Soliton solution of sine-Gordon model of DNA
Victor Christianoto¹ and Yunita Umniyati²

Abstract
There are many models of DNA, both the linear ones and the nonlinear ones. One interesting model in this regard is the sine-Gordon model of DNA as proposed by Daniel and Vasumathi. It belongs to nonlinear model of DNA which is close to realistic model. Here we discuss a graphical plot of soliton solution of such a sine-Gordon model of DNA.

Introduction
There are many models of DNA, both the linear ones and the nonlinear ones [1]. One interesting model in this regard is the sine-Gordon model of DNA as proposed by Daniel and Vasumathi [2]. It belongs to nonlinear model of DNA which is close to realistic model. Here we discuss a graphical plot of soliton solution of such a sine-Gordon model of DNA.

Soliton solution in a sine-Gordon model of DNA
Assuming the wavefunction Ψ to be a function of x and t, then the sine-Gordon model of DNA can be written as follows: [2, p.7]

\[\Psi = U[x - ct] \]

Or in Mathematica expression:
\[\text{pde} = D[\Psi, x, x] - D[\Psi, t, t] - \sin[\Psi] \neq 0 \]

Now we will use Mathematica 9.0 to simplify and give graphical plot. [3, p.443]
To simplify with Mathematica:

The result is known as kink soliton wave: [3, p.444]

Or in Mathematica:

Differentiating for t, it yields:

Simplifying the above result, it yields:

¹ Contact: Malang Institute of Agriculture, Malang – Indonesia. Email: victorchristianto@gmail.com, URL: http://www.sciprint.org or http://www.researchgate.net/profile/Victor_Christianto

² Swiss German University, Tangerang – Indonesia. Email: nitahey@yahoo.com
The 3D plot is given below for c= 0.72

Graphic 1. Mathematica plot of soliton solution on sine-Gordon equation for c=0.72

Concluding remarks
There are many models of DNA, both the linear ones and the nonlinear ones [1]. One interesting model in this regard is the sine-Gordon model of DNA as proposed by Daniel and Vasumathi [2]. It belongs to nonlinear model of DNA which is close to realistic model. Here we discuss a graphical plot of soliton solution of such a sine-Gordon model of DNA.

Considering that sine-Gordon equation has been used extensively by particle physicists, then it would be interesting to study possibility to improve or alter DNA using electromagnetic field/pulse such as laser. This may be considered as a DNA enhancement method.

VC & YU

References: