
M2 − n+ 1

2
. (39)

In that case, one sets 4M = −∆En→n−1 = ∆En−1→n and the quantum of area
should be

4An ≡ −32πMn∆En→n−1 = 32πMn∆En−1→n. (40)

Then, the absolute value of the area quantum for an absorption from the level
n to the level n − 1 is di�erent from the absolute value of the area quantum
for an emission from the level n − 1 to the level n because Mn−1 6= Mn.
The problem is solved if one considers the e�ective mass corresponding to the
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transitions between the two levels n and n− 1, which is the same for emission
and absorption

ME(n, n−1) ≡ 1
2 (Mn−1 +Mn)

1
2

(√
M2 − n−1

2 +
√
M2 − n

2

)
.

(41)

Replacing Mn−1 with ME(n, n−1) in eq. (38) and Mn with ME(n, n−1) in eq.
(40) we obtain

4An−1 ≡ −32πME(n, n−1)∆En−1→n emission

4An ≡ −32πME(n, n−1)∆En→n−1 absorption,
(42)

and now one gets |4An| = |4An−1|. By using eqs. (39) and (41) one �nds
immediately

|4An| = |4An−1| = 8π. (43)

Thus, eq. (43) retrieves the famous result of Bekenstein on the area quantization
[30], and this cannot be a coincidence. It is a con�rmation of the correctness of
the present analysis instead.

Putting An−1 ≡ 16πM2
n−1, An ≡ 16πM2

n, the formulas of the number of
quanta of area can be written down as

Nn−1 ≡
An−1
|4An−1|

=
16πM2

n−1
32πME(n, n−1) ·∆En−1→n

=
M2
n−1

2ME(n, n−1) ·∆En−1→n
(44)

before the emission, and

Nn ≡
An
|4An|

=
16πM2

n

32πME(n, n−1) ·∆En−1→n
=

M2
n

2ME(n, n−1) ·∆En−1→n
(45)

after the emission respectively. One can easily check that

Nn −Nn−1 =
M2
n −M2

n−1
2ME(n, n−1) ·∆En−1→n

=
∆En−1→n (Mn−1 +Mn)

2ME(n, n−1) ·∆En−1→n
= 1, (46)

as one expects. Thus, the famous formula of Bekenstein-Hawking entropy [1,
32, 33] reads

(SBH)n−1 ≡
An−1

4
= 8πNn−1Mn−1 ·∆En−1→n = 4π

(
M2 − n+ 1

2

)
(47)

before the emission and

(SBH)n ≡
An
4

= 8πNnMn ·∆En−1→n = 4π
(
M2 − n

2

)
(48)

after the emission respectively. Then, we �nd the intriguing result that Bekenstein-
Hawking entropy is a function of the QNMs principal quantum number, i.e. of
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the BH quantum level. Again, we correct and improve our previous results in
[2] which strictly hold only for scalar and gravitational perturbations.
On the other hand, it is a general belief that there is no reason to expect that
Bekenstein-Hawking entropy will be the whole answer for a correct quantum
gravity theory [8]. For a better understanding of BH entropy we need to go
beyond Bekenstein-Hawking entropy and identify the sub-leading corrections [8].
Using the quantum tunnelling approach one obtains the sub-leading corrections
to the second order approximation [9]. In this approach BH entropy contains
three parts: the usual Bekenstein-Hawking entropy, the logarithmic term and
the inverse area term [9]

Stotal = SBH − lnSBH +
3

2A
. (49)

Apart from a coe�cient, this correction to BH entropy is consistent with loop
quantum gravity [9], where the coe�cient of the logarithmic term has been
rigorously �xed at 1

2 [9, 31]. In this way, the formulas of the total entropy that
takes into account the sub-leading corrections to Bekenstein-Hawking entropy
become

(Stotal)n−1 = 4π
(
M2 − n−1

2

)
− ln

[
4π
(
M2 − n−1

2

)]
+ 3

32π(M2−n−1
2 ))

(50)

before the emission, and

(Stotal)n = 4π
(
M2 − n

2

)
− ln

[
4π
(
M2 − n

2

)]
+ 3

32π(M2−n
2 )

(51)

after the emission, respectively. Thus, also the total BH entropy results a func-
tion of the BH excited state n. Eqs. (50) and (50) permit to write immediately
the number of micro-states

g(Nn−1) ∝ exp{4π
(
M2 − n−1

2

)
− ln

[
4π
(
M2 − n−1

2

)
)
]

+ 3

32π(M2−n−1
2 ))

