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Abstract. It will be proven that Klein-Gordon and Dirac equation, when
defined on an F-space of distributions, have the same set of solutions,
which makes the two equations equivalent on that vector space of dis-
tributions.
Some consequences of this for quantum field theory are shortly dis-
cussed.

1. Klein-Gordon And Dirac Equation

I assume ~ ≡ 1 and c ≡ 1 throughout, denote with x = (x0, . . . , x3) ∈ R4 a
point in space-time, where x0 is the time coordinate, and base the Minkowsi
metric tensor g on the signature (+,−,−,−). With this convention, the Klein-
Gordon is:

�Ψ := (∂20 − ∂21 − ∂22 − ∂23)Ψ = m2Ψ, (1.1)

and the Dirac equation is given as a matrix equation by

(iγ0∂0 − · · · − iγ3∂3)Ψ = mΨ, (1.2)

where γ0, . . . γ3 are anticommuting 4 × 4-matrices satisfying γ20 = −γ21 =
−γ22 = −γ23 = 14, with 14 denoting the 4×4-unit matrix. The Dirac matrices
are a possible representation of these matrices. (As a reference I refer to [4],
[9], [2], [3], or any good book on quantum field theory.)

2. Definition of the F-space

The operator γ0∂0−· · ·−γ3∂3 is called Dirac-operator. Rather than to discuss
it in terms of Hilbert spaces, where it is unbounded and non-selfadjoint, I
prefer a super space X, say, on which this operator is a linear, continuous
mapping.
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Definition 2.1. Let Cl1,3(C) denote the complex algebra generated by the
γ0, . . . , γ3, which by itself is a finite-dimensional, in fact 16-dimensional, vec-
tor space, hence a Banach space (when equipped with its natural norm). An
F-space (or Frechet space) is defined as a metrizable, complete toplogical
vector space (see: [6]). The space S(R4) of rapidly decreasing, infinitely dif-
ferentiable functions on R4 into C is such an F-space, and so its strong dual
S ′(R4), called space of tempered distributions on R4, is (see also: [6]). Then
the tensor product X := Cl1,3(C)⊗ S ′(R4) of the finite-dimensional Clifford
algebra with the space of tempered distribution is an F-space.
Let D := i(γ0∂0 − · · · − γ3∂3) : X → X. Then D is a continuous, linear
operator on X. Let kern(D) ⊂ X be the kernel of D and ran(D) its range.

Because the origin {0} ⊂ X is a closed subspace of X, its preimage
kern(D) ⊂ X is closed in X, and the quotient space X/kern(D) is a vector
space.
Now, given any metric d : X × X 3 (x, y) 7→ d(x, y) ∈ [0,∞) defining the
topology of X,

d̂ : (X/kern(D))× (X/kern(D)) 3 (x, y) 7→ min
s,t∈kern(D)

d(x+s, y+ t) ∈ [0,∞)

is a metrics on X/kern(D), for which the canonical projection π : X 3 x 7→
x+ kern(D) ∈ X/kern(D) is a continuous surjection.
As an F-space, X is a Baire space (see: [6]); consequently, the open map-
ping theorem holds (see: [6] or [7]), and the canonical projection π is open.
Therefore, X = ran(D) ⊕ kern(D) is the topological direct sum of ran(D)
and kern(D), and the restriction D|ran(D) of D to ran(D) is a continuous

and open isomorphism. It follows that kern(D2) = kern(D). But on X:
D2 = −� = −(∂20 − · · · − ∂23).
Finally, for Ψ ∈ X and m ∈ R: (D−m)Ψ = 0⇒ �Ψ = (D−m)(D+m)Ψ = 0,
so the set {Ψ ∈ X : DΨ = mΨ} is contained in {Ψ ∈ X : �Ψ = m2Ψ}.
It’s the converse that poses the problem: Applying the open-mapping theo-
rem to D+m and D−m, we conclude that (�−m2)Ψ = 0 and (D−m)Ψ = 0
have the same solutions if and only if kern(D −m) = kern(D + m), which
is apparently not the case.
However, look again at the definition of the matrices γµ: They are defined as
anti-commuting 4 × 4-matrices for which γ20 = −γ21 = · · · − γ23 = 14 holds,
so the γµ, and therefore D, are defined up to unitary equivalence; that is:
for each unitary transformation U : C4 → C4, γ′µ := U−1γµU , (0 ≤ µ ≤ 3),
is equivalent to γµ, (0 ≤ µ ≤ 3). In other words, D is to be defined modulo
U(4), where U(4) stands for the group of unitary transformations on C4.
Now, with U = γ5 := iγ0 · · · γ3, we have U−1γµU = −γµ, (0 ≤ µ ≤ 3), which
maps kern(D − m) unitarily onto kern(D + m) and therefore proves that
the set of solutions of D2Ψ = m214Ψ and DΨ = m14Ψ are identical. And,
two equations, which share the same set of solutions are (mathematically)
equivalent! So, we proved the equivalence of the Klein-Gordon equation with
the Dirac equation.
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3. Demystifying the Dirac operator