(52)

before the emission, and

g(Nn) ∝ exp{4π
(
M2 − n

2

)
− ln

[
4π
(
M2 − n

2

)]
+ 3

32π(M2−n
2 )
,

(53)

after the emission, respectively.
We stress that our results are in perfect agreement with existing results in

the literature. In fact, as we consider large n, it is ∆En−1→n ≈ 1
4M [2, 3]. Thus,

if one neglects the di�erence between the original BH mass and the residual mass

12



Mn, i.e. Mn ' M (which was the approximation that we used in [3, 4]), the
Bekenstein-Hawking entropy reads (n ≈ n− 1 and Nn ≈ Nn−1 ≡ N)

SBH =
A

4
= 8πNM ·∆En−1→n, (54)

which is consistent with the standard result [7, 34�36]
SBH → 2πN. (55)

Again, the consistence with well known and accepted results cannot be a coinci-
dence, but it is a con�rmation of the correctness of the current analysis instead.
Then, the total entropy reads

Stotal = 8πNM ·∆En−1→n − ln [8πNM ·∆En−1→n] +
3

64πNM ·∆En−1→n
,

(56)
which is well approximated by

Stotal ' 2πN − ln 2πN +
3

16πN
. (57)

Now, let us explain the way in which our Bohr-like model for BHs works.
Let us consider a BH original mass M. After an emission from the ground state
to a state with large n− 1, or, alternatively, after a certain number of emissions
(and potential absorptions as the BH can capture neighboring particles), the
BH is at an excited level n−1 and its mass isMn−1 ≡M −En−1 where En−1 is
the absolute value of the frequency of the QNM associated to the excited level
n− 1 . We recall again that En−1 is interpreted as the total energy emitted at
that time [2]. The BH can further emit an energy to jump to the subsequent
level: ∆En−1→n = En − En−1 = Mn−1 −Mn. Now, the BH is at an excited
level n and the BH mass is

Mn ≡M − En−1 −∆En−1→n =

= M − En−1 + En−1 − En = M − En.
(58)

The BH can, in principle, return to the level n − 1 by absorbing an energy
∆En→n−1 = −∆En−1→n . We have also shown that the quantum of area is the
same for both absorption and emission, given by eq. (43), as one expects.

There are three di�erent physical situations for excited BHs (n� 1):
i) n is large, but not enough large. It is also En �Mn 'M and one can use

eqs. (54), (56) which result a better approximation than eqs. (55), (57) which
were used in previous literature in strictly thermal approximation [7, 34�36].

ii) n is very much larger than in point 1, but before arriving at the Planck
scale. In that case, it can be En . M, while Mn ' M does not hold and one
must use the eqs. (47), (48), (50) and (51).

iii) At the Planck scale n is larger also than in point ii), we need a full
theory of quantum gravity .
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6 Some important consequences

Our Bohr-like model for BHs has important implications for the BH information
paradox [37]. In fact, this paper completes our previous results [2�4], con�rming
that BH QNMs are really the BH quantum levels in our Bohr-like semi-classical
approximation. This point implies that BHs are well de�ned quantum mechan-
ical systems, having ordered, discrete quantum spectra, in perfect agreement
with the unitarity of the underlying quantum gravity theory and with the idea
that information should come out in BH evaporation. Consistence between our
Bohr-like model and a recent approach to solve the BH information paradox
[25�28] has been recently highlighted in [27]. Thus, the general conviction that
BHs result in highly excited states representing both the �hydrogen atom� and
the �quasi-thermal emission� in an unitary theory of quantum gravity is in per-
fect agreement with our Bohr-like model.

Another key point, which is again connected with the information puzzle,
is the following. In Hawking's original computation [1] if emission can occur
for a quantum of energy E, then it can also occur for any other quantum of
energy bE, where b is a continuous real parameter between 0 and M

E , where
M is the BH mass. After emission of a quantum of energy bE, the BH radial
coordinate is determined continuously by the continuous parameter b. In other
words, emissions of Hawking quanta looks completely random. The situation
looks to be similar within the semi-classical context in which Parikh-Wilczek
perform their calculation [10, 11]. But here there is an important di�erence. It
is indeed important to recall that in the approach in [10, 11] the tunnelling is
a discrete instead of continuous process [3, 16]. In fact, two di�erent countable
BH physical states must be considered, the physical state before the emission
of the particle and the physical state after the emission of the particle [3, 16].
Thus, the emission of the particle can be interpreted like a quantum transition