The Fourier transformation F : S(R4) 3 f 7→ f̂ := (2π)−2
∫
R4 f(x)eix·kd4x ∈

S(R4) is known to be a topological isomorphism (see: [6]). Its dual therefore

is a topological isomorphism F : S ′(R4) 3 T 7→ T̂ ∈ S ′(R4), and it maps

T 7→ DT into T̂k 7→ (2π)−2(γ0k0 − · · · − γ3k3)T̂k. That reduces the whole
eigenvalue problem to an algebraic problem within the finite dimensional
algebra Cl1,3(C):
By writing the scalar p20−· · ·−p23 = m2 as a matrix equation (p20−· · · p23)14 =
m214, the unitary group U(4) is added as a global symmetry on top of the
scalar equation, all solutions of that matrix equation are unique up to U(4)-
equivalence, and every choice of an orthonormal basis Ψ1, . . . ,Ψ4 ∈ C4 is
arbitrary up to unitary equivalence. There is no absolute meaning of Ψ1 to
signify a spin-up and positive energetic state of a particle, wheras Ψ4 has to
be spin-down state of negative energy: Ψ1, . . . ,Ψ4 just form an orthonormal
basis of C4! Plus, we saw that these γ-matrices are not just a sophisticated
quantum theoretical artefact: as purely algebraic mathematical objects, they
are part of any relativistic dynamical system!
They even introduce the notion of ”state” into classical physics, because with
each normal element Ψ1 ∈ C and each real-valued λ, eiλΨ1 would equivalently
do the job! In other words: the notion of phase invariance is introduced to
all of relativistic physics along with the γµ! (Not just by chance, classical
electromagnetic waves do exhibit phase invariance.)

4. The Consequences

Relativistic field theory always starts from a Lagrangian, which is a func-
tional L : φ(x) 7→ L(t, x, φ(x), ∂0φ(x), . . . , ∂3φ(x), . . . ) ∈ C, where x =
(x0, . . . , x3) ∈ R4 is supposed to represent the space-time coordinates (see:
[9]), φ : R4 → X, and X is some topological vector space, which can be Cn
for some n ∈ N as in classical field theory or a space of unbounded linear
operators on a Hilbert space, as is the case for quantum field theory, and the
dots in the argument of L stand for additional, optional higher derivatives of
φ (and/or time derivatives of the space coordinates) as arguments.
Given L, its corresponding Euler-Lagrange equations yield the equations of
motions, and the symmetries of L yield the invariant quantities by means of
Noether’s theorem (see: [9] or [4]).
That makes the Lagrangian the final point of truth for the appropriate phys-
ical model under consideration.

Now, as long as different Lagrangians deliver inequivalent equations of
motion, it might not be considered a flaw to guess at the Lagrangian from
the equations of motion, which it defines. However, should it turn out that
two distinct Lagrangians deliver equivalent equations, the whole process of
the Lagrangian-centric approach will become questionable.
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The above proven equivalence of Klein-Gordon and Dirac equation just
gives us an example of two distinct Lagrangians that have equivalent equa-
tions of motions:
Citing [9, p.162 and p.218ff.], L = φ̄(γµi∂µ −m)φ yields the Euler-Lagrange
equation iγµ∂µφ = mφ, which is the Dirac equation; on the other hand,
the Euler-Lagrange equation for the Lagrangian L = (1/2)(∂µφ)(∂µφ) −
(1/2)m2φ2 is ∂µ∂

µφ∗ = m2φ∗, which is the Klein-Gordon equation (see:
[9, p. 218]).

Relativistic (quantum) field theory now is in need to explain, why one
or the other Lagrangian is to be chosen as the ”correct one”. Moreover, there
might be even simpler Lagrangians that deliver equivalent equations, and
it is to expect that the simplest candidate will also yield precious intuitive
physical insight!
Just to rely on any Lagrangian with suitable Euler-Lagrange equations and
to make it more and more complex by adding more and more intricated
symmetrical terms, does not do: This proves no better than appending more
and more epicycles to the Ptolemaic model: It adds confidence through a
better approximation, but nothing more!

If at all physics is to survive with future generations, then undoubtly
the current relativistic quantum field theory will be assembled anew on firmer
grounds than of today. The question is only when.
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