of frequency ω between the two discrete states [3, 16]. In the language of the
tunnelling mechanism, a trajectory in imaginary or complex time joins two
separated classical turning points [10, 11]. The fundamental consequence is
that the radiation spectrum is now discrete in time [3, 16]. Let us clarify this
important issue in a better way. At a well �xed Hawking temperature and the
statistical probability distribution (2) are continuous functions. On the other
hand, the Hawking temperature in (2) varies in time with a character which is
discrete. In fact, the forbidden region traversed by the emitting particle has a
�nite size [11]. Considering a strictly thermal approximation, the turning points
have zero separation. Therefore, it is not clear what joining trajectory has to be
considered because there is not barrier [11]. The problem is solved if we argue
that the forbidden �nite region from rinitial = 2M to rfinal = 2(M=ω) that
the tunnelling particle traverses works like barrier [11]. Thus, the intriguing
explanation is that it is the particle itself which generates a tunnel through the
horizon [11]. The discrete behavior in time of the radiation spectrum implies the
countable character of the subsequent emitted Hawking quanta and, in turn, the
correspondence between the countable perturbations generated by the absorbed
negative energies and the BH QNMs. The fundamental consequence is that,
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di�erently on Hawking's original computation [1], now emissions of Hawking
quanta are not completely random. They are indeed governed by eq. (30). In
fact, let us consider an emission from the BH ground state to a state with large
n. After that, using eq. (33) (although we recall that the last area quantum
corresponds to the �nal Planck mass which is prevented to evaporate by the
Generalized Uncertainty Principle, see Section 4 and ref. [29]), one see that the
BH will have a �nite and discrete number of potential emissions given by

nmax − n = 2M2 − n. (59)

It is enlightening to observe that such a number of potential residual emissions,
which is equal to the residual number of QNMs, is also equal to the residual
number of area quanta. In fact, by using eq. (28) and recalling that rH = 2M
one easily compute the area of the BH excited at level n as

An = 16πM2
n = 16π

(
M2 − n

2

)
, (60)

which, dividing for the Bekenstein's area quantum |4An| = 8π [30], that we
retreived in eq. (43), gives the number of area quanta for the BH excited at
level n

Nn = 2M2 − n. (61)

Thus, we understand that the key point is exactly Bekenstein's idea on area
quantization [30], i.e. as for large n the BH area is quantized, the BH can
emit only energies which are consistent with such a quantization. In other
words, emissions of Hawking quanta are not completely random because the
BH can emit only energies which corresponds to reductions of its area which
are multiples of the Bekenstein's are quantum |4An| = 8π given by eq. (43).
Hence, our results are completely consistent with the idea that the Schwarzschild
spacetime is quantized around the BH core.

7 Conclusion remarks

In this paper we have shown that the intuitive but general conviction that BHs
result in highly excited states representing both the �hydrogen atom� and the
�quasi-thermal emission� in quantum gravity is more than a picture, discussing
a model of quantum BH somewhat similar to the historical semi-classical model
of the structure of a hydrogen atom introduced by Bohr in 1913. In the model
the absolute values of the QNMs frequencies represent the energy "shells", or,
in other words, the �electrons� of quantum gravity which jump from a level to
another. In Bohr model [5, 6] electrons can only gain and lose energy by jumping
from one allowed energy shell to another, absorbing or emitting radiation with
an energy di�erence of the levels according to the Planck relation E = hf . In our
BH model, QNMs can only gain and lose energy by jumping from one allowed
energy shell to another, absorbing or emitting radiation (emitted radiation is
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given by Hawking quanta) with an energy di�erence of the levels according to
eq. (30). The similarity between the two models is completed if one notes that
the interpretation of eq. (27) is of a particle, the �electron�, quantized on a circle
of length given by eq. (31).

The model is in perfect agreement with existing results in the literature [7,
34�36], starting from the famous result of Bekenstein on the area quantization
|4An| = 8π [30].

This paper improves, clari�es and �nalizes some recent results that, also
together with collaborators, we published in various peer reviewed journals [2-
4], [16-19] and has important consequences on the BH information puzzle and
on the non-strictly random character of Hawking radiation.

A fundamental feature of the Bohr-like model that we analysed in this paper
is the discreteness of the BH horizon area as the function of the QNMs principal
quantum number, which is consistent with various models of quantum gravity
where the spacetime is considered fundamentally discrete [43, 44].

Preliminary results on the Bohr-like BH model in this paper have been re-
cently discussed in an Invited Lecture at the 12th International Conference of
Numerical Analysis and Applied Mathematics [42].
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